goldendict-ng/btreeidx.cc
2022-08-13 12:41:01 +08:00

1489 lines
39 KiB
C++

/* This file is (c) 2008-2012 Konstantin Isakov <ikm@goldendict.org>
* Part of GoldenDict. Licensed under GPLv3 or later, see the LICENSE file */
#include "btreeidx.hh"
#include "folding.hh"
#include "utf8.hh"
#include <QRunnable>
#include <QThreadPool>
#include <QSemaphore>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "gddebug.hh"
#include "wstring_qt.hh"
#include "utils.hh"
#include <QRegularExpression>
#include "wildcard.hh"
#include "globalbroadcaster.h"
//#define __BTREE_USE_LZO
// LZO mode is experimental and unsupported. Tests didn't show any substantial
// speed improvements.
#ifdef __BTREE_USE_LZO
#include <lzo/lzo1x.h>
namespace {
struct __LzoInit
{
__LzoInit()
{
lzo_init();
}
} __lzoInit;
}
#else
#include <zlib.h>
#endif
namespace BtreeIndexing {
using gd::wstring;
using gd::wchar;
using std::pair;
enum
{
BtreeMinElements = 64,
BtreeMaxElements = 8192
};
BtreeIndex::BtreeIndex():
idxFile( 0 ), rootNodeLoaded( false )
{
}
BtreeDictionary::BtreeDictionary( string const & id,
vector< string > const & dictionaryFiles ):
Dictionary::Class( id, dictionaryFiles )
{
}
string const & BtreeDictionary::ensureInitDone()
{
static string empty;
return empty;
}
void BtreeIndex::openIndex( IndexInfo const & indexInfo,
File::Class & file, Mutex & mutex )
{
indexNodeSize = indexInfo.btreeMaxElements;
rootOffset = indexInfo.rootOffset;
idxFile = &file;
idxFileMutex = &mutex;
rootNodeLoaded = false;
rootNode.clear();
}
vector< WordArticleLink > BtreeIndex::findArticles( wstring const & word, bool ignoreDiacritics )
{
vector< WordArticleLink > result;
try
{
wstring folded = Folding::apply( word );
if( folded.empty() )
folded = Folding::applyWhitespaceOnly( word );
bool exactMatch;
vector< char > leaf;
uint32_t nextLeaf;
char const * leafEnd;
char const * chainOffset = findChainOffsetExactOrPrefix( folded, exactMatch,
leaf, nextLeaf,
leafEnd );
if ( chainOffset && exactMatch )
{
result = readChain( chainOffset );
antialias( word, result, ignoreDiacritics );
}
}
catch( std::exception & e )
{
gdWarning( "Articles searching failed, error: %s\n", e.what() );
result.clear();
}
catch(...)
{
qWarning( "Articles searching failed\n" );
result.clear();
}
return result;
}
class BtreeWordSearchRunnable: public QRunnable
{
BtreeWordSearchRequest & r;
QSemaphore & hasExited;
public:
BtreeWordSearchRunnable( BtreeWordSearchRequest & r_,
QSemaphore & hasExited_ ): r( r_ ),
hasExited( hasExited_ )
{}
~BtreeWordSearchRunnable()
{
hasExited.release();
}
virtual void run();
};
void BtreeWordSearchRunnable::run()
{
r.run();
}
BtreeWordSearchRequest::BtreeWordSearchRequest( BtreeDictionary & dict_,
wstring const & str_,
unsigned minLength_,
int maxSuffixVariation_,
bool allowMiddleMatches_,
unsigned long maxResults_,
bool startRunnable ):
dict( dict_ ), str( str_ ),
maxResults( maxResults_ ),
minLength( minLength_ ),
maxSuffixVariation( maxSuffixVariation_ ),
allowMiddleMatches( allowMiddleMatches_ )
{
if( startRunnable )
{
QThreadPool::globalInstance()->start(
new BtreeWordSearchRunnable( *this, hasExited ) );
}
}
void BtreeWordSearchRequest::findMatches()
{
if ( Utils::AtomicInt::loadAcquire( isCancelled ) )
{
finish();
return;
}
if ( dict.ensureInitDone().size() )
{
setErrorString( QString::fromUtf8( dict.ensureInitDone().c_str() ) );
finish();
return;
}
QRegularExpression regexp;
bool useWildcards = false;
if( allowMiddleMatches )
useWildcards = ( str.find( '*' ) != wstring::npos ||
str.find( '?' ) != wstring::npos ||
str.find( '[' ) != wstring::npos ||
str.find( ']' ) != wstring::npos );
wstring folded = Folding::apply( str );
int minMatchLength = 0;
if( useWildcards )
{
