mirror of
https://github.com/xiaoyifang/goldendict-ng.git
synced 2024-11-24 16:54:08 +00:00
4736 lines
170 KiB
C++
4736 lines
170 KiB
C++
/*
|
|
Formatting library for C++
|
|
|
|
Copyright (c) 2012 - present, Victor Zverovich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
--- Optional exception to the license ---
|
|
|
|
As an exception, if, as a result of your compiling your source code, portions
|
|
of this Software are embedded into a machine-executable object form of such
|
|
source code, you may redistribute such embedded portions in such object form
|
|
without including the above copyright and permission notices.
|
|
*/
|
|
|
|
#ifndef FMT_FORMAT_H_
|
|
#define FMT_FORMAT_H_
|
|
|
|
#include <cmath> // std::signbit
|
|
#include <cstdint> // uint32_t
|
|
#include <cstring> // std::memcpy
|
|
#include <initializer_list> // std::initializer_list
|
|
#include <limits> // std::numeric_limits
|
|
#include <memory> // std::uninitialized_copy
|
|
#include <stdexcept> // std::runtime_error
|
|
#include <system_error> // std::system_error
|
|
|
|
#ifdef __cpp_lib_bit_cast
|
|
# include <bit> // std::bitcast
|
|
#endif
|
|
|
|
#include "core.h"
|
|
|
|
#ifndef FMT_BEGIN_DETAIL_NAMESPACE
|
|
# define FMT_BEGIN_DETAIL_NAMESPACE namespace detail {
|
|
# define FMT_END_DETAIL_NAMESPACE }
|
|
#endif
|
|
|
|
#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
|
|
# define FMT_FALLTHROUGH [[fallthrough]]
|
|
#elif defined(__clang__)
|
|
# define FMT_FALLTHROUGH [[clang::fallthrough]]
|
|
#elif FMT_GCC_VERSION >= 700 && \
|
|
(!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
|
|
# define FMT_FALLTHROUGH [[gnu::fallthrough]]
|
|
#else
|
|
# define FMT_FALLTHROUGH
|
|
#endif
|
|
|
|
#ifndef FMT_DEPRECATED
|
|
# if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
|
|
# define FMT_DEPRECATED [[deprecated]]
|
|
# else
|
|
# if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
|
|
# define FMT_DEPRECATED __attribute__((deprecated))
|
|
# elif FMT_MSC_VERSION
|
|
# define FMT_DEPRECATED __declspec(deprecated)
|
|
# else
|
|
# define FMT_DEPRECATED /* deprecated */
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_GCC_VERSION
|
|
# define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
|
|
#else
|
|
# define FMT_GCC_VISIBILITY_HIDDEN
|
|
#endif
|
|
|
|
#ifdef __NVCC__
|
|
# define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
|
|
#else
|
|
# define FMT_CUDA_VERSION 0
|
|
#endif
|
|
|
|
#ifdef __has_builtin
|
|
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
|
|
#else
|
|
# define FMT_HAS_BUILTIN(x) 0
|
|
#endif
|
|
|
|
#if FMT_GCC_VERSION || FMT_CLANG_VERSION
|
|
# define FMT_NOINLINE __attribute__((noinline))
|
|
#else
|
|
# define FMT_NOINLINE
|
|
#endif
|
|
|
|
#ifndef FMT_THROW
|
|
# if FMT_EXCEPTIONS
|
|
# if FMT_MSC_VERSION || defined(__NVCC__)
|
|
FMT_BEGIN_NAMESPACE
|
|
namespace detail {
|
|
template <typename Exception> inline void do_throw(const Exception& x) {
|
|
// Silence unreachable code warnings in MSVC and NVCC because these
|
|
// are nearly impossible to fix in a generic code.
|
|
volatile bool b = true;
|
|
if (b) throw x;
|
|
}
|
|
} // namespace detail
|
|
FMT_END_NAMESPACE
|
|
# define FMT_THROW(x) detail::do_throw(x)
|
|
# else
|
|
# define FMT_THROW(x) throw x
|
|
# endif
|
|
# else
|
|
# define FMT_THROW(x) \
|
|
do { \
|
|
FMT_ASSERT(false, (x).what()); \
|
|
} while (false)
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_EXCEPTIONS
|
|
# define FMT_TRY try
|
|
# define FMT_CATCH(x) catch (x)
|
|
#else
|
|
# define FMT_TRY if (true)
|
|
# define FMT_CATCH(x) if (false)
|
|
#endif
|
|
|
|
#ifndef FMT_MAYBE_UNUSED
|
|
# if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
|
|
# define FMT_MAYBE_UNUSED [[maybe_unused]]
|
|
# else
|
|
# define FMT_MAYBE_UNUSED
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef FMT_USE_USER_DEFINED_LITERALS
|
|
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
|
|
# if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
|
|
FMT_MSC_VERSION >= 1900) && \
|
|
(!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
|
|
# define FMT_USE_USER_DEFINED_LITERALS 1
|
|
# else
|
|
# define FMT_USE_USER_DEFINED_LITERALS 0
|
|
# endif
|
|
#endif
|
|
|
|
// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
|
|
// integer formatter template instantiations to just one by only using the
|
|
// largest integer type. This results in a reduction in binary size but will
|
|
// cause a decrease in integer formatting performance.
|
|
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
|
|
# define FMT_REDUCE_INT_INSTANTIATIONS 0
|
|
#endif
|
|
|
|
// __builtin_clz is broken in clang with Microsoft CodeGen:
|
|
// https://github.com/fmtlib/fmt/issues/519.
|
|
#if !FMT_MSC_VERSION
|
|
# if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
|
|
# define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
|
|
# endif
|
|
# if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
|
|
# define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
|
|
# endif
|
|
#endif
|
|
|
|
// __builtin_ctz is broken in Intel Compiler Classic on Windows:
|
|
// https://github.com/fmtlib/fmt/issues/2510.
|
|
#ifndef __ICL
|
|
# if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
|
|
defined(__NVCOMPILER)
|
|
# define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
|
|
# endif
|
|
# if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
|
|
FMT_ICC_VERSION || defined(__NVCOMPILER)
|
|
# define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_MSC_VERSION
|
|
# include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128
|
|
#endif
|
|
|
|
// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
|
|
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
|
|
// MSVC intrinsics if the clz and clzll builtins are not available.
|
|
#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
|
|
!defined(FMT_BUILTIN_CTZLL)
|
|
FMT_BEGIN_NAMESPACE
|
|
namespace detail {
|
|
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
|
|
# if !defined(__clang__)
|
|
# pragma intrinsic(_BitScanForward)
|
|
# pragma intrinsic(_BitScanReverse)
|
|
# if defined(_WIN64)
|
|
# pragma intrinsic(_BitScanForward64)
|
|
# pragma intrinsic(_BitScanReverse64)
|
|
# endif
|
|
# endif
|
|
|
|
inline auto clz(uint32_t x) -> int {
|
|
unsigned long r = 0;
|
|
_BitScanReverse(&r, x);
|
|
FMT_ASSERT(x != 0, "");
|
|
// Static analysis complains about using uninitialized data
|
|
// "r", but the only way that can happen is if "x" is 0,
|
|
// which the callers guarantee to not happen.
|
|
FMT_MSC_WARNING(suppress : 6102)
|
|
return 31 ^ static_cast<int>(r);
|
|
}
|
|
# define FMT_BUILTIN_CLZ(n) detail::clz(n)
|
|
|
|
inline auto clzll(uint64_t x) -> int {
|
|
unsigned long r = 0;
|
|
# ifdef _WIN64
|
|
_BitScanReverse64(&r, x);
|
|
# else
|
|
// Scan the high 32 bits.
|
|
if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
|
|
return 63 ^ static_cast<int>(r + 32);
|
|
// Scan the low 32 bits.
|
|
_BitScanReverse(&r, static_cast<uint32_t>(x));
|
|
# endif
|
|
FMT_ASSERT(x != 0, "");
|
|
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
|
|
return 63 ^ static_cast<int>(r);
|
|
}
|
|
# define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
|
|
|
|
inline auto ctz(uint32_t x) -> int {
|
|
unsigned long r = 0;
|
|
_BitScanForward(&r, x);
|
|
FMT_ASSERT(x != 0, "");
|
|
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
|
|
return static_cast<int>(r);
|
|
}
|
|
# define FMT_BUILTIN_CTZ(n) detail::ctz(n)
|
|
|
|
inline auto ctzll(uint64_t x) -> int {
|
|
unsigned long r = 0;
|
|
FMT_ASSERT(x != 0, "");
|
|
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
|
|
# ifdef _WIN64
|
|
_BitScanForward64(&r, x);
|
|
# else
|
|
// Scan the low 32 bits.
|
|
if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
|
|
// Scan the high 32 bits.
|
|
_BitScanForward(&r, static_cast<uint32_t>(x >> 32));
|
|
r += 32;
|
|
# endif
|
|
return static_cast<int>(r);
|
|
}
|
|
# define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
|
|
} // namespace detail
|
|
FMT_END_NAMESPACE
|
|
#endif
|
|
|
|
FMT_BEGIN_NAMESPACE
|
|
|
|
template <typename...> struct disjunction : std::false_type {};
|
|
template <typename P> struct disjunction<P> : P {};
|
|
template <typename P1, typename... Pn>
|
|
struct disjunction<P1, Pn...>
|
|
: conditional_t<bool(P1::value), P1, disjunction<Pn...>> {};
|
|
|
|
template <typename...> struct conjunction : std::true_type {};
|
|
template <typename P> struct conjunction<P> : P {};
|
|
template <typename P1, typename... Pn>
|
|
struct conjunction<P1, Pn...>
|
|
: conditional_t<bool(P1::value), conjunction<Pn...>, P1> {};
|
|
|
|
namespace detail {
|
|
|
|
FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
|
|
ignore_unused(condition);
|
|
#ifdef FMT_FUZZ
|
|
if (condition) throw std::runtime_error("fuzzing limit reached");
|
|
#endif
|
|
}
|
|
|
|
template <typename CharT, CharT... C> struct string_literal {
|
|
static constexpr CharT value[sizeof...(C)] = {C...};
|
|
constexpr operator basic_string_view<CharT>() const {
|
|
return {value, sizeof...(C)};
|
|
}
|
|
};
|
|
|
|
#if FMT_CPLUSPLUS < 201703L
|
|
template <typename CharT, CharT... C>
|
|
constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
|
|
#endif
|
|
|
|
template <typename Streambuf> class formatbuf : public Streambuf {
|
|
private:
|
|
using char_type = typename Streambuf::char_type;
|
|
using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
|
|
using int_type = typename Streambuf::int_type;
|
|
using traits_type = typename Streambuf::traits_type;
|
|
|
|
buffer<char_type>& buffer_;
|
|
|
|
public:
|
|
explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
|
|
|
|
protected:
|
|
// The put area is always empty. This makes the implementation simpler and has
|
|
// the advantage that the streambuf and the buffer are always in sync and
|
|
// sputc never writes into uninitialized memory. A disadvantage is that each
|
|
// call to sputc always results in a (virtual) call to overflow. There is no
|
|
// disadvantage here for sputn since this always results in a call to xsputn.
|
|
|
|
auto overflow(int_type ch) -> int_type override {
|
|
if (!traits_type::eq_int_type(ch, traits_type::eof()))
|
|
buffer_.push_back(static_cast<char_type>(ch));
|
|
return ch;
|
|
}
|
|
|
|
auto xsputn(const char_type* s, streamsize count) -> streamsize override {
|
|
buffer_.append(s, s + count);
|
|
return count;
|
|
}
|
|
};
|
|
|
|
// Implementation of std::bit_cast for pre-C++20.
|
|
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
|
|
FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
|
|
#ifdef __cpp_lib_bit_cast
|
|
if (is_constant_evaluated()) return std::bit_cast<To>(from);
|
|
#endif
|
|
auto to = To();
|
|
// The cast suppresses a bogus -Wclass-memaccess on GCC.
|
|
std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
|
|
return to;
|
|
}
|
|
|
|
inline auto is_big_endian() -> bool {
|
|
#ifdef _WIN32
|
|
return false;
|
|
#elif defined(__BIG_ENDIAN__)
|
|
return true;
|
|
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
|
|
return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
|
|
#else
|
|
struct bytes {
|
|
char data[sizeof(int)];
|
|
};
|
|
return bit_cast<bytes>(1).data[0] == 0;
|
|
#endif
|
|
}
|
|
|
|
class uint128_fallback {
|
|
private:
|
|
uint64_t lo_, hi_;
|
|
|
|
friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept;
|
|
|
|
public:
|
|
constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
|
|
constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
|
|
|
|
constexpr uint64_t high() const noexcept { return hi_; }
|
|
constexpr uint64_t low() const noexcept { return lo_; }
|
|
|
|
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
|
|
constexpr explicit operator T() const {
|
|
return static_cast<T>(lo_);
|
|
}
|
|
|
|
friend constexpr auto operator==(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs) -> bool {
|
|
return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
|
|
}
|
|
friend constexpr auto operator!=(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs) -> bool {
|
|
return !(lhs == rhs);
|
|
}
|
|
friend constexpr auto operator>(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs) -> bool {
|
|
return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
|
|
}
|
|
friend constexpr auto operator|(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs)
|
|
-> uint128_fallback {
|
|
return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
|
|
}
|
|
friend constexpr auto operator&(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs)
|
|
-> uint128_fallback {
|
|
return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
|
|
}
|
|
friend constexpr auto operator~(const uint128_fallback& n)
|
|
-> uint128_fallback {
|
|
return {~n.hi_, ~n.lo_};
|
|
}
|
|
friend auto operator+(const uint128_fallback& lhs,
|
|
const uint128_fallback& rhs) -> uint128_fallback {
|
|
auto result = uint128_fallback(lhs);
|
|
result += rhs;
|
|
return result;
|
|
}
|
|
friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
|
|
-> uint128_fallback {
|
|
FMT_ASSERT(lhs.hi_ == 0, "");
|
|
uint64_t hi = (lhs.lo_ >> 32) * rhs;
|
|
uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
|
|
uint64_t new_lo = (hi << 32) + lo;
|
|
return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
|
|
}
|
|
friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
|
|
-> uint128_fallback {
|
|
return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
|
|
}
|
|
FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
|
|
if (shift == 64) return {0, hi_};
|
|
if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
|
|
return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
|
|
}
|
|
FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
|
|
if (shift == 64) return {lo_, 0};
|
|
if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
|
|
return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
|
|
}
|
|
FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
|
|
return *this = *this >> shift;
|
|
}
|
|
FMT_CONSTEXPR void operator+=(uint128_fallback n) {
|
|
uint64_t new_lo = lo_ + n.lo_;
|
|
uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
|
|
FMT_ASSERT(new_hi >= hi_, "");
|
|
lo_ = new_lo;
|
|
hi_ = new_hi;
|
|
}
|
|
FMT_CONSTEXPR void operator&=(uint128_fallback n) {
|
|
lo_ &= n.lo_;
|
|
hi_ &= n.hi_;
|
|
}
|
|
|
|
FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept {
|
|
if (is_constant_evaluated()) {
|
|
lo_ += n;
|
|
hi_ += (lo_ < n ? 1 : 0);
|
|
return *this;
|
|
}
|
|
#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
|
|
unsigned long long carry;
|
|
lo_ = __builtin_addcll(lo_, n, 0, &carry);
|
|
hi_ += carry;
|
|
#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
|
|
unsigned long long result;
|
|
auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
|
|
lo_ = result;
|
|
hi_ += carry;
|
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
|
auto carry = _addcarry_u64(0, lo_, n, &lo_);
|
|
_addcarry_u64(carry, hi_, 0, &hi_);
|
|
#else
|
|
lo_ += n;
|
|
hi_ += (lo_ < n ? 1 : 0);
|
|
#endif
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
|
|
|
|
#ifdef UINTPTR_MAX
|
|
using uintptr_t = ::uintptr_t;
|
|
#else
|
|
using uintptr_t = uint128_t;
|
|
#endif
|
|
|
|
// Returns the largest possible value for type T. Same as
|
|
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
|
|
template <typename T> constexpr auto max_value() -> T {
|
|
return (std::numeric_limits<T>::max)();
|
|
}
|
|
template <typename T> constexpr auto num_bits() -> int {
|
|
return std::numeric_limits<T>::digits;
|
|
}
|
|
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
|
|
template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
|
|
template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
|
|
|
|
// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
|
|
// and 128-bit pointers to uint128_fallback.
|
|
template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
|
|
inline auto bit_cast(const From& from) -> To {
|
|
constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
|
|
struct data_t {
|
|
unsigned value[static_cast<unsigned>(size)];
|
|
} data = bit_cast<data_t>(from);
|
|
auto result = To();
|
|
if (const_check(is_big_endian())) {
|
|
for (int i = 0; i < size; ++i)
|
|
result = (result << num_bits<unsigned>()) | data.value[i];
|
|
} else {
|
|
for (int i = size - 1; i >= 0; --i)
|
|
result = (result << num_bits<unsigned>()) | data.value[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename UInt>
|
|
FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
|
|
int lz = 0;
|
|
constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
|
|
for (; (n & msb_mask) == 0; n <<= 1) lz++;
|
|
return lz;
|
|
}
|
|
|
|
FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
|
|
#ifdef FMT_BUILTIN_CLZ
|
|
if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
|
|
#endif
|
|
return countl_zero_fallback(n);
|
|
}
|
|
|
|
FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
|
|
#ifdef FMT_BUILTIN_CLZLL
|
|
if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
|
|
#endif
|
|
return countl_zero_fallback(n);
|
|
}
|
|
|
|
FMT_INLINE void assume(bool condition) {
|
|
(void)condition;
|
|
#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
|
|
__builtin_assume(condition);
|
|
#endif
|
|
}
|
|
|
|
// An approximation of iterator_t for pre-C++20 systems.