regexp.setPattern( wildcardsToRegexp( gd::toQString( Folding::applyDiacriticsOnly( Folding::applySimpleCaseOnly( str ) ) ) ) );
if( !regexp.isValid() )
regexp.setPattern( QRegularExpression::escape( regexp.pattern() ) );
regexp.setPatternOptions( QRegularExpression::CaseInsensitiveOption );
bool bNoLetters = folded.empty();
wstring foldedWithWildcards;
if( bNoLetters )
foldedWithWildcards = Folding::applyWhitespaceOnly( str );
else
foldedWithWildcards = Folding::apply( str, useWildcards );
// Calculate minimum match length
bool insideSet = false;
bool escaped = false;
for( wstring::size_type x = 0; x < foldedWithWildcards.size(); x++ )
{
wchar ch = foldedWithWildcards[ x ];
if( ch == L'\\' && !escaped )
{
escaped = true;
continue;
}
if( ch == L']' && !escaped )
{
insideSet = false;
continue;
}
if( insideSet )
{
escaped = false;
continue;
}
if( ch == L'[' && !escaped )
{
minMatchLength += 1;
insideSet = true;
continue;
}
if( ch == L'*' && !escaped )
continue;
escaped = false;
minMatchLength += 1;
}
// Fill first match chars
folded.clear();
folded.reserve( foldedWithWildcards.size() );
escaped = false;
for( wstring::size_type x = 0; x < foldedWithWildcards.size(); x++ )
{
wchar ch = foldedWithWildcards[ x ];
if( escaped )
{
if( bNoLetters || ( ch != L'*' && ch != L'?' && ch != L'[' && ch != L']' ) )
folded.push_back( ch );
escaped = false;
continue;
}
if( ch == L'\\' )
{
if( bNoLetters || folded.empty() )
{
escaped = true;
continue;
}
else
break;
}
if( ch == '*' || ch == '?' || ch == '[' || ch == ']' )
break;
folded.push_back( ch );
}
}
else
{
if( folded.empty() )
folded = Folding::applyWhitespaceOnly( str );
}
int initialFoldedSize = folded.size();
int charsLeftToChop = 0;
if ( maxSuffixVariation >= 0 )
{
charsLeftToChop = initialFoldedSize - (int)minLength;
if ( charsLeftToChop < 0 )
charsLeftToChop = 0;
else
if ( charsLeftToChop > maxSuffixVariation )
charsLeftToChop = maxSuffixVariation;
}
try
{
for( ; ; )
{
bool exactMatch;
vector< char > leaf;
uint32_t nextLeaf;
char const * leafEnd;
char const * chainOffset = dict.findChainOffsetExactOrPrefix( folded, exactMatch,
leaf, nextLeaf,
leafEnd );
if ( chainOffset )
for( ; ; )
{
if ( Utils::AtomicInt::loadAcquire( isCancelled ) )
break;
//GD_DPRINTF( "offset = %u, size = %u\n", chainOffset - &leaf.front(), leaf.size() );
vector< WordArticleLink > chain = dict.readChain( chainOffset );
wstring chainHead = Utf8::decode( chain[ 0 ].word );
wstring resultFolded = Folding::apply( chainHead );
if( resultFolded.empty() )
resultFolded = Folding::applyWhitespaceOnly( chainHead );
if ( ( useWildcards && folded.empty() ) ||
( resultFolded.size() >= folded.size()
&& !resultFolded.compare( 0, folded.size(), folded ) ) )
{
// Exact or prefix match
Mutex::Lock _( dataMutex );
for( unsigned x = 0; x < chain.size(); ++x )
{
if( useWildcards )
{
wstring word = Utf8::decode( chain[ x ].prefix + chain[ x ].word );
wstring result = Folding::applyDiacriticsOnly( word );
if( result.size() >= (wstring::size_type)minMatchLength )
{
QRegularExpressionMatch match = regexp.match( gd::toQString( result ) );
if( match.hasMatch() && match.capturedStart() == 0 )
{
addMatch( word );
}
}
}
else
{
// Skip middle matches, if requested. If suffix variation is specified,
// make sure the string isn't larger than requested.
if ( ( allowMiddleMatches || Folding::apply( Utf8::decode( chain[ x ].prefix ) ).empty() ) &&
( maxSuffixVariation < 0 || (int)resultFolded.size() - initialFoldedSize <= maxSuffixVariation ) )
addMatch( Utf8::decode( chain[ x ].prefix + chain[ x ].word ) );
}
}
if( Utils::AtomicInt::loadAcquire( isCancelled ) )
break;
if ( matches.size() >= maxResults )
{
// For now we actually allow more than maxResults if the last
// chain yield more than one result. That's ok and maybe even more
// desirable.