|
|
template <typename T>
|
|
using iterator_t = decltype(std::begin(std::declval<T&>()));
|
|
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
|
|
|
|
// A workaround for std::string not having mutable data() until C++17.
|
|
template <typename Char>
|
|
inline auto get_data(std::basic_string<Char>& s) -> Char* {
|
|
return &s[0];
|
|
}
|
|
template <typename Container>
|
|
inline auto get_data(Container& c) -> typename Container::value_type* {
|
|
return c.data();
|
|
}
|
|
|
|
#if defined(_SECURE_SCL) && _SECURE_SCL
|
|
// Make a checked iterator to avoid MSVC warnings.
|
|
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
|
|
template <typename T>
|
|
constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
|
|
return {p, size};
|
|
}
|
|
#else
|
|
template <typename T> using checked_ptr = T*;
|
|
template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
|
|
return p;
|
|
}
|
|
#endif
|
|
|
|
// Attempts to reserve space for n extra characters in the output range.
|
|
// Returns a pointer to the reserved range or a reference to it.
|
|
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
|
|
#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
|
|
__attribute__((no_sanitize("undefined")))
|
|
#endif
|
|
inline auto
|
|
reserve(std::back_insert_iterator<Container> it, size_t n)
|
|
-> checked_ptr<typename Container::value_type> {
|
|
Container& c = get_container(it);
|
|
size_t size = c.size();
|
|
c.resize(size + n);
|
|
return make_checked(get_data(c) + size, n);
|
|
}
|
|
|
|
template <typename T>
|
|
inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
|
|
buffer<T>& buf = get_container(it);
|
|
buf.try_reserve(buf.size() + n);
|
|
return it;
|
|
}
|
|
|
|
template <typename Iterator>
|
|
constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
|
|
return it;
|
|
}
|
|
|
|
template <typename OutputIt>
|
|
using reserve_iterator =
|
|
remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
|
|
|
|
template <typename T, typename OutputIt>
|
|
constexpr auto to_pointer(OutputIt, size_t) -> T* {
|
|
return nullptr;
|
|
}
|
|
template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
|
|
buffer<T>& buf = get_container(it);
|
|
auto size = buf.size();
|
|
if (buf.capacity() < size + n) return nullptr;
|
|
buf.try_resize(size + n);
|
|
return buf.data() + size;
|
|
}
|
|
|
|
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
|
|
inline auto base_iterator(std::back_insert_iterator<Container>& it,
|
|
checked_ptr<typename Container::value_type>)
|
|
-> std::back_insert_iterator<Container> {
|
|
return it;
|
|
}
|
|
|
|
template <typename Iterator>
|
|
constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
|
|
return it;
|
|
}
|
|
|
|
// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
|
|
// instead (#1998).
|
|
template <typename OutputIt, typename Size, typename T>
|
|
FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
|
|
-> OutputIt {
|
|
for (Size i = 0; i < count; ++i) *out++ = value;
|
|
return out;
|
|
}
|
|
template <typename T, typename Size>
|
|
FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
|
|
if (is_constant_evaluated()) {
|
|
return fill_n<T*, Size, T>(out, count, value);
|
|
}
|
|
std::memset(out, value, to_unsigned(count));
|
|
return out + count;
|
|
}
|
|
|
|
#ifdef __cpp_char8_t
|
|
using char8_type = char8_t;
|
|
#else
|
|
enum char8_type : unsigned char {};
|
|
#endif
|
|
|
|
template <typename OutChar, typename InputIt, typename OutputIt>
|
|
FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
|
|
OutputIt out) -> OutputIt {
|
|
return copy_str<OutChar>(begin, end, out);
|
|
}
|
|
|
|
// A public domain branchless UTF-8 decoder by Christopher Wellons:
|
|
// https://github.com/skeeto/branchless-utf8
|
|
/* Decode the next character, c, from s, reporting errors in e.
|
|
*
|
|
* Since this is a branchless decoder, four bytes will be read from the
|
|
* buffer regardless of the actual length of the next character. This
|
|
* means the buffer _must_ have at least three bytes of zero padding
|
|
* following the end of the data stream.
|
|
*
|
|
* Errors are reported in e, which will be non-zero if the parsed
|
|
* character was somehow invalid: invalid byte sequence, non-canonical
|
|
* encoding, or a surrogate half.
|
|
*
|
|
* The function returns a pointer to the next character. When an error
|
|
* occurs, this pointer will be a guess that depends on the particular
|
|
* error, but it will always advance at least one byte.
|
|
*/
|
|
FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
|
|
-> const char* {
|
|
constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
|
|
constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
|
|
constexpr const int shiftc[] = {0, 18, 12, 6, 0};
|
|
constexpr const int shifte[] = {0, 6, 4, 2, 0};
|
|
|
|
int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
|
|
[static_cast<unsigned char>(*s) >> 3];
|
|
// Compute the pointer to the next character early so that the next
|
|
// iteration can start working on the next character. Neither Clang
|
|
// nor GCC figure out this reordering on their own.
|
|
const char* next = s + len + !len;
|
|
|
|
using uchar = unsigned char;
|
|
|
|
// Assume a four-byte character and load four bytes. Unused bits are
|
|
// shifted out.
|
|
*c = uint32_t(uchar(s[0]) & masks[len]) << 18;
|
|
*c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
|
|
*c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
|
|
*c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
|
|
*c >>= shiftc[len];
|
|
|
|
// Accumulate the various error conditions.
|
|
*e = (*c < mins[len]) << 6; // non-canonical encoding
|
|
*e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
|
|
*e |= (*c > 0x10FFFF) << 8; // out of range?
|
|
*e |= (uchar(s[1]) & 0xc0) >> 2;
|
|
*e |= (uchar(s[2]) & 0xc0) >> 4;
|
|
*e |= uchar(s[3]) >> 6;
|
|
*e ^= 0x2a; // top two bits of each tail byte correct?
|
|
*e >>= shifte[len];
|
|
|
|
return next;
|
|
}
|
|
|
|
constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
|
|
|
|
// Invokes f(cp, sv) for every code point cp in s with sv being the string view
|
|
// corresponding to the code point. cp is invalid_code_point on error.
|
|
template <typename F>
|
|
FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
|
|
auto decode = [f](const char* buf_ptr, const char* ptr) {
|
|
auto cp = uint32_t();
|
|
auto error = 0;
|
|
auto end = utf8_decode(buf_ptr, &cp, &error);
|
|
bool result = f(error ? invalid_code_point : cp,
|
|
string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
|
|
return result ? (error ? buf_ptr + 1 : end) : nullptr;
|
|
};
|
|
auto p = s.data();
|
|
const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
|
|
if (s.size() >= block_size) {
|
|
for (auto end = p + s.size() - block_size + 1; p < end;) {
|
|
p = decode(p, p);
|
|
if (!p) return;
|
|
}
|
|
}
|
|
if (auto num_chars_left = s.data() + s.size() - p) {
|
|
char buf[2 * block_size - 1] = {};
|
|
copy_str<char>(p, p + num_chars_left, buf);
|
|
const char* buf_ptr = buf;
|
|
do {
|
|
auto end = decode(buf_ptr, p);
|
|
if (!end) return;
|
|
p += end - buf_ptr;
|
|
buf_ptr = end;
|
|
} while (buf_ptr - buf < num_chars_left);
|
|
}
|
|
}
|
|
|
|
template <typename Char>
|
|
inline auto compute_width(basic_string_view<Char> s) -> size_t {
|
|
return s.size();
|
|
}
|
|
|
|
// Computes approximate display width of a UTF-8 string.
|
|
FMT_CONSTEXPR inline size_t compute_width(string_view s) {
|
|
size_t num_code_points = 0;
|
|
// It is not a lambda for compatibility with C++14.
|
|
struct count_code_points {
|
|
size_t* count;
|
|
FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
|
|
*count += detail::to_unsigned(
|
|
1 +
|
|
(cp >= 0x1100 &&
|
|
(cp <= 0x115f || // Hangul Jamo init. consonants
|
|
cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET
|
|
cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET
|
|
// CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
|
|
(cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
|
|
(cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables
|
|
(cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs
|
|
(cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms
|
|
(cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms
|
|
(cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms
|
|
(cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms
|
|
(cp >= 0x20000 && cp <= 0x2fffd) || // CJK
|
|
(cp >= 0x30000 && cp <= 0x3fffd) ||
|
|
// Miscellaneous Symbols and Pictographs + Emoticons:
|
|
(cp >= 0x1f300 && cp <= 0x1f64f) ||
|
|
// Supplemental Symbols and Pictographs:
|
|
(cp >= 0x1f900 && cp <= 0x1f9ff))));
|
|
return true;
|
|
}
|
|
};
|
|
// We could avoid branches by using utf8_decode directly.
|
|
for_each_codepoint(s, count_code_points{&num_code_points});
|
|
return num_code_points;
|
|
}
|
|
|
|
inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
|
|
return compute_width(
|
|
string_view(reinterpret_cast<const char*>(s.data()), s.size()));
|
|
}
|
|
|
|
template <typename Char>
|
|
inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
|
|
size_t size = s.size();
|
|
return n < size ? n : size;
|
|
}
|
|
|
|
// Calculates the index of the nth code point in a UTF-8 string.
|
|
inline auto code_point_index(string_view s, size_t n) -> size_t {
|
|
const char* data = s.data();
|
|
size_t num_code_points = 0;
|
|
for (size_t i = 0, size = s.size(); i != size; ++i) {
|
|
if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
|
|
}
|
|
return s.size();
|
|
}
|
|
|
|
inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
|
|
-> size_t {
|
|
return code_point_index(
|
|
string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
|
|
}
|
|
|
|
template <typename T> struct is_integral : std::is_integral<T> {};
|
|
template <> struct is_integral<int128_opt> : std::true_type {};
|
|
template <> struct is_integral<uint128_t> : std::true_type {};
|
|
|
|
template <typename T>
|
|
using is_signed =
|
|
std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
|
|
std::is_same<T, int128_opt>::value>;
|
|
|
|
template <typename T>
|
|
using is_integer =
|
|
bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
|
|
!std::is_same<T, char>::value &&
|
|
!std::is_same<T, wchar_t>::value>;
|
|
|
|
#ifndef FMT_USE_FLOAT
|
|
# define FMT_USE_FLOAT 1
|
|
#endif
|
|
#ifndef FMT_USE_DOUBLE
|
|
# define FMT_USE_DOUBLE 1
|
|
#endif
|
|
#ifndef FMT_USE_LONG_DOUBLE
|
|
# define FMT_USE_LONG_DOUBLE 1
|
|
#endif
|
|
|
|
#ifndef FMT_USE_FLOAT128
|
|
# ifdef __clang__
|
|
// Clang emulates GCC, so it has to appear early.
|
|
# if FMT_HAS_INCLUDE(<quadmath.h>)
|
|
# define FMT_USE_FLOAT128 1
|
|
# endif
|
|
# elif defined(__GNUC__)
|
|
// GNU C++:
|
|
# if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
|
|
# define FMT_USE_FLOAT128 1
|
|
# endif
|
|
# endif
|
|
# ifndef FMT_USE_FLOAT128
|
|
# define FMT_USE_FLOAT128 0
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_USE_FLOAT128
|
|
using float128 = __float128;
|
|
#else
|
|
using float128 = void;
|
|
#endif
|
|
template <typename T> using is_float128 = std::is_same<T, float128>;
|
|
|
|
template <typename T>
|
|
using is_floating_point =
|
|
bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
|
|
|
|
template <typename T, bool = std::is_floating_point<T>::value>
|
|
struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
|
|
sizeof(T) <= sizeof(double)> {};
|
|
template <typename T> struct is_fast_float<T, false> : std::false_type {};
|
|
|
|
template <typename T>
|
|
using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
|
|
|
|
#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
|
|
# define FMT_USE_FULL_CACHE_DRAGONBOX 0
|
|
#endif
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void buffer<T>::append(const U* begin, const U* end) {
|
|
while (begin != end) {
|
|
auto count = to_unsigned(end - begin);
|
|
try_reserve(size_ + count);
|
|
auto free_cap = capacity_ - size_;
|
|
if (free_cap < count) count = free_cap;
|
|
std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
|
|
size_ += count;
|
|
begin += count;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename Enable = void>
|
|
struct is_locale : std::false_type {};
|
|
template <typename T>
|
|
struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
|
|
} // namespace detail
|
|
|
|
FMT_BEGIN_EXPORT
|
|
|
|
// The number of characters to store in the basic_memory_buffer object itself
|
|
// to avoid dynamic memory allocation.
|
|
enum { inline_buffer_size = 500 };
|
|
|
|
/**
|
|
\rst
|
|
A dynamically growing memory buffer for trivially copyable/constructible types
|
|
with the first ``SIZE`` elements stored in the object itself.
|
|
|
|
You can use the ``memory_buffer`` type alias for ``char`` instead.
|
|
|
|
**Example**::
|
|
|
|
auto out = fmt::memory_buffer();
|
|
format_to(std::back_inserter(out), "The answer is {}.", 42);
|
|
|
|
This will append the following output to the ``out`` object:
|
|
|
|
.. code-block:: none
|
|
|
|
The answer is 42.
|
|
|
|
The output can be converted to an ``std::string`` with ``to_string(out)``.
|
|
\endrst
|
|
*/
|
|
template <typename T, size_t SIZE = inline_buffer_size,
|
|
typename Allocator = std::allocator<T>>
|
|
class basic_memory_buffer final : public detail::buffer<T> {
|
|
private:
|
|
T store_[SIZE];
|
|
|
|
// Don't inherit from Allocator avoid generating type_info for it.
|
|
Allocator alloc_;
|
|
|
|
// Deallocate memory allocated by the buffer.
|
|
FMT_CONSTEXPR20 void deallocate() {
|
|
T* data = this->data();
|
|
if (data != store_) alloc_.deallocate(data, this->capacity());
|
|
}
|
|
|
|
protected:
|
|
FMT_CONSTEXPR20 void grow(size_t size) override {
|
|
detail::abort_fuzzing_if(size > 5000);
|
|
const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
|
|
size_t old_capacity = this->capacity();
|
|
size_t new_capacity = old_capacity + old_capacity / 2;
|
|
if (size > new_capacity)
|
|
new_capacity = size;
|
|
else if (new_capacity > max_size)
|
|
new_capacity = size > max_size ? size : max_size;
|
|
T* old_data = this->data();
|
|
T* new_data =
|
|
std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
|
|
// The following code doesn't throw, so the raw pointer above doesn't leak.
|
|
std::uninitialized_copy(old_data, old_data + this->size(),
|
|
detail::make_checked(new_data, new_capacity));
|
|
this->set(new_data, new_capacity);
|
|
// deallocate must not throw according to the standard, but even if it does,
|
|
// the buffer already uses the new storage and will deallocate it in
|
|
// destructor.
|
|
if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
|
|
}
|
|
|
|
public:
|
|
using value_type = T;
|
|
using const_reference = const T&;
|
|
|
|
FMT_CONSTEXPR20 explicit basic_memory_buffer(
|
|
const Allocator& alloc = Allocator())
|
|
: alloc_(alloc) {
|
|
this->set(store_, SIZE);
|
|
if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
|
|
}
|
|
FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
|
|
|
|
private:
|
|
// Move data from other to this buffer.
|
|
FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
|
|
alloc_ = std::move(other.alloc_);
|
|
T* data = other.data();
|
|
size_t size = other.size(), capacity = other.capacity();
|
|
if (data == other.store_) {
|
|
this->set(store_, capacity);
|
|
detail::copy_str<T>(other.store_, other.store_ + size,
|
|
detail::make_checked(store_, capacity));
|
|
} else {
|
|
this->set(data, capacity);
|
|
// Set pointer to the inline array so that delete is not called
|
|
// when deallocating.
|
|
other.set(other.store_, 0);
|
|
other.clear();
|
|
}
|
|
this->resize(size);
|
|
}
|
|
|
|
public:
|
|
/**
|
|
\rst
|
|
Constructs a :class:`fmt::basic_memory_buffer` object moving the content
|
|
of the other object to it.
|
|
\endrst
|
|
*/
|
|
FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
|
|
move(other);
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Moves the content of the other ``basic_memory_buffer`` object to this one.
|
|
\endrst
|
|
*/
|
|
auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
|
|
FMT_ASSERT(this != &other, "");
|
|
deallocate();
|
|
move(other);
|
|
return *this;
|
|
}
|
|
|
|
// Returns a copy of the allocator associated with this buffer.
|
|
auto get_allocator() const -> Allocator { return alloc_; }
|
|
|
|
/**
|
|
Resizes the buffer to contain *count* elements. If T is a POD type new
|
|
elements may not be initialized.
|
|
*/
|
|
FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
|
|
|
|
/** Increases the buffer capacity to *new_capacity*. */
|
|
void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
|
|
|
|
// Directly append data into the buffer
|
|
using detail::buffer<T>::append;
|
|
template <typename ContiguousRange>
|
|
void append(const ContiguousRange& range) {
|
|
append(range.data(), range.data() + range.size());
|
|
}
|
|
};
|
|
|
|
using memory_buffer = basic_memory_buffer<char>;
|
|
|
|
template <typename T, size_t SIZE, typename Allocator>
|
|
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
|
|
};
|
|
|
|
FMT_END_EXPORT
|
|
namespace detail {
|
|
FMT_API bool write_console(std::FILE* f, string_view text);
|
|
FMT_API void print(std::FILE*, string_view);
|
|
} // namespace detail
|
|
FMT_BEGIN_EXPORT
|
|
|
|
// Suppress a misleading warning in older versions of clang.
|
|
#if FMT_CLANG_VERSION
|
|
# pragma clang diagnostic ignored "-Wweak-vtables"
|
|
#endif
|
|
|
|
/** An error reported from a formatting function. */
|
|
class FMT_API format_error : public std::runtime_error {
|
|
public:
|
|
using std::runtime_error::runtime_error;
|
|
};
|
|
|
|
namespace detail_exported {
|
|
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
|
|
template <typename Char, size_t N> struct fixed_string {
|
|
constexpr fixed_string(const Char (&str)[N]) {
|
|
detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
|
|
str + N, data);
|
|
}
|
|
Char data[N] = {};
|
|
};
|
|
#endif
|
|
|
|
// Converts a compile-time string to basic_string_view.
|
|
template <typename Char, size_t N>
|
|
constexpr auto compile_string_to_view(const Char (&s)[N])
|
|
-> basic_string_view<Char> {
|
|
// Remove trailing NUL character if needed. Won't be present if this is used
|
|
// with a raw character array (i.e. not defined as a string).
|
|
return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
|
|
}
|
|
template <typename Char>
|
|
constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
|
|
-> basic_string_view<Char> {
|
|
return {s.data(), s.size()};
|
|
}
|
|
} // namespace detail_exported
|
|
|
|
class loc_value {
|
|
private:
|
|
basic_format_arg<format_context> value_;
|
|
|
|
public:
|
|
template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
|
|
loc_value(T value) : value_(detail::make_arg<format_context>(value)) {}
|
|
|
|
template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
|
|
loc_value(T) {}
|
|
|
|
template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
|
|
return visit_format_arg(vis, value_);
|
|
}
|
|
};
|
|
|
|
// A locale facet that formats values in UTF-8.
|
|
// It is parameterized on the locale to avoid the heavy <locale> include.
|
|
template <typename Locale> class format_facet : public Locale::facet {
|
|
private:
|
|
std::string separator_;
|
|
std::string grouping_;
|
|
std::string decimal_point_;
|
|
|
|
protected:
|
|
virtual auto do_put(appender out, loc_value val,
|
|
const format_specs<>& specs) const -> bool;
|
|
|
|
public:
|
|
static FMT_API typename Locale::id id;
|
|
|
|
explicit format_facet(Locale& loc);
|
|
explicit format_facet(string_view sep = "",
|
|
std::initializer_list<unsigned char> g = {3},
|
|
std::string decimal_point = ".")
|
|
: separator_(sep.data(), sep.size()),
|
|
grouping_(g.begin(), g.end()),
|
|
decimal_point_(decimal_point) {}
|
|
|
|
auto put(appender out, loc_value val, const format_specs<>& specs) const
|
|
-> bool {
|
|
return do_put(out, val, specs);
|
|
}
|
|
};
|
|
|
|
FMT_BEGIN_DETAIL_NAMESPACE
|
|
|
|
// Returns true if value is negative, false otherwise.
|
|
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
|
|
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
|
|
constexpr auto is_negative(T value) -> bool {
|
|
return value < 0;
|
|
}
|
|
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
|
|
constexpr auto is_negative(T) -> bool {
|
|
return false;
|
|
}
|
|
|
|
template <typename T>
|
|
FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
|
|
if (std::is_same<T, float>()) return FMT_USE_FLOAT;
|
|
if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
|
|
if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
|
|
return true;
|
|
}
|
|
|
|
// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
|
|
// represent all values of an integral type T.
|
|
template <typename T>
|
|
using uint32_or_64_or_128_t =
|
|
conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
|
|
uint32_t,
|
|
conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
|
|
template <typename T>
|
|
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
|
|
|
|
#define FMT_POWERS_OF_10(factor) \
|
|
factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
|
|
(factor)*1000000, (factor)*10000000, (factor)*100000000, \
|
|
(factor)*1000000000
|
|
|
|
// Converts value in the range [0, 100) to a string.
|
|
constexpr const char* digits2(size_t value) {
|
|
// GCC generates slightly better code when value is pointer-size.
|
|
return &"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899"[value * 2];
|
|
}
|
|
|
|
// Sign is a template parameter to workaround a bug in gcc 4.8.
|
|
template <typename Char, typename Sign> constexpr Char sign(Sign s) {
|
|
#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
|
|
static_assert(std::is_same<Sign, sign_t>::value, "");
|
|
#endif
|
|
return static_cast<Char>("\0-+ "[s]);
|
|
}
|
|
|
|
template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
|
|
int count = 1;
|
|
for (;;) {
|
|
// Integer division is slow so do it for a group of four digits instead
|
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
|
if (n < 10) return count;
|
|
if (n < 100) return count + 1;
|
|
if (n < 1000) return count + 2;
|
|
if (n < 10000) return count + 3;
|
|
n /= 10000u;
|
|
count += 4;
|
|
}
|
|
}
|
|
#if FMT_USE_INT128
|
|
FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
|
|
return count_digits_fallback(n);
|
|
}
|
|
#endif
|
|
|
|
#ifdef FMT_BUILTIN_CLZLL
|
|
// It is a separate function rather than a part of count_digits to workaround
|
|
// the lack of static constexpr in constexpr functions.
|
|
inline auto do_count_digits(uint64_t n) -> int {
|
|
// This has comparable performance to the version by Kendall Willets
|
|
// (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
|
|
// but uses smaller tables.
|
|
// Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
|
|
static constexpr uint8_t bsr2log10[] = {
|
|
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
|
|
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
|
10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
|
|
15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
|
|
auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
|
|
static constexpr const uint64_t zero_or_powers_of_10[] = {
|
|
0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
|
|
10000000000000000000ULL};
|
|
return t - (n < zero_or_powers_of_10[t]);
|
|
}
|
|
#endif
|
|
|
|
// Returns the number of decimal digits in n. Leading zeros are not counted
|
|
// except for n == 0 in which case count_digits returns 1.
|
|
FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
|
|
#ifdef FMT_BUILTIN_CLZLL
|
|
if (!is_constant_evaluated()) {
|
|
return do_count_digits(n);
|
|
}
|
|
#endif
|
|
return count_digits_fallback(n);
|
|
}
|
|
|
|
// Counts the number of digits in n. BITS = log2(radix).
|
|
template <int BITS, typename UInt>
|
|
FMT_CONSTEXPR auto count_digits(UInt n) -> int {
|
|
#ifdef FMT_BUILTIN_CLZ
|
|
if (!is_constant_evaluated() && num_bits<UInt>() == 32)
|
|
return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
|
|
#endif
|
|
// Lambda avoids unreachable code warnings from NVHPC.
|
|
return [](UInt m) {
|
|
int num_digits = 0;
|
|
do {
|
|
++num_digits;
|
|
} while ((m >>= BITS) != 0);
|
|
return num_digits;
|
|
}(n);
|
|
}
|
|
|
|
#ifdef FMT_BUILTIN_CLZ
|
|
// It is a separate function rather than a part of count_digits to workaround
|
|
// the lack of static constexpr in constexpr functions.
|
|
FMT_INLINE auto do_count_digits(uint32_t n) -> int {
|
|
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
|
|
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
|
|
# define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T)
|
|
static constexpr uint64_t table[] = {
|
|
FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
|
|
FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
|
|
FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512
|
|
FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096
|
|
FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k
|
|
FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k
|
|
FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k
|
|
FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M
|
|
FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M
|
|
FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M
|
|
FMT_INC(1000000000), FMT_INC(1000000000) // 4B
|
|
};
|
|
auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
|
|
return static_cast<int>((n + inc) >> 32);
|
|
}
|
|
#endif
|
|
|
|
// Optional version of count_digits for better performance on 32-bit platforms.
|
|
FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
|
|
#ifdef FMT_BUILTIN_CLZ
|
|
if (!is_constant_evaluated()) {
|
|
return do_count_digits(n);
|
|
}
|
|
#endif
|
|
return count_digits_fallback(n);
|
|
}
|
|
|
|
template <typename Int> constexpr auto digits10() noexcept -> int {
|
|
return std::numeric_limits<Int>::digits10;
|
|
}
|
|
template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
|
|
template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
|
|
|
|
template <typename Char> struct thousands_sep_result {
|
|
std::string grouping;
|
|
Char thousands_sep;
|
|
};
|
|
|
|
template <typename Char>
|
|
FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
|
|
template <typename Char>
|
|
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
|
|
auto result = thousands_sep_impl<char>(loc);
|
|
return {result.grouping, Char(result.thousands_sep)};
|
|
}
|
|
template <>
|
|
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
|
|
return thousands_sep_impl<wchar_t>(loc);
|
|
}
|
|
|
|
template <typename Char>
|
|
FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
|
|
template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
|
|
return Char(decimal_point_impl<char>(loc));
|
|
}
|
|
template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
|
|
return decimal_point_impl<wchar_t>(loc);
|
|
}
|
|
|
|
// Compares two characters for equality.
|
|
template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
|
|
return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
|
|
}
|
|
inline auto equal2(const char* lhs, const char* rhs) -> bool {
|
|
return memcmp(lhs, rhs, 2) == 0;
|
|
}
|
|
|
|
// Copies two characters from src to dst.
|
|
template <typename Char>
|
|
FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
|
|
if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
|
|
memcpy(dst, src, 2);
|
|
return;
|
|
}
|
|
*dst++ = static_cast<Char>(*src++);
|
|
*dst = static_cast<Char>(*src);
|
|
}
|
|
|
|
template <typename Iterator> struct format_decimal_result {
|
|
Iterator begin;
|
|
Iterator end;
|
|
};
|
|
|
|
// Formats a decimal unsigned integer value writing into out pointing to a
|
|
// buffer of specified size. The caller must ensure that the buffer is large
|
|
// enough.
|
|
template <typename Char, typename UInt>
|
|
FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
|
|
-> format_decimal_result<Char*> {
|
|
FMT_ASSERT(size >= count_digits(value), "invalid digit count");
|
|
out += size;
|
|
Char* end = out;
|
|
while (value >= 100) {
|
|
// Integer division is slow so do it for a group of two digits instead
|
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
|
out -= 2;
|
|
copy2(out, digits2(static_cast<size_t>(value % 100)));
|
|
value /= 100;
|
|
}
|
|
if (value < 10) {
|
|
*--out = static_cast<Char>('0' + value);
|
|
return {out, end};
|
|
}
|
|
out -= 2;
|
|
copy2(out, digits2(static_cast<size_t>(value)));
|
|
return {out, end};
|
|
}
|
|
|
|
template <typename Char, typename UInt, typename Iterator,
|
|
FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
|
|
FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
|
|
-> format_decimal_result<Iterator> {
|
|
// Buffer is large enough to hold all digits (digits10 + 1).
|
|
Char buffer[digits10<UInt>() + 1] = {};
|
|
auto end = format_decimal(buffer, value, size).end;
|
|
return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
|
|
}
|
|
|
|
template <unsigned BASE_BITS, typename Char, typename UInt>
|
|
FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
|
|
bool upper = false) -> Char* {
|
|
buffer += num_digits;
|
|
Char* end = buffer;
|
|
do {
|
|
const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
|
|
unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
|
|
*--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
|
|
: digits[digit]);
|
|
} while ((value >>= BASE_BITS) != 0);
|
|
return end;
|
|
}
|
|
|
|
template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
|
|
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
|
|
-> It {
|
|
if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
|
|
format_uint<BASE_BITS>(ptr, value, num_digits, upper);
|
|
return out;
|
|
}
|
|
// Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
|
|
char buffer[num_bits<UInt>() / BASE_BITS + 1];
|
|
format_uint<BASE_BITS>(buffer, value, num_digits, upper);
|
|
return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
|
|
}
|
|
|
|
// A converter from UTF-8 to UTF-16.
|
|
class utf8_to_utf16 {
|
|
private:
|
|
basic_memory_buffer<wchar_t> buffer_;
|
|
|
|
public:
|
|
FMT_API explicit utf8_to_utf16(string_view s);
|
|
operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
|
|
auto size() const -> size_t { return buffer_.size() - 1; }
|
|
auto c_str() const -> const wchar_t* { return &buffer_[0]; }
|
|
auto str() const -> std::wstring { return {&buffer_[0], size()}; }
|
|
};
|
|
|
|
// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
|
|
template <typename WChar, typename Buffer = memory_buffer>
|
|
class unicode_to_utf8 {
|
|
private:
|
|
Buffer buffer_;
|
|
|
|
public:
|
|
unicode_to_utf8() {}
|
|
explicit unicode_to_utf8(basic_string_view<WChar> s) {
|
|
static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
|
|
"Expect utf16 or utf32");
|
|
|
|
if (!convert(s))
|
|
FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
|
|
: "invalid utf32"));
|
|
}
|
|
operator string_view() const { return string_view(&buffer_[0], size()); }
|
|
size_t size() const { return buffer_.size() - 1; }
|
|
const char* c_str() const { return &buffer_[0]; }
|
|
std::string str() const { return std::string(&buffer_[0], size()); }
|
|
|
|
// Performs conversion returning a bool instead of throwing exception on
|
|
// conversion error. This method may still throw in case of memory allocation
|
|
// error.
|
|
bool convert(basic_string_view<WChar> s) {
|
|
if (!convert(buffer_, s)) return false;
|
|
buffer_.push_back(0);
|
|
return true;
|
|
}
|
|
static bool convert(Buffer& buf, basic_string_view<WChar> s) {
|
|
for (auto p = s.begin(); p != s.end(); ++p) {
|
|
uint32_t c = static_cast<uint32_t>(*p);
|
|
if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
|
|
// surrogate pair
|
|
++p;
|
|
if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
|
|
return false;
|
|
}
|
|
c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
|
|
}
|
|
if (c < 0x80) {
|
|
buf.push_back(static_cast<char>(c));
|
|
} else if (c < 0x800) {
|
|
buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
|
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
|
} else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
|
|
buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
|
|
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
|
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
|
} else if (c >= 0x10000 && c <= 0x10ffff) {
|
|
buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
|
|
buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
|
|
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
|
|
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
|
|
inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept {
|
|
#if FMT_USE_INT128
|
|
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
|
|
return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
|
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
|
auto result = uint128_fallback();
|
|
result.lo_ = _umul128(x, y, &result.hi_);
|
|
return result;
|
|
#else
|
|
const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
|
|
|
|
uint64_t a = x >> 32;
|
|
uint64_t b = x & mask;
|
|
uint64_t c = y >> 32;
|
|
uint64_t d = y & mask;
|
|
|
|
uint64_t ac = a * c;
|
|
uint64_t bc = b * c;
|
|
uint64_t ad = a * d;
|
|
uint64_t bd = b * d;
|
|
|
|
uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
|
|
|
|
return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
|
|
(intermediate << 32) + (bd & mask)};
|
|
#endif
|
|
}
|
|
|
|
namespace dragonbox {
|
|
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
|
|
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
|
|
inline int floor_log10_pow2(int e) noexcept {
|
|
FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
|
|
static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
|
|
return (e * 315653) >> 20;
|
|
}
|
|
|
|
inline int floor_log2_pow10(int e) noexcept {
|
|
FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
|
|
return (e * 1741647) >> 19;
|
|
}
|
|
|
|
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
|
|
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept {
|
|
#if FMT_USE_INT128
|
|
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
|
|
return static_cast<uint64_t>(p >> 64);
|
|
#elif defined(_MSC_VER) && defined(_M_X64)
|
|
return __umulh(x, y);
|
|
#else
|
|
return umul128(x, y).high();
|
|
#endif
|
|
}
|
|
|
|
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
|
|
// 128-bit unsigned integer.
|
|
inline uint128_fallback umul192_upper128(uint64_t x,
|
|
uint128_fallback y) noexcept {
|
|
uint128_fallback r = umul128(x, y.high());
|
|
r += umul128_upper64(x, y.low());
|
|
return r;
|
|
}
|
|
|
|
FMT_API uint128_fallback get_cached_power(int k) noexcept;
|
|
|
|
// Type-specific information that Dragonbox uses.
|
|
template <typename T, typename Enable = void> struct float_info;
|
|
|
|
template <> struct float_info<float> {
|
|
using carrier_uint = uint32_t;
|
|
static const int exponent_bits = 8;
|
|
static const int kappa = 1;
|
|
static const int big_divisor = 100;
|
|
static const int small_divisor = 10;
|
|
static const int min_k = -31;
|
|
static const int max_k = 46;
|
|
static const int shorter_interval_tie_lower_threshold = -35;
|
|
static const int shorter_interval_tie_upper_threshold = -35;
|
|
};
|
|
|
|
template <> struct float_info<double> {
|
|
using carrier_uint = uint64_t;
|
|
static const int exponent_bits = 11;
|
|
static const int kappa = 2;
|
|
static const int big_divisor = 1000;
|
|
static const int small_divisor = 100;
|
|
static const int min_k = -292;
|
|
static const int max_k = 341;
|
|
static const int shorter_interval_tie_lower_threshold = -77;
|
|
static const int shorter_interval_tie_upper_threshold = -77;
|
|
};
|
|
|
|
// An 80- or 128-bit floating point number.
|
|
template <typename T>
|
|
struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
|
|
std::numeric_limits<T>::digits == 113 ||
|
|
is_float128<T>::value>> {
|
|
using carrier_uint = detail::uint128_t;
|
|
static const int exponent_bits = 15;
|
|
};
|
|
|
|
// A double-double floating point number.
|
|
template <typename T>
|
|
struct float_info<T, enable_if_t<is_double_double<T>::value>> {
|
|
using carrier_uint = detail::uint128_t;
|
|
};
|
|
|
|
template <typename T> struct decimal_fp {
|
|
using significand_type = typename float_info<T>::carrier_uint;
|
|
significand_type significand;
|
|
int exponent;
|
|
};
|
|
|
|
template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
|
|
} // namespace dragonbox
|
|
|
|
// Returns true iff Float has the implicit bit which is not stored.