break;
}
}
else
// Neither exact nor a prefix match, end this
break;
// Fetch new leaf if we're out of chains here
if ( chainOffset >= leafEnd )
{
// We're past the current leaf, fetch the next one
//GD_DPRINTF( "advancing\n" );
if ( nextLeaf )
{
Mutex::Lock _( *dict.idxFileMutex );
dict.readNode( nextLeaf, leaf );
leafEnd = &leaf.front() + leaf.size();
nextLeaf = dict.idxFile->read< uint32_t >();
chainOffset = &leaf.front() + sizeof( uint32_t );
uint32_t leafEntries = *(uint32_t *)&leaf.front();
if ( leafEntries == 0xffffFFFF )
{
//GD_DPRINTF( "bah!\n" );
exit( 1 );
}
}
else
break; // That was the last leaf
}
}
if ( charsLeftToChop && !Utils::AtomicInt::loadAcquire( isCancelled ) )
{
--charsLeftToChop;
folded.resize( folded.size() - 1 );
}
else
break;
}
}
catch( std::exception & e )
{
qWarning( "Index searching failed: \"%s\", error: %s\n",
dict.getName().c_str(), e.what() );
}
catch(...)
{
gdWarning( "Index searching failed: \"%s\"\n", dict.getName().c_str() );
}
}
void BtreeWordSearchRequest::run()
{
if ( Utils::AtomicInt::loadAcquire( isCancelled ) )
{
finish();
return;
}
if ( dict.ensureInitDone().size() )
{
setErrorString( QString::fromUtf8( dict.ensureInitDone().c_str() ) );
finish();
return;
}
findMatches();
finish();
}
BtreeWordSearchRequest::~BtreeWordSearchRequest()
{
isCancelled.ref();
hasExited.acquire();
}
sptr< Dictionary::WordSearchRequest > BtreeDictionary::prefixMatch(
wstring const & str, unsigned long maxResults )
{
return new BtreeWordSearchRequest( *this, str, 0, -1, true, maxResults );
}
sptr< Dictionary::WordSearchRequest > BtreeDictionary::stemmedMatch(
wstring const & str, unsigned minLength, unsigned maxSuffixVariation,
unsigned long maxResults )
{
return new BtreeWordSearchRequest( *this, str, minLength, (int)maxSuffixVariation,
false, maxResults );
}
void BtreeIndex::readNode( uint32_t offset, vector< char > & out )
{
idxFile->seek( offset );
uint32_t uncompressedSize = idxFile->read< uint32_t >();
uint32_t compressedSize = idxFile->read< uint32_t >();
//GD_DPRINTF( "%x,%x\n", uncompressedSize, compressedSize );
out.resize( uncompressedSize );
vector< unsigned char > compressedData( compressedSize );
idxFile->read( &compressedData.front(), compressedData.size() );
#ifdef __BTREE_USE_LZO
lzo_uint decompressedLength = out.size();
if ( lzo1x_decompress( &compressedData.front(), compressedData.size(),
(unsigned char *)&out.front(), &decompressedLength, 0 )
!= LZO_E_OK || decompressedLength != out.size() )
throw exFailedToDecompressNode();
#else
unsigned long decompressedLength = out.size();
if ( uncompress( (unsigned char *)&out.front(),
&decompressedLength,
&compressedData.front(),
compressedData.size() ) != Z_OK ||
decompressedLength != out.size() )
throw exFailedToDecompressNode();
#endif
}
char const * BtreeIndex::findChainOffsetExactOrPrefix( wstring const & target,
bool & exactMatch,
vector< char > & extLeaf,
uint32_t & nextLeaf,
char const * & leafEnd )
{
if ( !idxFile )
throw exIndexWasNotOpened();
Mutex::Lock _( *idxFileMutex );
// Lookup the index by traversing the index btree
// vector< wchar > wcharBuffer;
wstring w_word;
exactMatch = false;
// Read a node
uint32_t currentNodeOffset = rootOffset;
if ( !rootNodeLoaded )
{
// Time to load our root node. We do it only once, at the first request.
readNode( rootOffset, rootNode );
rootNodeLoaded = true;
}
char const * leaf = &rootNode.front();
leafEnd = leaf + rootNode.size();
if( target.empty() )
{
//For empty target string we return first chain in index
for( ; ; )
{
uint32_t leafEntries = *(uint32_t *)leaf;
if ( leafEntries == 0xffffFFFF )
{
// A node
currentNodeOffset = *( (uint32_t *)leaf + 1 );
readNode( currentNodeOffset, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
}
else
{
// A leaf
if( currentNodeOffset == rootOffset )
{
// Only one leaf in index, there's no next leaf
nextLeaf = 0;
}
if( !leafEntries )
return 0;
return leaf + sizeof( uint32_t );
}
}
}
for( ; ; )
{
// Is it a leaf or a node?
uint32_t leafEntries = *(uint32_t *)leaf;
if ( leafEntries == 0xffffFFFF )
{
// A node
//GD_DPRINTF( "=>a node\n" );
uint32_t const * offsets = (uint32_t *)leaf + 1;
char const * ptr = leaf + sizeof( uint32_t ) +
( indexNodeSize + 1 ) * sizeof( uint32_t );
// ptr now points to a span of zero-separated strings, up to leafEnd.