|
|
template <typename Float> constexpr bool has_implicit_bit() {
|
|
// An 80-bit FP number has a 64-bit significand an no implicit bit.
|
|
return std::numeric_limits<Float>::digits != 64;
|
|
}
|
|
|
|
// Returns the number of significand bits stored in Float. The implicit bit is
|
|
// not counted since it is not stored.
|
|
template <typename Float> constexpr int num_significand_bits() {
|
|
// std::numeric_limits may not support __float128.
|
|
return is_float128<Float>() ? 112
|
|
: (std::numeric_limits<Float>::digits -
|
|
(has_implicit_bit<Float>() ? 1 : 0));
|
|
}
|
|
|
|
template <typename Float>
|
|
constexpr auto exponent_mask() ->
|
|
typename dragonbox::float_info<Float>::carrier_uint {
|
|
using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
|
|
return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
|
|
<< num_significand_bits<Float>();
|
|
}
|
|
template <typename Float> constexpr auto exponent_bias() -> int {
|
|
// std::numeric_limits may not support __float128.
|
|
return is_float128<Float>() ? 16383
|
|
: std::numeric_limits<Float>::max_exponent - 1;
|
|
}
|
|
|
|
// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
|
|
template <typename Char, typename It>
|
|
FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
|
|
FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
|
|
if (exp < 0) {
|
|
*it++ = static_cast<Char>('-');
|
|
exp = -exp;
|
|
} else {
|
|
*it++ = static_cast<Char>('+');
|
|
}
|
|
if (exp >= 100) {
|
|
const char* top = digits2(to_unsigned(exp / 100));
|
|
if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
|
|
*it++ = static_cast<Char>(top[1]);
|
|
exp %= 100;
|
|
}
|
|
const char* d = digits2(to_unsigned(exp));
|
|
*it++ = static_cast<Char>(d[0]);
|
|
*it++ = static_cast<Char>(d[1]);
|
|
return it;
|
|
}
|
|
|
|
// A floating-point number f * pow(2, e) where F is an unsigned type.
|
|
template <typename F> struct basic_fp {
|
|
F f;
|
|
int e;
|
|
|
|
static constexpr const int num_significand_bits =
|
|
static_cast<int>(sizeof(F) * num_bits<unsigned char>());
|
|
|
|
constexpr basic_fp() : f(0), e(0) {}
|
|
constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
|
|
|
|
// Constructs fp from an IEEE754 floating-point number.
|
|
template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
|
|
|
|
// Assigns n to this and return true iff predecessor is closer than successor.
|
|
template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
|
|
FMT_CONSTEXPR auto assign(Float n) -> bool {
|
|
static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
|
|
// Assume Float is in the format [sign][exponent][significand].
|
|
using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
|
|
const auto num_float_significand_bits =
|
|
detail::num_significand_bits<Float>();
|
|
const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
|
|
const auto significand_mask = implicit_bit - 1;
|
|
auto u = bit_cast<carrier_uint>(n);
|
|
f = static_cast<F>(u & significand_mask);
|
|
auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
|
|
num_float_significand_bits);
|
|
// The predecessor is closer if n is a normalized power of 2 (f == 0)
|
|
// other than the smallest normalized number (biased_e > 1).
|
|
auto is_predecessor_closer = f == 0 && biased_e > 1;
|
|
if (biased_e == 0)
|
|
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
|
|
else if (has_implicit_bit<Float>())
|
|
f += static_cast<F>(implicit_bit);
|
|
e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
|
|
if (!has_implicit_bit<Float>()) ++e;
|
|
return is_predecessor_closer;
|
|
}
|
|
|
|
template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
|
|
FMT_CONSTEXPR auto assign(Float n) -> bool {
|
|
static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
|
|
return assign(static_cast<double>(n));
|
|
}
|
|
};
|
|
|
|
using fp = basic_fp<unsigned long long>;
|
|
|
|
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
|
|
template <int SHIFT = 0, typename F>
|
|
FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) {
|
|
// Handle subnormals.
|
|
const auto implicit_bit = F(1) << num_significand_bits<double>();
|
|
const auto shifted_implicit_bit = implicit_bit << SHIFT;
|
|
while ((value.f & shifted_implicit_bit) == 0) {
|
|
value.f <<= 1;
|
|
--value.e;
|
|
}
|
|
// Subtract 1 to account for hidden bit.
|
|
const auto offset = basic_fp<F>::num_significand_bits -
|
|
num_significand_bits<double>() - SHIFT - 1;
|
|
value.f <<= offset;
|
|
value.e -= offset;
|
|
return value;
|
|
}
|
|
|
|
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
|
|
FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
|
|
#if FMT_USE_INT128
|
|
auto product = static_cast<__uint128_t>(lhs) * rhs;
|
|
auto f = static_cast<uint64_t>(product >> 64);
|
|
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
|
|
#else
|
|
// Multiply 32-bit parts of significands.
|
|
uint64_t mask = (1ULL << 32) - 1;
|
|
uint64_t a = lhs >> 32, b = lhs & mask;
|
|
uint64_t c = rhs >> 32, d = rhs & mask;
|
|
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
|
|
// Compute mid 64-bit of result and round.
|
|
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
|
|
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
|
|
#endif
|
|
}
|
|
|
|
FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
|
|
return {multiply(x.f, y.f), x.e + y.e + 64};
|
|
}
|
|
|
|
template <typename T = void> struct basic_data {
|
|
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
|
|
// These are generated by support/compute-powers.py.
|
|
static constexpr uint64_t pow10_significands[87] = {
|
|
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
|
|
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
|
|
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
|
|
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
|
|
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
|
|
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
|
|
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
|
|
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
|
|
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
|
|
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
|
|
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
|
|
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
|
|
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
|
|
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
|
|
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
|
|
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
|
|
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
|
|
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
|
|
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
|
|
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
|
|
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
|
|
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
|
|
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
|
|
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
|
|
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
|
|
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
|
|
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
|
|
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
|
|
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
|
|
};
|
|
|
|
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wnarrowing"
|
|
#endif
|
|
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
|
|
// to significands above.
|
|
static constexpr int16_t pow10_exponents[87] = {
|
|
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
|
|
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
|
|
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
|
|
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
|
|
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
|
|
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
|
|
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
|
|
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
|
|
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
static constexpr uint64_t power_of_10_64[20] = {
|
|
1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
|
|
10000000000000000000ULL};
|
|
|
|
// For checking rounding thresholds.
|
|
// The kth entry is chosen to be the smallest integer such that the
|
|
// upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
|
|
static constexpr uint32_t fractional_part_rounding_thresholds[8] = {
|
|
2576980378, // ceil(2^31 + 2^32/10^1)
|
|
2190433321, // ceil(2^31 + 2^32/10^2)
|
|
2151778616, // ceil(2^31 + 2^32/10^3)
|
|
2147913145, // ceil(2^31 + 2^32/10^4)
|
|
2147526598, // ceil(2^31 + 2^32/10^5)
|
|
2147487943, // ceil(2^31 + 2^32/10^6)
|
|
2147484078, // ceil(2^31 + 2^32/10^7)
|
|
2147483691 // ceil(2^31 + 2^32/10^8)
|
|
};
|
|
};
|
|
|
|
#if FMT_CPLUSPLUS < 201703L
|
|
template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[];
|
|
template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[];
|
|
template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[];
|
|
template <typename T>
|
|
constexpr uint32_t basic_data<T>::fractional_part_rounding_thresholds[];
|
|
#endif
|
|
|
|
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
|
|
struct data : basic_data<> {};
|
|
|
|
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
|
|
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
|
|
FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
|
|
int& pow10_exponent) {
|
|
const int shift = 32;
|
|
// log10(2) = 0x0.4d104d427de7fbcc...
|
|
const int64_t significand = 0x4d104d427de7fbcc;
|
|
int index = static_cast<int>(
|
|
((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
|
|
((int64_t(1) << shift) - 1)) // ceil
|
|
>> 32 // arithmetic shift
|
|
);
|
|
// Decimal exponent of the first (smallest) cached power of 10.
|
|
const int first_dec_exp = -348;
|
|
// Difference between 2 consecutive decimal exponents in cached powers of 10.
|
|
const int dec_exp_step = 8;
|
|
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
|
|
pow10_exponent = first_dec_exp + index * dec_exp_step;
|
|
// Using *(x + index) instead of x[index] avoids an issue with some compilers
|
|
// using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode).
|
|
return {*(data::pow10_significands + index),
|
|
*(data::pow10_exponents + index)};
|
|
}
|
|
|
|
template <typename T>
|
|
using convert_float_result =
|
|
conditional_t<std::is_same<T, float>::value ||
|
|
std::numeric_limits<T>::digits ==
|
|
std::numeric_limits<double>::digits,
|
|
double, T>;
|
|
|
|
template <typename T>
|
|
constexpr auto convert_float(T value) -> convert_float_result<T> {
|
|
return static_cast<convert_float_result<T>>(value);
|
|
}
|
|
|
|
template <typename OutputIt, typename Char>
|
|
FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
|
|
const fill_t<Char>& fill) -> OutputIt {
|
|
auto fill_size = fill.size();
|
|
if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
|
|
auto data = fill.data();
|
|
for (size_t i = 0; i < n; ++i)
|
|
it = copy_str<Char>(data, data + fill_size, it);
|
|
return it;
|
|
}
|
|
|
|
// Writes the output of f, padded according to format specifications in specs.
|
|
// size: output size in code units.
|
|
// width: output display width in (terminal) column positions.
|
|
template <align::type align = align::left, typename OutputIt, typename Char,
|
|
typename F>
|
|
FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs,
|
|
size_t size, size_t width, F&& f) -> OutputIt {
|
|
static_assert(align == align::left || align == align::right, "");
|
|
unsigned spec_width = to_unsigned(specs.width);
|
|
size_t padding = spec_width > width ? spec_width - width : 0;
|
|
// Shifts are encoded as string literals because static constexpr is not
|
|
// supported in constexpr functions.
|
|
auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
|
|
size_t left_padding = padding >> shifts[specs.align];
|
|
size_t right_padding = padding - left_padding;
|
|
auto it = reserve(out, size + padding * specs.fill.size());
|
|
if (left_padding != 0) it = fill(it, left_padding, specs.fill);
|
|
it = f(it);
|
|
if (right_padding != 0) it = fill(it, right_padding, specs.fill);
|
|
return base_iterator(out, it);
|
|
}
|
|
|
|
template <align::type align = align::left, typename OutputIt, typename Char,
|
|
typename F>
|
|
constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs,
|
|
size_t size, F&& f) -> OutputIt {
|
|
return write_padded<align>(out, specs, size, size, f);
|
|
}
|
|
|
|
template <align::type align = align::left, typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
|
|
const format_specs<Char>& specs) -> OutputIt {
|
|
return write_padded<align>(
|
|
out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
|
|
const char* data = bytes.data();
|
|
return copy_str<Char>(data, data + bytes.size(), it);
|
|
});
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename UIntPtr>
|
|
auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs)
|
|
-> OutputIt {
|
|
int num_digits = count_digits<4>(value);
|
|
auto size = to_unsigned(num_digits) + size_t(2);
|
|
auto write = [=](reserve_iterator<OutputIt> it) {
|
|
*it++ = static_cast<Char>('0');
|
|
*it++ = static_cast<Char>('x');
|
|
return format_uint<4, Char>(it, value, num_digits);
|
|
};
|
|
return specs ? write_padded<align::right>(out, *specs, size, write)
|
|
: base_iterator(out, write(reserve(out, size)));
|
|
}
|
|
|
|
// Returns true iff the code point cp is printable.
|
|
FMT_API auto is_printable(uint32_t cp) -> bool;
|
|
|
|
inline auto needs_escape(uint32_t cp) -> bool {
|
|
return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
|
|
!is_printable(cp);
|
|
}
|
|
|
|
template <typename Char> struct find_escape_result {
|
|
const Char* begin;
|
|
const Char* end;
|
|
uint32_t cp;
|
|
};
|
|
|
|
template <typename Char>
|
|
using make_unsigned_char =
|
|
typename conditional_t<std::is_integral<Char>::value,
|
|
std::make_unsigned<Char>,
|
|
type_identity<uint32_t>>::type;
|
|
|
|
template <typename Char>
|
|
auto find_escape(const Char* begin, const Char* end)
|
|
-> find_escape_result<Char> {
|
|
for (; begin != end; ++begin) {
|
|
uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
|
|
if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
|
|
if (needs_escape(cp)) return {begin, begin + 1, cp};
|
|
}
|
|
return {begin, nullptr, 0};
|
|
}
|
|
|
|
inline auto find_escape(const char* begin, const char* end)
|
|
-> find_escape_result<char> {
|
|
if (!is_utf8()) return find_escape<char>(begin, end);
|
|
auto result = find_escape_result<char>{end, nullptr, 0};
|
|
for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
|
|
[&](uint32_t cp, string_view sv) {
|
|
if (needs_escape(cp)) {
|
|
result = {sv.begin(), sv.end(), cp};
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
return result;
|
|
}
|
|
|
|
#define FMT_STRING_IMPL(s, base, explicit) \
|
|
[] { \
|
|
/* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
|
|
/* Use a macro-like name to avoid shadowing warnings. */ \
|
|
struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \
|
|
using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
|
|
FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \
|
|
operator fmt::basic_string_view<char_type>() const { \
|
|
return fmt::detail_exported::compile_string_to_view<char_type>(s); \
|
|
} \
|
|
}; \
|
|
return FMT_COMPILE_STRING(); \
|
|
}()
|
|
|
|
/**
|
|
\rst
|
|
Constructs a compile-time format string from a string literal *s*.
|
|
|
|
**Example**::
|
|
|
|
// A compile-time error because 'd' is an invalid specifier for strings.
|
|
std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
|
|
\endrst
|
|
*/
|
|
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
|
|
|
|
template <size_t width, typename Char, typename OutputIt>
|
|
auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
|
|
*out++ = static_cast<Char>('\\');
|
|
*out++ = static_cast<Char>(prefix);
|
|
Char buf[width];
|
|
fill_n(buf, width, static_cast<Char>('0'));
|
|
format_uint<4>(buf, cp, width);
|
|
return copy_str<Char>(buf, buf + width, out);
|
|
}
|
|
|
|
template <typename OutputIt, typename Char>
|
|
auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
|
|
-> OutputIt {
|
|
auto c = static_cast<Char>(escape.cp);
|
|
switch (escape.cp) {
|
|
case '\n':
|
|
*out++ = static_cast<Char>('\\');
|
|
c = static_cast<Char>('n');
|
|
break;
|
|
case '\r':
|
|
*out++ = static_cast<Char>('\\');
|
|
c = static_cast<Char>('r');
|
|
break;
|
|
case '\t':
|
|
*out++ = static_cast<Char>('\\');
|
|
c = static_cast<Char>('t');
|
|
break;
|
|
case '"':
|
|
FMT_FALLTHROUGH;
|
|
case '\'':
|
|
FMT_FALLTHROUGH;
|
|
case '\\':
|
|
*out++ = static_cast<Char>('\\');
|
|
break;
|
|
default:
|
|
if (escape.cp < 0x100) {
|
|
return write_codepoint<2, Char>(out, 'x', escape.cp);
|
|
}
|
|
if (escape.cp < 0x10000) {
|
|
return write_codepoint<4, Char>(out, 'u', escape.cp);
|
|
}
|
|
if (escape.cp < 0x110000) {
|
|
return write_codepoint<8, Char>(out, 'U', escape.cp);
|
|
}
|
|
for (Char escape_char : basic_string_view<Char>(
|
|
escape.begin, to_unsigned(escape.end - escape.begin))) {
|
|
out = write_codepoint<2, Char>(out, 'x',
|
|
static_cast<uint32_t>(escape_char) & 0xFF);
|
|
}
|
|
return out;
|
|
}
|
|
*out++ = c;
|
|
return out;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
|
|
-> OutputIt {
|
|
*out++ = static_cast<Char>('"');
|
|
auto begin = str.begin(), end = str.end();
|
|
do {
|
|
auto escape = find_escape(begin, end);
|
|
out = copy_str<Char>(begin, escape.begin, out);
|
|
begin = escape.end;
|
|
if (!begin) break;
|
|
out = write_escaped_cp<OutputIt, Char>(out, escape);
|
|
} while (begin != end);
|
|
*out++ = static_cast<Char>('"');
|
|
return out;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
|
|
*out++ = static_cast<Char>('\'');
|
|
if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
|
|
v == static_cast<Char>('\'')) {
|
|
out = write_escaped_cp(
|
|
out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)});
|
|
} else {
|
|
*out++ = v;
|
|
}
|
|
*out++ = static_cast<Char>('\'');
|
|
return out;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
|
|
const format_specs<Char>& specs) -> OutputIt {
|
|
bool is_debug = specs.type == presentation_type::debug;
|
|
return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
|
|
if (is_debug) return write_escaped_char(it, value);
|
|
*it++ = value;
|
|
return it;
|
|
});
|
|
}
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out, Char value,
|
|
const format_specs<Char>& specs, locale_ref loc = {})
|
|
-> OutputIt {
|
|
// char is formatted as unsigned char for consistency across platforms.
|
|
using unsigned_type =
|
|
conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
|
|
return check_char_specs(specs)
|
|
? write_char(out, value, specs)
|
|
: write(out, static_cast<unsigned_type>(value), specs, loc);
|
|
}
|
|
|
|
// Data for write_int that doesn't depend on output iterator type. It is used to
|
|
// avoid template code bloat.
|
|
template <typename Char> struct write_int_data {
|
|
size_t size;
|
|
size_t padding;
|
|
|
|
FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
|
|
const format_specs<Char>& specs)
|
|
: size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
|
|
if (specs.align == align::numeric) {
|
|
auto width = to_unsigned(specs.width);
|
|
if (width > size) {
|
|
padding = width - size;
|
|
size = width;
|
|
}
|
|
} else if (specs.precision > num_digits) {
|
|
size = (prefix >> 24) + to_unsigned(specs.precision);
|
|
padding = to_unsigned(specs.precision - num_digits);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Writes an integer in the format
|
|
// <left-padding><prefix><numeric-padding><digits><right-padding>
|
|
// where <digits> are written by write_digits(it).
|
|
// prefix contains chars in three lower bytes and the size in the fourth byte.
|
|
template <typename OutputIt, typename Char, typename W>
|
|
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
|
|
unsigned prefix,
|
|
const format_specs<Char>& specs,
|
|
W write_digits) -> OutputIt {
|
|
// Slightly faster check for specs.width == 0 && specs.precision == -1.
|
|
if ((specs.width | (specs.precision + 1)) == 0) {
|
|
auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
|
|
if (prefix != 0) {
|
|
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
|
|
*it++ = static_cast<Char>(p & 0xff);
|
|
}
|
|
return base_iterator(out, write_digits(it));
|
|
}
|
|
auto data = write_int_data<Char>(num_digits, prefix, specs);
|
|
return write_padded<align::right>(
|
|
out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
|
|
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
|
|
*it++ = static_cast<Char>(p & 0xff);
|
|
it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
|
|
return write_digits(it);
|
|
});
|
|
}
|
|
|
|
template <typename Char> class digit_grouping {
|
|
private:
|
|
std::string grouping_;
|
|
std::basic_string<Char> thousands_sep_;
|
|
|
|
struct next_state {
|
|
std::string::const_iterator group;
|
|
int pos;
|
|
};
|
|
next_state initial_state() const { return {grouping_.begin(), 0}; }
|
|
|
|
// Returns the next digit group separator position.
|
|
int next(next_state& state) const {
|
|
if (thousands_sep_.empty()) return max_value<int>();
|
|
if (state.group == grouping_.end()) return state.pos += grouping_.back();
|
|
if (*state.group <= 0 || *state.group == max_value<char>())
|
|
return max_value<int>();
|
|
state.pos += *state.group++;
|
|
return state.pos;
|
|
}
|
|
|
|
public:
|
|
explicit digit_grouping(locale_ref loc, bool localized = true) {
|
|
if (!localized) return;
|
|
auto sep = thousands_sep<Char>(loc);
|
|
grouping_ = sep.grouping;
|
|
if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
|
|
}
|
|
digit_grouping(std::string grouping, std::basic_string<Char> sep)
|
|
: grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
|
|
|
|
bool has_separator() const { return !thousands_sep_.empty(); }
|
|
|
|
int count_separators(int num_digits) const {
|
|
int count = 0;
|
|
auto state = initial_state();
|
|
while (num_digits > next(state)) ++count;
|
|
return count;
|
|
}
|
|
|
|
// Applies grouping to digits and write the output to out.
|
|
template <typename Out, typename C>
|
|
Out apply(Out out, basic_string_view<C> digits) const {
|
|
auto num_digits = static_cast<int>(digits.size());
|
|
auto separators = basic_memory_buffer<int>();
|
|
separators.push_back(0);
|
|
auto state = initial_state();
|
|
while (int i = next(state)) {
|
|
if (i >= num_digits) break;
|
|
separators.push_back(i);
|
|
}
|
|
for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
|
|
i < num_digits; ++i) {
|
|
if (num_digits - i == separators[sep_index]) {
|
|
out =
|
|
copy_str<Char>(thousands_sep_.data(),
|
|
thousands_sep_.data() + thousands_sep_.size(), out);
|
|
--sep_index;
|
|
}
|
|
*out++ = static_cast<Char>(digits[to_unsigned(i)]);
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
// Writes a decimal integer with digit grouping.
|
|
template <typename OutputIt, typename UInt, typename Char>
|
|
auto write_int(OutputIt out, UInt value, unsigned prefix,
|
|
const format_specs<Char>& specs,
|
|
const digit_grouping<Char>& grouping) -> OutputIt {
|
|
static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
|
|
int num_digits = count_digits(value);
|
|
char digits[40];
|
|
format_decimal(digits, value, num_digits);
|
|
unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits +
|
|
grouping.count_separators(num_digits));
|
|
return write_padded<align::right>(
|
|
out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
|
|
if (prefix != 0) {
|
|
char sign = static_cast<char>(prefix);
|
|
*it++ = static_cast<Char>(sign);
|
|
}
|
|
return grouping.apply(it, string_view(digits, to_unsigned(num_digits)));
|
|
});
|
|
}
|
|
|
|
// Writes a localized value.
|
|
FMT_API auto write_loc(appender out, loc_value value,
|
|
const format_specs<>& specs, locale_ref loc) -> bool;
|
|
template <typename OutputIt, typename Char>
|
|
inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&,
|
|
locale_ref) -> bool {
|
|
return false;
|
|
}
|
|
|
|
FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
|
|
prefix |= prefix != 0 ? value << 8 : value;
|
|
prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
|
|
}
|
|
|
|
template <typename UInt> struct write_int_arg {
|
|
UInt abs_value;
|
|
unsigned prefix;
|
|
};
|
|
|
|
template <typename T>
|
|
FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
|
|
-> write_int_arg<uint32_or_64_or_128_t<T>> {
|
|
auto prefix = 0u;
|
|
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
|
|
if (is_negative(value)) {
|
|
prefix = 0x01000000 | '-';
|
|
abs_value = 0 - abs_value;
|
|
} else {
|
|
constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
|
|
0x1000000u | ' '};
|
|
prefix = prefixes[sign];
|
|
}
|
|
return {abs_value, prefix};
|
|
}
|
|
|
|
template <typename Char = char> struct loc_writer {
|
|
buffer_appender<Char> out;
|
|
const format_specs<Char>& specs;
|
|
std::basic_string<Char> sep;
|
|
std::string grouping;
|
|
std::basic_string<Char> decimal_point;
|
|
|
|
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
|
|
auto operator()(T value) -> bool {
|
|
auto arg = make_write_int_arg(value, specs.sign);
|
|
write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
|
|
specs, digit_grouping<Char>(grouping, sep));
|
|
return true;
|
|
}
|
|
|
|
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
|
|
auto operator()(T) -> bool {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <typename Char, typename OutputIt, typename T>
|
|
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
|
|
const format_specs<Char>& specs,
|
|
locale_ref) -> OutputIt {
|
|
static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
|
|
auto abs_value = arg.abs_value;
|
|
auto prefix = arg.prefix;
|
|
switch (specs.type) {
|
|
case presentation_type::none:
|
|
case presentation_type::dec: {
|
|
auto num_digits = count_digits(abs_value);
|
|
return write_int(
|
|
out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
|
|
return format_decimal<Char>(it, abs_value, num_digits).end;
|
|
});
|
|
}
|
|
case presentation_type::hex_lower:
|
|
case presentation_type::hex_upper: {
|
|
bool upper = specs.type == presentation_type::hex_upper;
|
|
if (specs.alt)
|
|
prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
|
|
int num_digits = count_digits<4>(abs_value);
|
|
return write_int(
|
|
out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
|
|
return format_uint<4, Char>(it, abs_value, num_digits, upper);
|
|
});
|
|
}
|
|
case presentation_type::bin_lower:
|
|
case presentation_type::bin_upper: {
|
|
bool upper = specs.type == presentation_type::bin_upper;
|
|
if (specs.alt)
|
|
prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
|
|
int num_digits = count_digits<1>(abs_value);
|
|
return write_int(out, num_digits, prefix, specs,
|
|
[=](reserve_iterator<OutputIt> it) {
|
|
return format_uint<1, Char>(it, abs_value, num_digits);
|
|
});
|
|
}
|
|
case presentation_type::oct: {
|
|
int num_digits = count_digits<3>(abs_value);
|
|
// Octal prefix '0' is counted as a digit, so only add it if precision
|
|
// is not greater than the number of digits.
|
|
if (specs.alt && specs.precision <= num_digits && abs_value != 0)
|
|
prefix_append(prefix, '0');
|
|
return write_int(out, num_digits, prefix, specs,
|
|
[=](reserve_iterator<OutputIt> it) {
|
|
return format_uint<3, Char>(it, abs_value, num_digits);
|
|
});
|
|
}
|
|
case presentation_type::chr:
|
|
return write_char(out, static_cast<Char>(abs_value), specs);
|
|
default:
|
|
throw_format_error("invalid format specifier");
|
|
}
|
|
return out;
|
|
}
|
|
template <typename Char, typename OutputIt, typename T>
|
|
FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
|
|
OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs,
|
|
locale_ref loc) -> OutputIt {
|
|
return write_int(out, arg, specs, loc);
|
|
}
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
|
!std::is_same<T, bool>::value &&
|
|
std::is_same<OutputIt, buffer_appender<Char>>::value)>
|
|
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
|
|
const format_specs<Char>& specs,
|
|
locale_ref loc) -> OutputIt {
|
|
if (specs.localized && write_loc(out, value, specs, loc)) return out;
|
|
return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
|
|
loc);
|
|
}
|
|
// An inlined version of write used in format string compilation.
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
|
!std::is_same<T, bool>::value &&
|
|
!std::is_same<OutputIt, buffer_appender<Char>>::value)>
|
|
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
|
|
const format_specs<Char>& specs,
|
|
locale_ref loc) -> OutputIt {
|
|
if (specs.localized && write_loc(out, value, specs, loc)) return out;
|
|
return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
|
|
}
|
|
|
|
// An output iterator that counts the number of objects written to it and
|
|
// discards them.
|
|
class counting_iterator {
|
|
private:
|
|
size_t count_;
|
|
|
|
public:
|
|
using iterator_category = std::output_iterator_tag;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = void;
|
|
using reference = void;
|
|
FMT_UNCHECKED_ITERATOR(counting_iterator);
|
|
|
|
struct value_type {
|
|
template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
|
|
};
|
|
|
|
FMT_CONSTEXPR counting_iterator() : count_(0) {}
|
|
|
|
FMT_CONSTEXPR size_t count() const { return count_; }
|
|
|
|
FMT_CONSTEXPR counting_iterator& operator++() {
|
|
++count_;
|
|
return *this;
|
|
}
|
|
FMT_CONSTEXPR counting_iterator operator++(int) {
|
|
auto it = *this;
|
|
++*this;
|
|
return it;
|
|
}
|
|
|
|
FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it,
|
|
difference_type n) {
|
|
it.count_ += static_cast<size_t>(n);
|
|
return it;
|
|
}
|
|
|
|
FMT_CONSTEXPR value_type operator*() const { return {}; }
|
|
};
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
|
|
const format_specs<Char>& specs) -> OutputIt {
|
|
auto data = s.data();
|
|
auto size = s.size();
|
|
if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
|
|
size = code_point_index(s, to_unsigned(specs.precision));
|
|
bool is_debug = specs.type == presentation_type::debug;
|
|
size_t width = 0;
|
|
if (specs.width != 0) {
|
|
if (is_debug)
|
|
width = write_escaped_string(counting_iterator{}, s).count();
|
|
else
|
|
width = compute_width(basic_string_view<Char>(data, size));
|
|
}
|
|
return write_padded(out, specs, size, width,
|
|
[=](reserve_iterator<OutputIt> it) {
|
|
if (is_debug) return write_escaped_string(it, s);
|
|
return copy_str<Char>(data, data + size, it);
|
|
});
|
|
}
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out,
|
|
basic_string_view<type_identity_t<Char>> s,
|
|
const format_specs<Char>& specs, locale_ref)
|
|
-> OutputIt {
|
|
return write(out, s, specs);
|
|
}
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
|
|
const format_specs<Char>& specs, locale_ref)
|
|
-> OutputIt {
|
|
return specs.type != presentation_type::pointer
|
|
? write(out, basic_string_view<Char>(s), specs, {})
|
|
: write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_integral<T>::value &&
|
|
!std::is_same<T, bool>::value &&
|
|
!std::is_same<T, Char>::value)>
|
|
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
|
|
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
|
|
bool negative = is_negative(value);
|
|
// Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
|
|
if (negative) abs_value = ~abs_value + 1;
|
|
int num_digits = count_digits(abs_value);
|
|
auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
|
|
auto it = reserve(out, size);
|
|
if (auto ptr = to_pointer<Char>(it, size)) {
|
|
if (negative) *ptr++ = static_cast<Char>('-');
|
|
format_decimal<Char>(ptr, abs_value, num_digits);
|
|
return out;
|
|
}
|
|
if (negative) *it++ = static_cast<Char>('-');
|
|
it = format_decimal<Char>(it, abs_value, num_digits).end;
|
|
return base_iterator(out, it);
|
|
}
|
|
|
|
// A floating-point presentation format.
|
|
enum class float_format : unsigned char {
|
|
general, // General: exponent notation or fixed point based on magnitude.
|
|
exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3.
|
|
fixed, // Fixed point with the default precision of 6, e.g. 0.0012.
|
|
hex
|
|
};
|
|
|
|
struct float_specs {
|
|
int precision;
|
|
float_format format : 8;
|
|
sign_t sign : 8;
|
|
bool upper : 1;
|
|
bool locale : 1;
|
|
bool binary32 : 1;
|
|
bool showpoint : 1;
|
|
};
|
|
|
|
template <typename ErrorHandler = error_handler, typename Char>
|
|
FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs,
|
|
ErrorHandler&& eh = {})
|
|
-> float_specs {
|
|
auto result = float_specs();
|
|
result.showpoint = specs.alt;
|
|
result.locale = specs.localized;
|
|
switch (specs.type) {
|
|
case presentation_type::none:
|
|
result.format = float_format::general;
|
|
break;
|
|
case presentation_type::general_upper:
|
|
result.upper = true;
|
|
FMT_FALLTHROUGH;
|
|
case presentation_type::general_lower:
|
|
result.format = float_format::general;
|
|
break;
|
|
case presentation_type::exp_upper:
|
|
result.upper = true;
|
|
FMT_FALLTHROUGH;
|
|
case presentation_type::exp_lower:
|
|
result.format = float_format::exp;
|
|
result.showpoint |= specs.precision != 0;
|
|
break;
|
|
case presentation_type::fixed_upper:
|
|
result.upper = true;
|
|
FMT_FALLTHROUGH;
|
|
case presentation_type::fixed_lower:
|
|
result.format = float_format::fixed;
|
|
result.showpoint |= specs.precision != 0;
|
|
break;
|
|
case presentation_type::hexfloat_upper:
|
|
result.upper = true;
|
|
FMT_FALLTHROUGH;
|
|
case presentation_type::hexfloat_lower:
|
|
result.format = float_format::hex;
|
|
break;
|
|
default:
|
|
eh.on_error("invalid format specifier");
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
|
|
format_specs<Char> specs,
|
|
const float_specs& fspecs) -> OutputIt {
|
|
auto str =
|
|
isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
|
|
constexpr size_t str_size = 3;
|
|
auto sign = fspecs.sign;
|
|
auto size = str_size + (sign ? 1 : 0);
|
|
// Replace '0'-padding with space for non-finite values.
|
|
const bool is_zero_fill =
|
|
specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
|
|
if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
|
|
return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
|
|
if (sign) *it++ = detail::sign<Char>(sign);
|
|
return copy_str<Char>(str, str + str_size, it);
|
|
});
|
|
}
|
|
|
|
// A decimal floating-point number significand * pow(10, exp).