// We find our match using a binary search.
char const * closestString;
int compareResult;
char const * window = ptr;
unsigned windowSize = leafEnd - ptr;
for( ; ; )
{
// We boldly shoot in the middle of the whole mess, and then adjust
// to the beginning of the string that we've hit.
char const * testPoint = window + windowSize/2;
closestString = testPoint;
while( closestString > ptr && closestString[ -1 ] )
--closestString;
size_t wordSize = strlen( closestString );
w_word = Utf8::decode( string( closestString, wordSize ) );
compareResult = target.compare( w_word);
if ( !compareResult )
{
// The target string matches the current one. Finish the search.
break;
}
if ( compareResult < 0 )
{
// The target string is smaller than the current one.
// Go to the left.
windowSize = closestString - window;
if ( !windowSize )
break;
}
else
{
// The target string is larger than the current one.
// Go to the right.
windowSize -= ( closestString - window ) + wordSize + 1;
window = closestString + wordSize + 1;
if ( !windowSize )
break;
}
}
// Now, whatever the outcome (compareResult) is, we need to find
// entry number for the closestMatch string.
unsigned entry = 0;
for( char const * next = ptr; next != closestString;
next += strlen( next ) + 1, ++entry ) ;
// Ok, now check the outcome
if ( !compareResult )
{
// The target string matches the one found.
// Go to the right, since it's there where we store such results.
currentNodeOffset = offsets[ entry + 1 ];
}
if ( compareResult < 0 )
{
// The target string is smaller than the one found.
// Go to the left.
currentNodeOffset = offsets[ entry ];
}
else
{
// The target string is larger than the one found.
// Go to the right.
currentNodeOffset = offsets[ entry + 1 ];
}
//GD_DPRINTF( "reading node at %x\n", currentNodeOffset );
readNode( currentNodeOffset, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
}
else
{
//GD_DPRINTF( "=>a leaf\n" );
// A leaf
// If this leaf is the root, there's no next leaf, it just can't be.
// We do this check because the file's position indicator just won't
// be in the right place for root node anyway, since we precache it.
nextLeaf = ( currentNodeOffset != rootOffset ? idxFile->read< uint32_t >() : 0 );
if ( !leafEntries )
{
// Empty leaf? This may only be possible for entirely empty trees only.
if ( currentNodeOffset != rootOffset )
throw exCorruptedChainData();
else
return 0; // No match
}
// Build an array containing all chain pointers
char const * ptr = leaf + sizeof( uint32_t );
uint32_t chainSize;
vector< char const * > chainOffsets( leafEntries );
{
char const ** nextOffset = &chainOffsets.front();
while( leafEntries-- )
{
*nextOffset++ = ptr;
memcpy( &chainSize, ptr, sizeof( uint32_t ) );
//GD_DPRINTF( "%s + %s\n", ptr + sizeof( uint32_t ), ptr + sizeof( uint32_t ) + strlen( ptr + sizeof( uint32_t ) ) + 1 );
ptr += sizeof( uint32_t ) + chainSize;
}
}
// Now do a binary search in it, aiming to find where our target
// string lands.
char const ** window = &chainOffsets.front();
unsigned windowSize = chainOffsets.size();
for( ; ; )
{
//GD_DPRINTF( "window = %u, ws = %u\n", window - &chainOffsets.front(), windowSize );
char const ** chainToCheck = window + windowSize/2;
ptr = *chainToCheck;
memcpy( &chainSize, ptr, sizeof( uint32_t ) );
ptr += sizeof( uint32_t );
size_t wordSize = strlen( ptr );
w_word = Utf8::decode( string( ptr, wordSize ) );
wstring foldedWord = Folding::apply( w_word );
if( foldedWord.empty() )
foldedWord = Folding::applyWhitespaceOnly( w_word );
int compareResult = target.compare( foldedWord );
if ( !compareResult )
{
// Exact match -- return and be done
exactMatch = true;
return ptr - sizeof( uint32_t );
}
else
if ( compareResult < 0 )
{
// The target string is smaller than the current one.
// Go to the first half
windowSize /= 2;
if ( !windowSize )
{
// That finishes our search. Since our target string
// landed before the last tested chain, we return a possible
// prefix match against that chain.
return ptr - sizeof( uint32_t );
}
}
else
{
// The target string is larger than the current one.
// Go to the second half
windowSize -= windowSize/2 + 1;
if ( !windowSize )
{
// That finishes our search. Since our target string
// landed after the last tested chain, we return the next
// chain. If there's no next chain in this leaf, this
// would mean the first element in the next leaf.
if ( chainToCheck == &chainOffsets.back() )
{
if ( nextLeaf )
{
readNode( nextLeaf, extLeaf );
leafEnd = &extLeaf.front() + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
return &extLeaf.front() + sizeof( uint32_t );
}
else
return 0; // This was the last leaf
}
else
return chainToCheck[ 1 ];
}
window = chainToCheck + 1;
}
}
}
}
}
vector< WordArticleLink > BtreeIndex::readChain( char const * & ptr )
{
uint32_t chainSize;
memcpy( &chainSize, ptr, sizeof( uint32_t ) );
ptr += sizeof( uint32_t );
vector< WordArticleLink > result;
while( chainSize )
{
string str = ptr;
ptr += str.size() + 1;
string prefix = ptr;
ptr += prefix.size() + 1;
uint32_t articleOffset;
memcpy( &articleOffset, ptr, sizeof( uint32_t ) );
ptr += sizeof( uint32_t );
result.emplace_back(str, articleOffset, prefix);
if ( chainSize < str.size() + 1 + prefix.size() + 1 + sizeof( uint32_t ) )
throw exCorruptedChainData();
else
chainSize -= str.size() + 1 + prefix.size() + 1 + sizeof( uint32_t );
}
return result;
}
void BtreeIndex::antialias( wstring const & str,
vector< WordArticleLink > & chain,
bool ignoreDiacritics )
{
wstring caseFolded = Folding::applySimpleCaseOnly( gd::normalize( str ) );
if( ignoreDiacritics )
caseFolded = Folding::applyDiacriticsOnly( caseFolded );
if(GlobalBroadcaster::instance()->getPreference()->ignorePunctuation)
caseFolded = Folding::trimWhitespaceOrPunct( caseFolded );
for( unsigned x = chain.size(); x--; )
{
// If after applying case folding to each word they wouldn't match, we
// drop the entry.
wstring entry = Folding::applySimpleCaseOnly( gd::normalize( Utf8::decode( chain[ x ].prefix + chain[ x ].word ) ) );
if( ignoreDiacritics )
entry = Folding::applyDiacriticsOnly( entry );
if( GlobalBroadcaster::instance()->getPreference()->ignorePunctuation )
entry = Folding::trimWhitespaceOrPunct( entry );
if ( entry != caseFolded )
chain.erase( chain.begin() + x );
else
if ( chain[ x ].prefix.size() ) // If there's a prefix, merge it with the word,
// since it's what dictionaries expect
{
chain[ x ].word.insert( 0, chain[ x ].prefix );
chain[ x ].prefix.clear();
}
}
}
/// A function which recursively creates btree node.
/// The nextIndex iterator is being iterated over and increased when building
/// leaf nodes.
static uint32_t buildBtreeNode( IndexedWords::const_iterator & nextIndex,
size_t indexSize,
File::Class & file, size_t maxElements,
uint32_t & lastLeafLinkOffset )
{
// We compress all the node data. This buffer would hold it.
vector< unsigned char > uncompressedData;
bool isLeaf = indexSize <= maxElements;
if ( isLeaf )
{
// A leaf.
uint32_t totalChainsLength = 0;
IndexedWords::const_iterator nextWord = nextIndex;
for( unsigned x = indexSize; x--; ++nextWord )
{
totalChainsLength += sizeof( uint32_t );
vector< WordArticleLink > const & chain = nextWord->second;
for( unsigned y = 0; y < chain.size(); ++y )
totalChainsLength += chain[ y ].word.size() + 1 + chain[ y ].prefix.size() + 1 + sizeof( uint32_t );
}
uncompressedData.resize( sizeof( uint32_t ) + totalChainsLength );
// First uint32_t indicates that this is a leaf.
*(uint32_t *)&uncompressedData.front() = indexSize;
unsigned char * ptr = &uncompressedData.front() + sizeof( uint32_t );
for( unsigned x = indexSize; x--; ++nextIndex )
{
vector< WordArticleLink > const & chain = nextIndex->second;
unsigned char * saveSizeHere = ptr;
ptr += sizeof( uint32_t );
uint32_t size = 0;
for( unsigned y = 0; y < chain.size(); ++y )
{
memcpy( ptr, chain[ y ].word.c_str(), chain[ y ].word.size() + 1 );
ptr += chain[ y ].word.size() + 1;
memcpy( ptr, chain[ y ].prefix.c_str(), chain[ y ].prefix.size() + 1 );
ptr += chain[ y ].prefix.size() + 1;
memcpy( ptr, &(chain[ y ].articleOffset), sizeof( uint32_t ) );
ptr += sizeof( uint32_t );
size += chain[ y ].word.size() + 1 + chain[ y ].prefix.size() + 1 + sizeof( uint32_t );
}
memcpy( saveSizeHere, &size, sizeof( uint32_t ) );
}
}
else
{
// A node which will have children.
uncompressedData.resize( sizeof( uint32_t ) + ( maxElements + 1 ) * sizeof( uint32_t ) );
// First uint32_t indicates that this is a node.