|
|
struct big_decimal_fp {
|
|
const char* significand;
|
|
int significand_size;
|
|
int exponent;
|
|
};
|
|
|
|
constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
|
|
return f.significand_size;
|
|
}
|
|
template <typename T>
|
|
inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
|
|
return count_digits(f.significand);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
constexpr auto write_significand(OutputIt out, const char* significand,
|
|
int significand_size) -> OutputIt {
|
|
return copy_str<Char>(significand, significand + significand_size, out);
|
|
}
|
|
template <typename Char, typename OutputIt, typename UInt>
|
|
inline auto write_significand(OutputIt out, UInt significand,
|
|
int significand_size) -> OutputIt {
|
|
return format_decimal<Char>(out, significand, significand_size).end;
|
|
}
|
|
template <typename Char, typename OutputIt, typename T, typename Grouping>
|
|
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
|
|
int significand_size, int exponent,
|
|
const Grouping& grouping) -> OutputIt {
|
|
if (!grouping.has_separator()) {
|
|
out = write_significand<Char>(out, significand, significand_size);
|
|
return detail::fill_n(out, exponent, static_cast<Char>('0'));
|
|
}
|
|
auto buffer = memory_buffer();
|
|
write_significand<char>(appender(buffer), significand, significand_size);
|
|
detail::fill_n(appender(buffer), exponent, '0');
|
|
return grouping.apply(out, string_view(buffer.data(), buffer.size()));
|
|
}
|
|
|
|
template <typename Char, typename UInt,
|
|
FMT_ENABLE_IF(std::is_integral<UInt>::value)>
|
|
inline auto write_significand(Char* out, UInt significand, int significand_size,
|
|
int integral_size, Char decimal_point) -> Char* {
|
|
if (!decimal_point)
|
|
return format_decimal(out, significand, significand_size).end;
|
|
out += significand_size + 1;
|
|
Char* end = out;
|
|
int floating_size = significand_size - integral_size;
|
|
for (int i = floating_size / 2; i > 0; --i) {
|
|
out -= 2;
|
|
copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
|
|
significand /= 100;
|
|
}
|
|
if (floating_size % 2 != 0) {
|
|
*--out = static_cast<Char>('0' + significand % 10);
|
|
significand /= 10;
|
|
}
|
|
*--out = decimal_point;
|
|
format_decimal(out - integral_size, significand, integral_size);
|
|
return end;
|
|
}
|
|
|
|
template <typename OutputIt, typename UInt, typename Char,
|
|
FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
|
|
inline auto write_significand(OutputIt out, UInt significand,
|
|
int significand_size, int integral_size,
|
|
Char decimal_point) -> OutputIt {
|
|
// Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
|
|
Char buffer[digits10<UInt>() + 2];
|
|
auto end = write_significand(buffer, significand, significand_size,
|
|
integral_size, decimal_point);
|
|
return detail::copy_str_noinline<Char>(buffer, end, out);
|
|
}
|
|
|
|
template <typename OutputIt, typename Char>
|
|
FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
|
|
int significand_size, int integral_size,
|
|
Char decimal_point) -> OutputIt {
|
|
out = detail::copy_str_noinline<Char>(significand,
|
|
significand + integral_size, out);
|
|
if (!decimal_point) return out;
|
|
*out++ = decimal_point;
|
|
return detail::copy_str_noinline<Char>(significand + integral_size,
|
|
significand + significand_size, out);
|
|
}
|
|
|
|
template <typename OutputIt, typename Char, typename T, typename Grouping>
|
|
FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
|
|
int significand_size, int integral_size,
|
|
Char decimal_point,
|
|
const Grouping& grouping) -> OutputIt {
|
|
if (!grouping.has_separator()) {
|
|
return write_significand(out, significand, significand_size, integral_size,
|
|
decimal_point);
|
|
}
|
|
auto buffer = basic_memory_buffer<Char>();
|
|
write_significand(buffer_appender<Char>(buffer), significand,
|
|
significand_size, integral_size, decimal_point);
|
|
grouping.apply(
|
|
out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
|
|
return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
|
|
buffer.end(), out);
|
|
}
|
|
|
|
template <typename OutputIt, typename DecimalFP, typename Char,
|
|
typename Grouping = digit_grouping<Char>>
|
|
FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
|
|
const format_specs<Char>& specs,
|
|
float_specs fspecs, locale_ref loc)
|
|
-> OutputIt {
|
|
auto significand = f.significand;
|
|
int significand_size = get_significand_size(f);
|
|
const Char zero = static_cast<Char>('0');
|
|
auto sign = fspecs.sign;
|
|
size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
|
|
using iterator = reserve_iterator<OutputIt>;
|
|
|
|
Char decimal_point =
|
|
fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
|
|
|
|
int output_exp = f.exponent + significand_size - 1;
|
|
auto use_exp_format = [=]() {
|
|
if (fspecs.format == float_format::exp) return true;
|
|
if (fspecs.format != float_format::general) return false;
|
|
// Use the fixed notation if the exponent is in [exp_lower, exp_upper),
|
|
// e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
|
|
const int exp_lower = -4, exp_upper = 16;
|
|
return output_exp < exp_lower ||
|
|
output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
|
|
};
|
|
if (use_exp_format()) {
|
|
int num_zeros = 0;
|
|
if (fspecs.showpoint) {
|
|
num_zeros = fspecs.precision - significand_size;
|
|
if (num_zeros < 0) num_zeros = 0;
|
|
size += to_unsigned(num_zeros);
|
|
} else if (significand_size == 1) {
|
|
decimal_point = Char();
|
|
}
|
|
auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
|
|
int exp_digits = 2;
|
|
if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
|
|
|
|
size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
|
|
char exp_char = fspecs.upper ? 'E' : 'e';
|
|
auto write = [=](iterator it) {
|
|
if (sign) *it++ = detail::sign<Char>(sign);
|
|
// Insert a decimal point after the first digit and add an exponent.
|
|
it = write_significand(it, significand, significand_size, 1,
|
|
decimal_point);
|
|
if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
|
|
*it++ = static_cast<Char>(exp_char);
|
|
return write_exponent<Char>(output_exp, it);
|
|
};
|
|
return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
|
|
: base_iterator(out, write(reserve(out, size)));
|
|
}
|
|
|
|
int exp = f.exponent + significand_size;
|
|
if (f.exponent >= 0) {
|
|
// 1234e5 -> 123400000[.0+]
|
|
size += to_unsigned(f.exponent);
|
|
int num_zeros = fspecs.precision - exp;
|
|
abort_fuzzing_if(num_zeros > 5000);
|
|
if (fspecs.showpoint) {
|
|
++size;
|
|
if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0;
|
|
if (num_zeros > 0) size += to_unsigned(num_zeros);
|
|
}
|
|
auto grouping = Grouping(loc, fspecs.locale);
|
|
size += to_unsigned(grouping.count_separators(exp));
|
|
return write_padded<align::right>(out, specs, size, [&](iterator it) {
|
|
if (sign) *it++ = detail::sign<Char>(sign);
|
|
it = write_significand<Char>(it, significand, significand_size,
|
|
f.exponent, grouping);
|
|
if (!fspecs.showpoint) return it;
|
|
*it++ = decimal_point;
|
|
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
|
|
});
|
|
} else if (exp > 0) {
|
|
// 1234e-2 -> 12.34[0+]
|
|
int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
|
|
size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
|
|
auto grouping = Grouping(loc, fspecs.locale);
|
|
size += to_unsigned(grouping.count_separators(exp));
|
|
return write_padded<align::right>(out, specs, size, [&](iterator it) {
|
|
if (sign) *it++ = detail::sign<Char>(sign);
|
|
it = write_significand(it, significand, significand_size, exp,
|
|
decimal_point, grouping);
|
|
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
|
|
});
|
|
}
|
|
// 1234e-6 -> 0.001234
|
|
int num_zeros = -exp;
|
|
if (significand_size == 0 && fspecs.precision >= 0 &&
|
|
fspecs.precision < num_zeros) {
|
|
num_zeros = fspecs.precision;
|
|
}
|
|
bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
|
|
size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
|
|
return write_padded<align::right>(out, specs, size, [&](iterator it) {
|
|
if (sign) *it++ = detail::sign<Char>(sign);
|
|
*it++ = zero;
|
|
if (!pointy) return it;
|
|
*it++ = decimal_point;
|
|
it = detail::fill_n(it, num_zeros, zero);
|
|
return write_significand<Char>(it, significand, significand_size);
|
|
});
|
|
}
|
|
|
|
template <typename Char> class fallback_digit_grouping {
|
|
public:
|
|
constexpr fallback_digit_grouping(locale_ref, bool) {}
|
|
|
|
constexpr bool has_separator() const { return false; }
|
|
|
|
constexpr int count_separators(int) const { return 0; }
|
|
|
|
template <typename Out, typename C>
|
|
constexpr Out apply(Out out, basic_string_view<C>) const {
|
|
return out;
|
|
}
|
|
};
|
|
|
|
template <typename OutputIt, typename DecimalFP, typename Char>
|
|
FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
|
|
const format_specs<Char>& specs,
|
|
float_specs fspecs, locale_ref loc)
|
|
-> OutputIt {
|
|
if (is_constant_evaluated()) {
|
|
return do_write_float<OutputIt, DecimalFP, Char,
|
|
fallback_digit_grouping<Char>>(out, f, specs, fspecs,
|
|
loc);
|
|
} else {
|
|
return do_write_float(out, f, specs, fspecs, loc);
|
|
}
|
|
}
|
|
|
|
template <typename T> constexpr bool isnan(T value) {
|
|
return !(value >= value); // std::isnan doesn't support __float128.
|
|
}
|
|
|
|
template <typename T, typename Enable = void>
|
|
struct has_isfinite : std::false_type {};
|
|
|
|
template <typename T>
|
|
struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
|
|
: std::true_type {};
|
|
|
|
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
|
|
has_isfinite<T>::value)>
|
|
FMT_CONSTEXPR20 bool isfinite(T value) {
|
|
constexpr T inf = T(std::numeric_limits<double>::infinity());
|
|
if (is_constant_evaluated())
|
|
return !detail::isnan(value) && value < inf && value > -inf;
|
|
return std::isfinite(value);
|
|
}
|
|
template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
|
|
FMT_CONSTEXPR bool isfinite(T value) {
|
|
T inf = T(std::numeric_limits<double>::infinity());
|
|
// std::isfinite doesn't support __float128.
|
|
return !detail::isnan(value) && value < inf && value > -inf;
|
|
}
|
|
|
|
template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
|
|
FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
|
|
if (is_constant_evaluated()) {
|
|
#ifdef __cpp_if_constexpr
|
|
if constexpr (std::numeric_limits<double>::is_iec559) {
|
|
auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
|
|
return (bits >> (num_bits<uint64_t>() - 1)) != 0;
|
|
}
|
|
#endif
|
|
}
|
|
return std::signbit(static_cast<double>(value));
|
|
}
|
|
|
|
enum class round_direction { unknown, up, down };
|
|
|
|
// Given the divisor (normally a power of 10), the remainder = v % divisor for
|
|
// some number v and the error, returns whether v should be rounded up, down, or
|
|
// whether the rounding direction can't be determined due to error.
|
|
// error should be less than divisor / 2.
|
|
FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
|
|
uint64_t remainder,
|
|
uint64_t error) {
|
|
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
|
|
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
|
|
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
|
|
// Round down if (remainder + error) * 2 <= divisor.
|
|
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
|
|
return round_direction::down;
|
|
// Round up if (remainder - error) * 2 >= divisor.
|
|
if (remainder >= error &&
|
|
remainder - error >= divisor - (remainder - error)) {
|
|
return round_direction::up;
|
|
}
|
|
return round_direction::unknown;
|
|
}
|
|
|
|
namespace digits {
|
|
enum result {
|
|
more, // Generate more digits.
|
|
done, // Done generating digits.
|
|
error // Digit generation cancelled due to an error.
|
|
};
|
|
}
|
|
|
|
struct gen_digits_handler {
|
|
char* buf;
|
|
int size;
|
|
int precision;
|
|
int exp10;
|
|
bool fixed;
|
|
|
|
FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
|
|
uint64_t remainder, uint64_t error,
|
|
bool integral) {
|
|
FMT_ASSERT(remainder < divisor, "");
|
|
buf[size++] = digit;
|
|
if (!integral && error >= remainder) return digits::error;
|
|
if (size < precision) return digits::more;
|
|
if (!integral) {
|
|
// Check if error * 2 < divisor with overflow prevention.
|
|
// The check is not needed for the integral part because error = 1
|
|
// and divisor > (1 << 32) there.
|
|
if (error >= divisor || error >= divisor - error) return digits::error;
|
|
} else {
|
|
FMT_ASSERT(error == 1 && divisor > 2, "");
|
|
}
|
|
auto dir = get_round_direction(divisor, remainder, error);
|
|
if (dir != round_direction::up)
|
|
return dir == round_direction::down ? digits::done : digits::error;
|
|
++buf[size - 1];
|
|
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
|
|
buf[i] = '0';
|
|
++buf[i - 1];
|
|
}
|
|
if (buf[0] > '9') {
|
|
buf[0] = '1';
|
|
if (fixed)
|
|
buf[size++] = '0';
|
|
else
|
|
++exp10;
|
|
}
|
|
return digits::done;
|
|
}
|
|
};
|
|
|
|
inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
|
|
// Adjust fixed precision by exponent because it is relative to decimal
|
|
// point.
|
|
if (exp10 > 0 && precision > max_value<int>() - exp10)
|
|
FMT_THROW(format_error("number is too big"));
|
|
precision += exp10;
|
|
}
|
|
|
|
// Generates output using the Grisu digit-gen algorithm.
|
|
// error: the size of the region (lower, upper) outside of which numbers
|
|
// definitely do not round to value (Delta in Grisu3).
|
|
FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error,
|
|
int& exp,
|
|
gen_digits_handler& handler)
|
|
-> digits::result {
|
|
const fp one(1ULL << -value.e, value.e);
|
|
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
|
|
// zero because it contains a product of two 64-bit numbers with MSB set (due
|
|
// to normalization) - 1, shifted right by at most 60 bits.
|
|
auto integral = static_cast<uint32_t>(value.f >> -one.e);
|
|
FMT_ASSERT(integral != 0, "");
|
|
FMT_ASSERT(integral == value.f >> -one.e, "");
|
|
// The fractional part of scaled value (p2 in Grisu) c = value % one.
|
|
uint64_t fractional = value.f & (one.f - 1);
|
|
exp = count_digits(integral); // kappa in Grisu.
|
|
// Non-fixed formats require at least one digit and no precision adjustment.
|
|
if (handler.fixed) {
|
|
adjust_precision(handler.precision, exp + handler.exp10);
|
|
// Check if precision is satisfied just by leading zeros, e.g.
|
|
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
|
|
if (handler.precision <= 0) {
|
|
if (handler.precision < 0) return digits::done;
|
|
// Divide by 10 to prevent overflow.
|
|
uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e;
|
|
auto dir = get_round_direction(divisor, value.f / 10, error * 10);
|
|
if (dir == round_direction::unknown) return digits::error;
|
|
handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
|
|
return digits::done;
|
|
}
|
|
}
|
|
// Generate digits for the integral part. This can produce up to 10 digits.
|
|
do {
|
|
uint32_t digit = 0;
|
|
auto divmod_integral = [&](uint32_t divisor) {
|
|
digit = integral / divisor;
|
|
integral %= divisor;
|
|
};
|
|
// This optimization by Milo Yip reduces the number of integer divisions by
|
|
// one per iteration.
|
|
switch (exp) {
|
|
case 10:
|
|
divmod_integral(1000000000);
|
|
break;
|
|
case 9:
|
|
divmod_integral(100000000);
|
|
break;
|
|
case 8:
|
|
divmod_integral(10000000);
|
|
break;
|
|
case 7:
|
|
divmod_integral(1000000);
|
|
break;
|
|
case 6:
|
|
divmod_integral(100000);
|
|
break;
|
|
case 5:
|
|
divmod_integral(10000);
|
|
break;
|
|
case 4:
|
|
divmod_integral(1000);
|
|
break;
|
|
case 3:
|
|
divmod_integral(100);
|
|
break;
|
|
case 2:
|
|
divmod_integral(10);
|
|
break;
|
|
case 1:
|
|
digit = integral;
|
|
integral = 0;
|
|
break;
|
|
default:
|
|
FMT_ASSERT(false, "invalid number of digits");
|
|
}
|
|
--exp;
|
|
auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
|
|
auto result = handler.on_digit(static_cast<char>('0' + digit),
|
|
data::power_of_10_64[exp] << -one.e,
|
|
remainder, error, true);
|
|
if (result != digits::more) return result;
|
|
} while (exp > 0);
|
|
// Generate digits for the fractional part.
|
|
for (;;) {
|
|
fractional *= 10;
|
|
error *= 10;
|
|
char digit = static_cast<char>('0' + (fractional >> -one.e));
|
|
fractional &= one.f - 1;
|
|
--exp;
|
|
auto result = handler.on_digit(digit, one.f, fractional, error, false);
|
|
if (result != digits::more) return result;
|
|
}
|
|
}
|
|
|
|
class bigint {
|
|
private:
|
|
// A bigint is stored as an array of bigits (big digits), with bigit at index
|
|
// 0 being the least significant one.
|
|
using bigit = uint32_t;
|
|
using double_bigit = uint64_t;
|
|
enum { bigits_capacity = 32 };
|
|
basic_memory_buffer<bigit, bigits_capacity> bigits_;
|
|
int exp_;
|
|
|
|
FMT_CONSTEXPR20 bigit operator[](int index) const {
|
|
return bigits_[to_unsigned(index)];
|
|
}
|
|
FMT_CONSTEXPR20 bigit& operator[](int index) {
|
|
return bigits_[to_unsigned(index)];
|
|
}
|
|
|
|
static constexpr const int bigit_bits = num_bits<bigit>();
|
|
|
|
friend struct formatter<bigint>;
|
|
|
|
FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
|
|
auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
|
|
(*this)[index] = static_cast<bigit>(result);
|
|
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
|
|
}
|
|
|
|
FMT_CONSTEXPR20 void remove_leading_zeros() {
|
|
int num_bigits = static_cast<int>(bigits_.size()) - 1;
|
|
while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
|
|
bigits_.resize(to_unsigned(num_bigits + 1));
|
|
}
|
|
|
|
// Computes *this -= other assuming aligned bigints and *this >= other.