*(uint32_t *)&uncompressedData.front() = 0xffffFFFF;
unsigned prevEntry = 0;
for( unsigned x = 0; x < maxElements; ++x )
{
unsigned curEntry = (uint64_t) indexSize * ( x + 1 ) / ( maxElements + 1 );
uint32_t offset = buildBtreeNode( nextIndex,
curEntry - prevEntry,
file, maxElements,
lastLeafLinkOffset );
memcpy( &uncompressedData.front() + sizeof( uint32_t ) + x * sizeof( uint32_t ), &offset, sizeof( uint32_t ) );
size_t sz = nextIndex->first.size() + 1;
size_t prevSize = uncompressedData.size();
uncompressedData.resize( prevSize + sz );
memcpy( &uncompressedData.front() + prevSize, nextIndex->first.c_str(),
sz );
prevEntry = curEntry;
}
// Rightmost child
uint32_t offset = buildBtreeNode( nextIndex,
indexSize - prevEntry,
file, maxElements,
lastLeafLinkOffset );
memcpy( &uncompressedData.front() + sizeof( uint32_t ) +
maxElements * sizeof( uint32_t ), &offset, sizeof( offset ) );
}
// Save the result.
#ifdef __BTREE_USE_LZO
vector< unsigned char > compressedData( uncompressedData.size() + uncompressedData.size() / 16 + 64 + 3 );
char workMem[ LZO1X_1_MEM_COMPRESS ];
lzo_uint compressedSize;
if ( lzo1x_1_compress( &uncompressedData.front(), uncompressedData.size(),
&compressedData.front(), &compressedSize, workMem )
!= LZO_E_OK )
{
FDPRINTF( stderr, "Failed to compress btree node.\n" );
abort();
}
#else
vector< unsigned char > compressedData( compressBound( uncompressedData.size() ) );
unsigned long compressedSize = compressedData.size();
if ( compress( &compressedData.front(), &compressedSize,
&uncompressedData.front(), uncompressedData.size() ) != Z_OK )
{
qFatal( "Failed to compress btree node." );
abort();
}
#endif
uint32_t offset = file.tell();
file.write< uint32_t >( uncompressedData.size() );
file.write< uint32_t >( compressedSize );
file.write( &compressedData.front(), compressedSize );
if ( isLeaf )
{
// A link to the next leef, which is zero and which will be updated
// should we happen to have another leaf.
file.write( ( uint32_t ) 0 );
uint32_t here = file.tell();
if ( lastLeafLinkOffset )
{
// Update the previous leaf to have the offset of this one.
file.seek( lastLeafLinkOffset );
file.write( offset );
file.seek( here );
}
// Make sure next leaf knows where to write its offset for us.
lastLeafLinkOffset = here - sizeof( uint32_t );
}
return offset;
}
void IndexedWords::addWord( wstring const & word, uint32_t articleOffset, unsigned int maxHeadwordSize )
{
wchar const * wordBegin = word.c_str();
string::size_type wordSize = word.size();
// Safeguard us against various bugs here. Don't attempt adding words
// which are freakishly huge.
if( wordSize > maxHeadwordSize )
{
qWarning() << "Skipped too long headword: " << QString::fromStdU32String( word.substr( 0, 30 ) )
<< "size:" << wordSize;
return;
}
// Skip any leading whitespace
while( *wordBegin && Folding::isWhitespace( *wordBegin ) )
{
++wordBegin;
--wordSize;
}
// Skip any trailing whitespace
while( wordSize && Folding::isWhitespace( wordBegin[ wordSize - 1 ] ) )
--wordSize;
wchar const * nextChar = wordBegin;
vector< char > utfBuffer( wordSize * 4 );
int wordsAdded = 0; // Number of stored parts
for( ; ; )
{
// Skip any whitespace/punctuation
for( ; ; ++nextChar )
{
if ( !*nextChar ) // End of string ends everything
{
if( wordsAdded == 0)
{
wstring folded = Folding::applyWhitespaceOnly( wstring( wordBegin, wordSize ) );
if( !folded.empty() )
{
iterator i = insert( { Utf8::encode( folded ),
vector< WordArticleLink >() } )
.first;
string utfWord=Utf8::encode( wstring(wordBegin, wordSize )) ;
string utfPrefix;
i->second.emplace_back(utfWord, articleOffset, utfPrefix);
}
}
return;
}
if ( !Folding::isWhitespace( *nextChar ) && !Folding::isPunct( *nextChar ) )
break;
}
// Insert this word
wstring folded = Folding::apply( nextChar );
auto name = Utf8::encode( folded );
iterator i = insert( { std::move(name), vector< WordArticleLink >() } ).first;
if( ( i->second.size() < 1024 ) || ( nextChar == wordBegin ) ) // Don't overpopulate chains with middle matches
{
string utfWord = Utf8::encode( wstring( nextChar, wordSize - ( nextChar - wordBegin ) ) );
string utfPrefix = Utf8::encode( wstring( wordBegin, nextChar - wordBegin ) );
i->second.emplace_back(std::move(utfWord), articleOffset, std::move(utfPrefix));
// reduce the vector reallocation.
if( i->second.size() * 1.0 / i->second.capacity() > 0.75 )
{
i->second.reserve( i->second.capacity() * 2 );
}
}
wordsAdded += 1;
// Skip all non-whitespace/punctuation
for( ++nextChar; ; ++nextChar )
{
if ( !*nextChar )
return; // End of string ends everything
if ( Folding::isWhitespace( *nextChar ) || Folding::isPunct( *nextChar ) )
break;
}
}
}
void IndexedWords::addSingleWord( wstring const & word, uint32_t articleOffset )
{
wstring folded = Folding::apply( word );
if( folded.empty() )
folded = Folding::applyWhitespaceOnly( word );
operator []( Utf8::encode( folded ) ).emplace_back(Utf8::encode( word ), articleOffset);
}
IndexInfo buildIndex( IndexedWords const & indexedWords, File::Class & file )
{
size_t indexSize = indexedWords.size();
IndexedWords::const_iterator nextIndex = indexedWords.begin();
// Skip any empty words. No point in indexing those, and some dictionaries
// are known to have buggy empty-word entries (Stardict's jargon for instance).
while( indexSize && nextIndex->first.empty() )
{
indexSize--;
++nextIndex;
}
// We try to stick to two-level tree for most dictionaries. Try finding
// the right size for it.
size_t btreeMaxElements = ( (size_t) sqrt( (double) indexSize ) ) + 1;
if ( btreeMaxElements < BtreeMinElements )
btreeMaxElements = BtreeMinElements;
else
if ( btreeMaxElements > BtreeMaxElements )
btreeMaxElements = BtreeMaxElements;
GD_DPRINTF( "Building a tree of %u elements\n", (unsigned) btreeMaxElements );
uint32_t lastLeafOffset = 0;
uint32_t rootOffset = buildBtreeNode( nextIndex, indexSize,
file, btreeMaxElements,
lastLeafOffset );
return IndexInfo( btreeMaxElements, rootOffset );
}
void BtreeIndex::getAllHeadwords( QSet< QString > & headwords )
{
if ( !idxFile )
throw exIndexWasNotOpened();
findArticleLinks( NULL, NULL, &headwords );
}
void BtreeIndex::findAllArticleLinks( QVector< WordArticleLink > & articleLinks )
{
if ( !idxFile )
throw exIndexWasNotOpened();
QSet< uint32_t > offsets;
findArticleLinks( &articleLinks, &offsets, NULL );
}
void BtreeIndex::findArticleLinks( QVector< WordArticleLink > * articleLinks,
QSet< uint32_t > * offsets,
QSet< QString > *headwords,
QAtomicInt * isCancelled )
{
uint32_t currentNodeOffset = rootOffset;
uint32_t nextLeaf = 0;
uint32_t leafEntries;
Mutex::Lock _( *idxFileMutex );
if ( !rootNodeLoaded )
{
// Time to load our root node. We do it only once, at the first request.
readNode( rootOffset, rootNode );
rootNodeLoaded = true;
}
char const * leaf = &rootNode.front();
char const * leafEnd = leaf + rootNode.size();
char const * chainPtr = 0;
vector< char > extLeaf;
// Find first leaf
for( ; ; )
{
leafEntries = *(uint32_t *)leaf;
if( isCancelled && Utils::AtomicInt::loadAcquire( *isCancelled ) )
return;
if ( leafEntries == 0xffffFFFF )
{
// A node
currentNodeOffset = *( (uint32_t *)leaf + 1 );
readNode( currentNodeOffset, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
}
else
{
// A leaf
chainPtr = leaf + sizeof( uint32_t );
break;
}
}
if ( !leafEntries )
{
// Empty leaf? This may only be possible for entirely empty trees only.