|
|
FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
|
|
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
|
|
FMT_ASSERT(compare(*this, other) >= 0, "");
|
|
bigit borrow = 0;
|
|
int i = other.exp_ - exp_;
|
|
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
|
|
subtract_bigits(i, other.bigits_[j], borrow);
|
|
while (borrow > 0) subtract_bigits(i, 0, borrow);
|
|
remove_leading_zeros();
|
|
}
|
|
|
|
FMT_CONSTEXPR20 void multiply(uint32_t value) {
|
|
const double_bigit wide_value = value;
|
|
bigit carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
double_bigit result = bigits_[i] * wide_value + carry;
|
|
bigits_[i] = static_cast<bigit>(result);
|
|
carry = static_cast<bigit>(result >> bigit_bits);
|
|
}
|
|
if (carry != 0) bigits_.push_back(carry);
|
|
}
|
|
|
|
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
|
|
std::is_same<UInt, uint128_t>::value)>
|
|
FMT_CONSTEXPR20 void multiply(UInt value) {
|
|
using half_uint =
|
|
conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
|
|
const int shift = num_bits<half_uint>() - bigit_bits;
|
|
const UInt lower = static_cast<half_uint>(value);
|
|
const UInt upper = value >> num_bits<half_uint>();
|
|
UInt carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
|
|
carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
|
|
(carry >> bigit_bits);
|
|
bigits_[i] = static_cast<bigit>(result);
|
|
}
|
|
while (carry != 0) {
|
|
bigits_.push_back(static_cast<bigit>(carry));
|
|
carry >>= bigit_bits;
|
|
}
|
|
}
|
|
|
|
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
|
|
std::is_same<UInt, uint128_t>::value)>
|
|
FMT_CONSTEXPR20 void assign(UInt n) {
|
|
size_t num_bigits = 0;
|
|
do {
|
|
bigits_[num_bigits++] = static_cast<bigit>(n);
|
|
n >>= bigit_bits;
|
|
} while (n != 0);
|
|
bigits_.resize(num_bigits);
|
|
exp_ = 0;
|
|
}
|
|
|
|
public:
|
|
FMT_CONSTEXPR20 bigint() : exp_(0) {}
|
|
explicit bigint(uint64_t n) { assign(n); }
|
|
|
|
bigint(const bigint&) = delete;
|
|
void operator=(const bigint&) = delete;
|
|
|
|
FMT_CONSTEXPR20 void assign(const bigint& other) {
|
|
auto size = other.bigits_.size();
|
|
bigits_.resize(size);
|
|
auto data = other.bigits_.data();
|
|
std::copy(data, data + size, make_checked(bigits_.data(), size));
|
|
exp_ = other.exp_;
|
|
}
|
|
|
|
template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
|
|
FMT_ASSERT(n > 0, "");
|
|
assign(uint64_or_128_t<Int>(n));
|
|
}
|
|
|
|
FMT_CONSTEXPR20 int num_bigits() const {
|
|
return static_cast<int>(bigits_.size()) + exp_;
|
|
}
|
|
|
|
FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
|
|
FMT_ASSERT(shift >= 0, "");
|
|
exp_ += shift / bigit_bits;
|
|
shift %= bigit_bits;
|
|
if (shift == 0) return *this;
|
|
bigit carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
bigit c = bigits_[i] >> (bigit_bits - shift);
|
|
bigits_[i] = (bigits_[i] << shift) + carry;
|
|
carry = c;
|
|
}
|
|
if (carry != 0) bigits_.push_back(carry);
|
|
return *this;
|
|
}
|
|
|
|
template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
|
|
FMT_ASSERT(value > 0, "");
|
|
multiply(uint32_or_64_or_128_t<Int>(value));
|
|
return *this;
|
|
}
|
|
|
|
friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
|
|
int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
|
|
if (num_lhs_bigits != num_rhs_bigits)
|
|
return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
|
|
int i = static_cast<int>(lhs.bigits_.size()) - 1;
|
|
int j = static_cast<int>(rhs.bigits_.size()) - 1;
|
|
int end = i - j;
|
|
if (end < 0) end = 0;
|
|
for (; i >= end; --i, --j) {
|
|
bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
|
|
if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
|
|
}
|
|
if (i != j) return i > j ? 1 : -1;
|
|
return 0;
|
|
}
|
|
|
|
// Returns compare(lhs1 + lhs2, rhs).
|
|
friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
|
|
const bigint& rhs) {
|
|
auto minimum = [](int a, int b) { return a < b ? a : b; };
|
|
auto maximum = [](int a, int b) { return a > b ? a : b; };
|
|
int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
|
|
int num_rhs_bigits = rhs.num_bigits();
|
|
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
|
|
if (max_lhs_bigits > num_rhs_bigits) return 1;
|
|
auto get_bigit = [](const bigint& n, int i) -> bigit {
|
|
return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
|
|
};
|
|
double_bigit borrow = 0;
|
|
int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
|
|
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
|
|
double_bigit sum =
|
|
static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
|
|
bigit rhs_bigit = get_bigit(rhs, i);
|
|
if (sum > rhs_bigit + borrow) return 1;
|
|
borrow = rhs_bigit + borrow - sum;
|
|
if (borrow > 1) return -1;
|
|
borrow <<= bigit_bits;
|
|
}
|
|
return borrow != 0 ? -1 : 0;
|
|
}
|
|
|
|
// Assigns pow(10, exp) to this bigint.
|
|
FMT_CONSTEXPR20 void assign_pow10(int exp) {
|
|
FMT_ASSERT(exp >= 0, "");
|
|
if (exp == 0) return *this = 1;
|
|
// Find the top bit.
|
|
int bitmask = 1;
|
|
while (exp >= bitmask) bitmask <<= 1;
|
|
bitmask >>= 1;
|
|
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
|
|
// repeated squaring and multiplication.
|
|
*this = 5;
|
|
bitmask >>= 1;
|
|
while (bitmask != 0) {
|
|
square();
|
|
if ((exp & bitmask) != 0) *this *= 5;
|
|
bitmask >>= 1;
|
|
}
|
|
*this <<= exp; // Multiply by pow(2, exp) by shifting.
|
|
}
|
|
|
|
FMT_CONSTEXPR20 void square() {
|
|
int num_bigits = static_cast<int>(bigits_.size());
|
|
int num_result_bigits = 2 * num_bigits;
|
|
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
|
|
bigits_.resize(to_unsigned(num_result_bigits));
|
|
auto sum = uint128_t();
|
|
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
|
|
// Compute bigit at position bigit_index of the result by adding
|
|
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
|
|
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
|
|
// Most terms are multiplied twice which can be optimized in the future.
|
|
sum += static_cast<double_bigit>(n[i]) * n[j];
|
|
}
|
|
(*this)[bigit_index] = static_cast<bigit>(sum);
|
|
sum >>= num_bits<bigit>(); // Compute the carry.
|
|
}
|
|
// Do the same for the top half.
|
|
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
|
|
++bigit_index) {
|
|
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
|
|
sum += static_cast<double_bigit>(n[i++]) * n[j--];
|
|
(*this)[bigit_index] = static_cast<bigit>(sum);
|
|
sum >>= num_bits<bigit>();
|
|
}
|
|
remove_leading_zeros();
|
|
exp_ *= 2;
|
|
}
|
|
|
|
// If this bigint has a bigger exponent than other, adds trailing zero to make
|
|
// exponents equal. This simplifies some operations such as subtraction.
|
|
FMT_CONSTEXPR20 void align(const bigint& other) {
|
|
int exp_difference = exp_ - other.exp_;
|
|
if (exp_difference <= 0) return;
|
|
int num_bigits = static_cast<int>(bigits_.size());
|
|
bigits_.resize(to_unsigned(num_bigits + exp_difference));
|
|
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
|
|
bigits_[j] = bigits_[i];
|
|
std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
|
|
exp_ -= exp_difference;
|
|
}
|
|
|
|
// Divides this bignum by divisor, assigning the remainder to this and
|
|
// returning the quotient.
|
|
FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
|
|
FMT_ASSERT(this != &divisor, "");
|
|
if (compare(*this, divisor) < 0) return 0;
|
|
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
|
|
align(divisor);
|
|
int quotient = 0;
|
|
do {
|
|
subtract_aligned(divisor);
|
|
++quotient;
|
|
} while (compare(*this, divisor) >= 0);
|
|
return quotient;
|
|
}
|
|
};
|
|
|
|
// format_dragon flags.
|
|
enum dragon {
|
|
predecessor_closer = 1,
|
|
fixup = 2, // Run fixup to correct exp10 which can be off by one.
|
|
fixed = 4,
|
|
};
|
|
|
|
// Formats a floating-point number using a variation of the Fixed-Precision
|
|
// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
|
|
// https://fmt.dev/papers/p372-steele.pdf.
|
|
FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
|
|
unsigned flags, int num_digits,
|
|
buffer<char>& buf, int& exp10) {
|
|
bigint numerator; // 2 * R in (FPP)^2.
|
|
bigint denominator; // 2 * S in (FPP)^2.
|
|
// lower and upper are differences between value and corresponding boundaries.
|
|
bigint lower; // (M^- in (FPP)^2).
|
|
bigint upper_store; // upper's value if different from lower.
|
|
bigint* upper = nullptr; // (M^+ in (FPP)^2).
|
|
// Shift numerator and denominator by an extra bit or two (if lower boundary
|
|
// is closer) to make lower and upper integers. This eliminates multiplication
|
|
// by 2 during later computations.
|
|
bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
|
|
int shift = is_predecessor_closer ? 2 : 1;
|
|
if (value.e >= 0) {
|
|
numerator = value.f;
|
|
numerator <<= value.e + shift;
|
|
lower = 1;
|
|
lower <<= value.e;
|
|
if (is_predecessor_closer) {
|
|
upper_store = 1;
|
|
upper_store <<= value.e + 1;
|
|
upper = &upper_store;
|
|
}
|
|
denominator.assign_pow10(exp10);
|
|
denominator <<= shift;
|
|
} else if (exp10 < 0) {
|
|
numerator.assign_pow10(-exp10);
|
|
lower.assign(numerator);
|
|
if (is_predecessor_closer) {
|
|
upper_store.assign(numerator);
|
|
upper_store <<= 1;
|
|
upper = &upper_store;
|
|
}
|
|
numerator *= value.f;
|
|
numerator <<= shift;
|
|
denominator = 1;
|
|
denominator <<= shift - value.e;
|
|
} else {
|
|
numerator = value.f;
|
|
numerator <<= shift;
|
|
denominator.assign_pow10(exp10);
|
|
denominator <<= shift - value.e;
|
|
lower = 1;
|
|
if (is_predecessor_closer) {
|
|
upper_store = 1ULL << 1;
|
|
upper = &upper_store;
|
|
}
|
|
}
|
|
int even = static_cast<int>((value.f & 1) == 0);
|
|
if (!upper) upper = &lower;
|
|
if ((flags & dragon::fixup) != 0) {
|
|
if (add_compare(numerator, *upper, denominator) + even <= 0) {
|
|
--exp10;
|
|
numerator *= 10;
|
|
if (num_digits < 0) {
|
|
lower *= 10;
|
|
if (upper != &lower) *upper *= 10;
|
|
}
|
|
}
|
|
if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
|
|
}
|
|
// Invariant: value == (numerator / denominator) * pow(10, exp10).
|
|
if (num_digits < 0) {
|
|
// Generate the shortest representation.
|
|
num_digits = 0;
|
|
char* data = buf.data();
|
|
for (;;) {
|
|
int digit = numerator.divmod_assign(denominator);
|
|
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
|
|
// numerator + upper >[=] pow10:
|
|
bool high = add_compare(numerator, *upper, denominator) + even > 0;
|
|
data[num_digits++] = static_cast<char>('0' + digit);
|
|
if (low || high) {
|
|
if (!low) {
|
|
++data[num_digits - 1];
|
|
} else if (high) {
|
|
int result = add_compare(numerator, numerator, denominator);
|
|
// Round half to even.
|
|
if (result > 0 || (result == 0 && (digit % 2) != 0))
|
|
++data[num_digits - 1];
|
|
}
|
|
buf.try_resize(to_unsigned(num_digits));
|
|
exp10 -= num_digits - 1;
|
|
return;
|
|
}
|
|
numerator *= 10;
|
|
lower *= 10;
|
|
if (upper != &lower) *upper *= 10;
|
|
}
|
|
}
|
|
// Generate the given number of digits.
|
|
exp10 -= num_digits - 1;
|
|
if (num_digits == 0) {
|
|
denominator *= 10;
|
|
auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
|
|
buf.push_back(digit);
|
|
return;
|
|
}
|
|
buf.try_resize(to_unsigned(num_digits));
|
|
for (int i = 0; i < num_digits - 1; ++i) {
|
|
int digit = numerator.divmod_assign(denominator);
|
|
buf[i] = static_cast<char>('0' + digit);
|
|
numerator *= 10;
|
|
}
|
|
int digit = numerator.divmod_assign(denominator);
|
|
auto result = add_compare(numerator, numerator, denominator);
|
|
if (result > 0 || (result == 0 && (digit % 2) != 0)) {
|
|
if (digit == 9) {
|
|
const auto overflow = '0' + 10;
|
|
buf[num_digits - 1] = overflow;
|
|
// Propagate the carry.
|
|
for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
|
|
buf[i] = '0';
|
|
++buf[i - 1];
|
|
}
|
|
if (buf[0] == overflow) {
|
|
buf[0] = '1';
|
|
++exp10;
|
|
}
|
|
return;
|
|
}
|
|
++digit;
|
|
}
|
|
buf[num_digits - 1] = static_cast<char>('0' + digit);
|
|
}
|
|
|
|
// Formats a floating-point number using the hexfloat format.
|
|
template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
|
|
FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
|
|
float_specs specs, buffer<char>& buf) {
|
|
// float is passed as double to reduce the number of instantiations and to
|
|
// simplify implementation.
|
|
static_assert(!std::is_same<Float, float>::value, "");
|
|
|
|
using info = dragonbox::float_info<Float>;
|
|
|
|
// Assume Float is in the format [sign][exponent][significand].
|
|
using carrier_uint = typename info::carrier_uint;
|
|
|
|
constexpr auto num_float_significand_bits =
|
|
detail::num_significand_bits<Float>();
|
|
|
|
basic_fp<carrier_uint> f(value);
|
|
f.e += num_float_significand_bits;
|
|
if (!has_implicit_bit<Float>()) --f.e;
|
|
|
|
constexpr auto num_fraction_bits =
|
|
num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
|
|
constexpr auto num_xdigits = (num_fraction_bits + 3) / 4;
|
|
|
|
constexpr auto leading_shift = ((num_xdigits - 1) * 4);
|
|
const auto leading_mask = carrier_uint(0xF) << leading_shift;
|
|
const auto leading_xdigit =
|
|
static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
|
|
if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
|
|
|
|
int print_xdigits = num_xdigits - 1;
|
|
if (precision >= 0 && print_xdigits > precision) {
|
|
const int shift = ((print_xdigits - precision - 1) * 4);
|
|
const auto mask = carrier_uint(0xF) << shift;
|
|
const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
|
|
|
|
if (v >= 8) {
|
|
const auto inc = carrier_uint(1) << (shift + 4);
|
|
f.f += inc;
|
|
f.f &= ~(inc - 1);
|
|
}
|
|
|
|
// Check long double overflow
|
|
if (!has_implicit_bit<Float>()) {
|
|
const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
|
|
if ((f.f & implicit_bit) == implicit_bit) {
|
|
f.f >>= 4;
|
|
f.e += 4;
|
|
}
|
|
}
|
|
|
|
print_xdigits = precision;
|
|
}
|
|
|
|
char xdigits[num_bits<carrier_uint>() / 4];
|
|
detail::fill_n(xdigits, sizeof(xdigits), '0');
|
|
format_uint<4>(xdigits, f.f, num_xdigits, specs.upper);
|
|
|
|
// Remove zero tail
|
|
while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
|
|
|
|
buf.push_back('0');
|
|
buf.push_back(specs.upper ? 'X' : 'x');
|
|
buf.push_back(xdigits[0]);
|
|
if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision)
|
|
buf.push_back('.');
|
|
buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
|
|
for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0');
|
|
|
|
buf.push_back(specs.upper ? 'P' : 'p');
|
|
|
|
uint32_t abs_e;
|
|
if (f.e < 0) {
|
|
buf.push_back('-');
|
|
abs_e = static_cast<uint32_t>(-f.e);
|
|
} else {
|
|
buf.push_back('+');
|
|
abs_e = static_cast<uint32_t>(f.e);
|
|
}
|
|
format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
|
|
}
|
|
|
|
template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
|
|
FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
|
|
float_specs specs, buffer<char>& buf) {
|
|
format_hexfloat(static_cast<double>(value), precision, specs, buf);
|
|
}
|
|
|
|
template <typename Float>
|
|
FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
|
|
buffer<char>& buf) -> int {
|
|
// float is passed as double to reduce the number of instantiations.
|
|
static_assert(!std::is_same<Float, float>::value, "");
|
|
FMT_ASSERT(value >= 0, "value is negative");
|
|
auto converted_value = convert_float(value);
|
|
|
|
const bool fixed = specs.format == float_format::fixed;
|
|
if (value <= 0) { // <= instead of == to silence a warning.
|
|
if (precision <= 0 || !fixed) {
|
|
buf.push_back('0');
|
|
return 0;
|
|
}
|
|
buf.try_resize(to_unsigned(precision));
|
|
fill_n(buf.data(), precision, '0');
|
|
return -precision;
|
|
}
|
|
|
|
int exp = 0;
|
|
bool use_dragon = true;
|
|
unsigned dragon_flags = 0;
|
|
if (!is_fast_float<Float>()) {
|
|
const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
|
|
using info = dragonbox::float_info<decltype(converted_value)>;
|
|
const auto f = basic_fp<typename info::carrier_uint>(converted_value);
|
|
// Compute exp, an approximate power of 10, such that
|
|
// 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
|
|
// This is based on log10(value) == log2(value) / log2(10) and approximation
|
|
// of log2(value) by e + num_fraction_bits idea from double-conversion.
|
|
exp = static_cast<int>(
|
|
std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
|
|
dragon_flags = dragon::fixup;
|
|
} else if (!is_constant_evaluated() && precision < 0) {
|
|
// Use Dragonbox for the shortest format.
|
|
if (specs.binary32) {
|
|
auto dec = dragonbox::to_decimal(static_cast<float>(value));
|
|
write<char>(buffer_appender<char>(buf), dec.significand);
|
|
return dec.exponent;
|
|
}
|
|
auto dec = dragonbox::to_decimal(static_cast<double>(value));
|
|
write<char>(buffer_appender<char>(buf), dec.significand);
|
|
return dec.exponent;
|
|
} else if (is_constant_evaluated()) {
|
|
// Use Grisu + Dragon4 for the given precision:
|
|
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
|
|
const int min_exp = -60; // alpha in Grisu.
|
|
int cached_exp10 = 0; // K in Grisu.