if ( currentNodeOffset != rootOffset )
throw exCorruptedChainData();
else
return; // No match
}
// Read all chains
for( ; ; )
{
vector< WordArticleLink > result = readChain( chainPtr );
if( headwords && static_cast< vector< WordArticleLink >::size_type >( headwords->capacity() ) < headwords->size() + result.size() )
{
int n = headwords->capacity();
headwords->reserve( n + n / 10 );
}
if( offsets && static_cast< vector< WordArticleLink >::size_type >( offsets->capacity() ) < offsets->size() + result.size() )
{
int n = offsets->capacity();
offsets->reserve( n + n / 10 );
}
if( articleLinks && static_cast< vector< WordArticleLink >::size_type >( articleLinks->capacity() ) < articleLinks->size() + result.size() )
{
int n = articleLinks->capacity();
articleLinks->reserve( n + n / 10 );
}
for( unsigned i = 0; i < result.size(); i++ )
{
if( isCancelled && Utils::AtomicInt::loadAcquire( *isCancelled ) )
return;
if( headwords )
headwords->insert( QString::fromUtf8( ( result[ i ].prefix + result[ i ].word ).c_str() ) );
if( offsets && offsets->contains( result[ i ].articleOffset ) )
continue;
if( offsets )
offsets->insert( result[ i ].articleOffset );
if( articleLinks )
articleLinks->push_back( WordArticleLink( result[ i ].prefix + result[ i ].word, result[ i ].articleOffset ) );
}
if ( chainPtr >= leafEnd )
{
// We're past the current leaf, fetch the next one
if ( nextLeaf )
{
readNode( nextLeaf, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
chainPtr = leaf + sizeof( uint32_t );
leafEntries = *(uint32_t *)leaf;
if ( leafEntries == 0xffffFFFF )
throw exCorruptedChainData();
}
else
break; // That was the last leaf
}
}
}
void BtreeIndex::getHeadwordsFromOffsets( QList<uint32_t> & offsets,
QVector<QString> & headwords,
QAtomicInt * isCancelled )
{
uint32_t currentNodeOffset = rootOffset;
uint32_t nextLeaf = 0;
uint32_t leafEntries;
std::sort( offsets.begin(), offsets.end() );
Mutex::Lock _( *idxFileMutex );
if ( !rootNodeLoaded )
{
// Time to load our root node. We do it only once, at the first request.
readNode( rootOffset, rootNode );
rootNodeLoaded = true;
}
char const * leaf = &rootNode.front();
char const * leafEnd = leaf + rootNode.size();
char const * chainPtr = 0;
vector< char > extLeaf;
// Find first leaf
for( ; ; )
{
leafEntries = *(uint32_t *)leaf;
if( isCancelled && Utils::AtomicInt::loadAcquire( *isCancelled ) )
return;
if ( leafEntries == 0xffffFFFF )
{
// A node
currentNodeOffset = *( (uint32_t *)leaf + 1 );
readNode( currentNodeOffset, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
}
else
{
// A leaf
chainPtr = leaf + sizeof( uint32_t );
break;
}
}
if ( !leafEntries )
{
// Empty leaf? This may only be possible for entirely empty trees only.
if ( currentNodeOffset != rootOffset )
throw exCorruptedChainData();
else
return; // No match
}
// Read all chains
QList< uint32_t >::Iterator begOffsets = offsets.begin();
QList< uint32_t >::Iterator endOffsets = offsets.end();
for( ; ; )
{
vector< WordArticleLink > result = readChain( chainPtr );
for( unsigned i = 0; i < result.size(); i++ )
{
uint32_t articleOffset = result.at(i).articleOffset;
QList<uint32_t>::Iterator it = std::lower_bound( begOffsets, endOffsets,
articleOffset );
if( it != offsets.end() && *it == articleOffset )
{
if( isCancelled && Utils::AtomicInt::loadAcquire( *isCancelled ) )
return;
auto word = QString::fromUtf8( ( result[ i ].prefix + result[ i ].word ).c_str() );
headwords.append( word );
offsets.erase( it);
begOffsets = offsets.begin();
endOffsets = offsets.end();
}
if( offsets.isEmpty() )
break;
}
if( offsets.isEmpty() )
break;
if ( chainPtr >= leafEnd )
{
// We're past the current leaf, fetch the next one
if ( nextLeaf )
{
readNode( nextLeaf, extLeaf );
leaf = &extLeaf.front();
leafEnd = leaf + extLeaf.size();
nextLeaf = idxFile->read< uint32_t >();
chainPtr = leaf + sizeof( uint32_t );
leafEntries = *(uint32_t *)leaf;
if ( leafEntries == 0xffffFFFF )
throw exCorruptedChainData();
}
else
break; // That was the last leaf
}
}
}
bool BtreeDictionary::getHeadwords( QStringList &headwords )
{
QSet< QString > setOfHeadwords;
headwords.clear();
setOfHeadwords.reserve( getWordCount() );
try
{
getAllHeadwords( setOfHeadwords );
if( setOfHeadwords.size() )
{
headwords.reserve( setOfHeadwords.size() );
QSet< QString >::const_iterator it = setOfHeadwords.constBegin();
QSet< QString >::const_iterator end = setOfHeadwords.constEnd();
for( ; it != end; ++it )
headwords.append( *it );
}
}
catch( std::exception &ex )
{
gdWarning( "Failed headwords retrieving for \"%s\", reason: %s\n", getName().c_str(), ex.what() );
}
return headwords.size() > 0;
}
void BtreeDictionary::getArticleText(uint32_t, QString &, QString & )
{
}
}