|
|
fp normalized = normalize(fp(converted_value));
|
|
const auto cached_pow = get_cached_power(
|
|
min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
|
|
normalized = normalized * cached_pow;
|
|
gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
|
|
if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
|
|
!is_constant_evaluated()) {
|
|
exp += handler.exp10;
|
|
buf.try_resize(to_unsigned(handler.size));
|
|
use_dragon = false;
|
|
} else {
|
|
exp += handler.size - cached_exp10 - 1;
|
|
precision = handler.precision;
|
|
}
|
|
} else {
|
|
// Extract significand bits and exponent bits.
|
|
using info = dragonbox::float_info<double>;
|
|
auto br = bit_cast<uint64_t>(static_cast<double>(value));
|
|
|
|
const uint64_t significand_mask =
|
|
(static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
|
|
uint64_t significand = (br & significand_mask);
|
|
int exponent = static_cast<int>((br & exponent_mask<double>()) >>
|
|
num_significand_bits<double>());
|
|
|
|
if (exponent != 0) { // Check if normal.
|
|
exponent -= exponent_bias<double>() + num_significand_bits<double>();
|
|
significand |=
|
|
(static_cast<uint64_t>(1) << num_significand_bits<double>());
|
|
significand <<= 1;
|
|
} else {
|
|
// Normalize subnormal inputs.
|
|
FMT_ASSERT(significand != 0, "zeros should not appear hear");
|
|
int shift = countl_zero(significand);
|
|
FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
|
|
"");
|
|
shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
|
|
exponent = (std::numeric_limits<double>::min_exponent -
|
|
num_significand_bits<double>()) -
|
|
shift;
|
|
significand <<= shift;
|
|
}
|
|
|
|
// Compute the first several nonzero decimal significand digits.
|
|
// We call the number we get the first segment.
|
|
const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
|
|
exp = -k;
|
|
const int beta = exponent + dragonbox::floor_log2_pow10(k);
|
|
uint64_t first_segment;
|
|
bool has_more_segments;
|
|
int digits_in_the_first_segment;
|
|
{
|
|
const auto r = dragonbox::umul192_upper128(
|
|
significand << beta, dragonbox::get_cached_power(k));
|
|
first_segment = r.high();
|
|
has_more_segments = r.low() != 0;
|
|
|
|
// The first segment can have 18 ~ 19 digits.
|
|
if (first_segment >= 1000000000000000000ULL) {
|
|
digits_in_the_first_segment = 19;
|
|
} else {
|
|
// When it is of 18-digits, we align it to 19-digits by adding a bogus
|
|
// zero at the end.
|
|
digits_in_the_first_segment = 18;
|
|
first_segment *= 10;
|
|
}
|
|
}
|
|
|
|
// Compute the actual number of decimal digits to print.
|
|
if (fixed) {
|
|
adjust_precision(precision, exp + digits_in_the_first_segment);
|
|
}
|
|
|
|
// Use Dragon4 only when there might be not enough digits in the first
|
|
// segment.
|
|
if (digits_in_the_first_segment > precision) {
|
|
use_dragon = false;
|
|
|
|
if (precision <= 0) {
|
|
exp += digits_in_the_first_segment;
|
|
|
|
if (precision < 0) {
|
|
// Nothing to do, since all we have are just leading zeros.
|
|
buf.try_resize(0);
|
|
} else {
|
|
// We may need to round-up.
|
|
buf.try_resize(1);
|
|
if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
|
|
5000000000000000000ULL) {
|
|
buf[0] = '1';
|
|
} else {
|
|
buf[0] = '0';
|
|
}
|
|
}
|
|
} // precision <= 0
|
|
else {
|
|
exp += digits_in_the_first_segment - precision;
|
|
|
|
// When precision > 0, we divide the first segment into three
|
|
// subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
|
|
// in 32-bits which usually allows faster calculation than in
|
|
// 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
|
|
// division-by-constant for large 64-bit divisors, we do it here
|
|
// manually. The magic number 7922816251426433760 below is equal to
|
|
// ceil(2^(64+32) / 10^10).
|
|
const uint32_t first_subsegment = static_cast<uint32_t>(
|
|
dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
|
|
32);
|
|
const uint64_t second_third_subsegments =
|
|
first_segment - first_subsegment * 10000000000ULL;
|
|
|
|
uint64_t prod;
|
|
uint32_t digits;
|
|
bool should_round_up;
|
|
int number_of_digits_to_print = precision > 9 ? 9 : precision;
|
|
|
|
// Print a 9-digits subsegment, either the first or the second.
|
|
auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
|
|
int number_of_digits_printed = 0;
|
|
|
|
// If we want to print an odd number of digits from the subsegment,
|
|
if ((number_of_digits_to_print & 1) != 0) {
|
|
// Convert to 64-bit fixed-point fractional form with 1-digit
|
|
// integer part. The magic number 720575941 is a good enough
|
|
// approximation of 2^(32 + 24) / 10^8; see
|
|
// https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
|
|
// for details.
|
|
prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
|
|
digits = static_cast<uint32_t>(prod >> 32);
|
|
*buffer = static_cast<char>('0' + digits);
|
|
number_of_digits_printed++;
|
|
}
|
|
// If we want to print an even number of digits from the
|
|
// first_subsegment,
|
|
else {
|
|
// Convert to 64-bit fixed-point fractional form with 2-digits
|
|
// integer part. The magic number 450359963 is a good enough
|
|
// approximation of 2^(32 + 20) / 10^7; see
|
|
// https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
|
|
// for details.
|
|
prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
|
|
digits = static_cast<uint32_t>(prod >> 32);
|
|
copy2(buffer, digits2(digits));
|
|
number_of_digits_printed += 2;
|
|
}
|
|
|
|
// Print all digit pairs.
|
|
while (number_of_digits_printed < number_of_digits_to_print) {
|
|
prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
|
|
digits = static_cast<uint32_t>(prod >> 32);
|
|
copy2(buffer + number_of_digits_printed, digits2(digits));
|
|
number_of_digits_printed += 2;
|
|
}
|
|
};
|
|
|
|
// Print first subsegment.
|
|
print_subsegment(first_subsegment, buf.data());
|
|
|
|
// Perform rounding if the first subsegment is the last subsegment to
|
|
// print.
|
|
if (precision <= 9) {
|
|
// Rounding inside the subsegment.
|
|
// We round-up if:
|
|
// - either the fractional part is strictly larger than 1/2, or
|
|
// - the fractional part is exactly 1/2 and the last digit is odd.
|
|
// We rely on the following observations:
|
|
// - If fractional_part >= threshold, then the fractional part is
|
|
// strictly larger than 1/2.
|
|
// - If the MSB of fractional_part is set, then the fractional part
|
|
// must be at least 1/2.
|
|
// - When the MSB of fractional_part is set, either
|
|
// second_third_subsegments being nonzero or has_more_segments
|
|
// being true means there are further digits not printed, so the
|
|
// fractional part is strictly larger than 1/2.
|
|
if (precision < 9) {
|
|
uint32_t fractional_part = static_cast<uint32_t>(prod);
|
|
should_round_up = fractional_part >=
|
|
data::fractional_part_rounding_thresholds
|
|
[8 - number_of_digits_to_print] ||
|
|
((fractional_part >> 31) &
|
|
((digits & 1) | (second_third_subsegments != 0) |
|
|
has_more_segments)) != 0;
|
|
}
|
|
// Rounding at the subsegment boundary.
|
|
// In this case, the fractional part is at least 1/2 if and only if
|
|
// second_third_subsegments >= 5000000000ULL, and is strictly larger
|
|
// than 1/2 if we further have either second_third_subsegments >
|
|
// 5000000000ULL or has_more_segments == true.
|
|
else {
|
|
should_round_up = second_third_subsegments > 5000000000ULL ||
|
|
(second_third_subsegments == 5000000000ULL &&
|
|
((digits & 1) != 0 || has_more_segments));
|
|
}
|
|
}
|
|
// Otherwise, print the second subsegment.
|
|
else {
|
|
// Compilers are not aware of how to leverage the maximum value of
|
|
// second_third_subsegments to find out a better magic number which
|
|
// allows us to eliminate an additional shift. 1844674407370955162 =
|
|
// ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
|
|
const uint32_t second_subsegment =
|
|
static_cast<uint32_t>(dragonbox::umul128_upper64(
|
|
second_third_subsegments, 1844674407370955162ULL));
|
|
const uint32_t third_subsegment =
|
|
static_cast<uint32_t>(second_third_subsegments) -
|
|
second_subsegment * 10;
|
|
|
|
number_of_digits_to_print = precision - 9;
|
|
print_subsegment(second_subsegment, buf.data() + 9);
|
|
|
|
// Rounding inside the subsegment.
|
|
if (precision < 18) {
|
|
// The condition third_subsegment != 0 implies that the segment was
|
|
// of 19 digits, so in this case the third segment should be
|
|
// consisting of a genuine digit from the input.
|
|
uint32_t fractional_part = static_cast<uint32_t>(prod);
|
|
should_round_up = fractional_part >=
|
|
data::fractional_part_rounding_thresholds
|
|
[8 - number_of_digits_to_print] ||
|
|
((fractional_part >> 31) &
|
|
((digits & 1) | (third_subsegment != 0) |
|
|
has_more_segments)) != 0;
|
|
}
|
|
// Rounding at the subsegment boundary.
|
|
else {
|
|
// In this case, the segment must be of 19 digits, thus
|
|
// the third subsegment should be consisting of a genuine digit from
|
|
// the input.
|
|
should_round_up = third_subsegment > 5 ||
|
|
(third_subsegment == 5 &&
|
|
((digits & 1) != 0 || has_more_segments));
|
|
}
|
|
}
|
|
|
|
// Round-up if necessary.
|
|
if (should_round_up) {
|
|
++buf[precision - 1];
|
|
for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
|
|
buf[i] = '0';
|
|
++buf[i - 1];
|
|
}
|
|
if (buf[0] > '9') {
|
|
buf[0] = '1';
|
|
if (fixed)
|
|
buf[precision++] = '0';
|
|
else
|
|
++exp;
|
|
}
|
|
}
|
|
buf.try_resize(to_unsigned(precision));
|
|
}
|
|
} // if (digits_in_the_first_segment > precision)
|
|
else {
|
|
// Adjust the exponent for its use in Dragon4.
|
|
exp += digits_in_the_first_segment - 1;
|
|
}
|
|
}
|
|
if (use_dragon) {
|
|
auto f = basic_fp<uint128_t>();
|
|
bool is_predecessor_closer = specs.binary32
|
|
? f.assign(static_cast<float>(value))
|
|
: f.assign(converted_value);
|
|
if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
|
|
if (fixed) dragon_flags |= dragon::fixed;
|
|
// Limit precision to the maximum possible number of significant digits in
|
|
// an IEEE754 double because we don't need to generate zeros.
|
|
const int max_double_digits = 767;
|
|
if (precision > max_double_digits) precision = max_double_digits;
|
|
format_dragon(f, dragon_flags, precision, buf, exp);
|
|
}
|
|
if (!fixed && !specs.showpoint) {
|
|
// Remove trailing zeros.
|
|
auto num_digits = buf.size();
|
|
while (num_digits > 0 && buf[num_digits - 1] == '0') {
|
|
--num_digits;
|
|
++exp;
|
|
}
|
|
buf.try_resize(num_digits);
|
|
}
|
|
return exp;
|
|
}
|
|
template <typename Char, typename OutputIt, typename T>
|
|
FMT_CONSTEXPR20 auto write_float(OutputIt out, T value,
|
|
format_specs<Char> specs, locale_ref loc)
|
|
-> OutputIt {
|
|
float_specs fspecs = parse_float_type_spec(specs);
|
|
fspecs.sign = specs.sign;
|
|
if (detail::signbit(value)) { // value < 0 is false for NaN so use signbit.
|
|
fspecs.sign = sign::minus;
|
|
value = -value;
|
|
} else if (fspecs.sign == sign::minus) {
|
|
fspecs.sign = sign::none;
|
|
}
|
|
|
|
if (!detail::isfinite(value))
|
|
return write_nonfinite(out, detail::isnan(value), specs, fspecs);
|
|
|
|
if (specs.align == align::numeric && fspecs.sign) {
|
|
auto it = reserve(out, 1);
|
|
*it++ = detail::sign<Char>(fspecs.sign);
|
|
out = base_iterator(out, it);
|
|
fspecs.sign = sign::none;
|
|
if (specs.width != 0) --specs.width;
|
|
}
|
|
|
|
memory_buffer buffer;
|
|
if (fspecs.format == float_format::hex) {
|
|
if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
|
|
format_hexfloat(convert_float(value), specs.precision, fspecs, buffer);
|
|
return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
|
|
specs);
|
|
}
|
|
int precision = specs.precision >= 0 || specs.type == presentation_type::none
|
|
? specs.precision
|
|
: 6;
|
|
if (fspecs.format == float_format::exp) {
|
|
if (precision == max_value<int>())
|
|
throw_format_error("number is too big");
|
|
else
|
|
++precision;
|
|
} else if (fspecs.format != float_format::fixed && precision == 0) {
|
|
precision = 1;
|
|
}
|
|
if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
|
|
int exp = format_float(convert_float(value), precision, fspecs, buffer);
|
|
fspecs.precision = precision;
|
|
auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
|
|
return write_float(out, f, specs, fspecs, loc);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_floating_point<T>::value)>
|
|
FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs,
|
|
locale_ref loc = {}) -> OutputIt {
|
|
if (const_check(!is_supported_floating_point(value))) return out;
|
|
return specs.localized && write_loc(out, value, specs, loc)
|
|
? out
|
|
: write_float(out, value, specs, loc);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_fast_float<T>::value)>
|
|
FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
|
|
if (is_constant_evaluated()) return write(out, value, format_specs<Char>());
|
|
if (const_check(!is_supported_floating_point(value))) return out;
|
|
|
|
auto fspecs = float_specs();
|
|
if (detail::signbit(value)) {
|
|
fspecs.sign = sign::minus;
|
|
value = -value;
|
|
}
|
|
|
|
constexpr auto specs = format_specs<Char>();
|
|
using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
|
|
using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
|
|
floaty_uint mask = exponent_mask<floaty>();
|
|
if ((bit_cast<floaty_uint>(value) & mask) == mask)
|
|
return write_nonfinite(out, std::isnan(value), specs, fspecs);
|
|
|
|
auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
|
|
return write_float(out, dec, specs, fspecs, {});
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_floating_point<T>::value &&
|
|
!is_fast_float<T>::value)>
|
|
inline auto write(OutputIt out, T value) -> OutputIt {
|
|
return write(out, value, format_specs<Char>());
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {})
|
|
-> OutputIt {
|
|
FMT_ASSERT(false, "");
|
|
return out;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
|
|
-> OutputIt {
|
|
auto it = reserve(out, value.size());
|
|
it = copy_str_noinline<Char>(value.begin(), value.end(), it);
|
|
return base_iterator(out, it);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(is_string<T>::value)>
|
|
constexpr auto write(OutputIt out, const T& value) -> OutputIt {
|
|
return write<Char>(out, to_string_view(value));
|
|
}
|
|
|
|
// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
|
|
template <
|
|
typename Char, typename OutputIt, typename T,
|
|
bool check =
|
|
std::is_enum<T>::value && !std::is_same<T, Char>::value &&
|
|
mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
|
|
type::custom_type,
|
|
FMT_ENABLE_IF(check)>
|
|
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
|
|
return write<Char>(out, static_cast<underlying_t<T>>(value));
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(std::is_same<T, bool>::value)>
|
|
FMT_CONSTEXPR auto write(OutputIt out, T value,
|
|
const format_specs<Char>& specs = {}, locale_ref = {})
|
|
-> OutputIt {
|
|
return specs.type != presentation_type::none &&
|
|
specs.type != presentation_type::string
|
|
? write(out, value ? 1 : 0, specs, {})
|
|
: write_bytes(out, value ? "true" : "false", specs);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
|
|
auto it = reserve(out, 1);
|
|
*it++ = value;
|
|
return base_iterator(out, it);
|
|
}
|
|
|
|
template <typename Char, typename OutputIt>
|
|
FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
|
|
-> OutputIt {
|
|
if (value) return write(out, basic_string_view<Char>(value));
|
|
throw_format_error("string pointer is null");
|
|
return out;
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
FMT_ENABLE_IF(std::is_same<T, void>::value)>
|
|
auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {},
|
|
locale_ref = {}) -> OutputIt {
|
|
return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
|
|
}
|
|
|
|
// A write overload that handles implicit conversions.
|
|
template <typename Char, typename OutputIt, typename T,
|
|
typename Context = basic_format_context<OutputIt, Char>>
|
|
FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
|
|
std::is_class<T>::value && !is_string<T>::value &&
|
|
!is_floating_point<T>::value && !std::is_same<T, Char>::value &&
|
|
!std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map(
|
|
value))>>::value,
|
|
OutputIt> {
|
|
return write<Char>(out, arg_mapper<Context>().map(value));
|
|
}
|
|
|
|
template <typename Char, typename OutputIt, typename T,
|
|
typename Context = basic_format_context<OutputIt, Char>>
|
|
FMT_CONSTEXPR auto write(OutputIt out, const T& value)
|
|
-> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
|
|
OutputIt> {
|
|
auto ctx = Context(out, {}, {});
|
|
return typename Context::template formatter_type<T>().format(value, ctx);
|
|
}
|
|
|
|
// An argument visitor that formats the argument and writes it via the output
|
|
// iterator. It's a class and not a generic lambda for compatibility with C++11.
|
|
template <typename Char> struct default_arg_formatter {
|
|
using iterator = buffer_appender<Char>;
|
|
using context = buffer_context<Char>;
|
|
|
|
iterator out;
|
|
basic_format_args<context> args;
|
|
locale_ref loc;
|
|
|
|
template <typename T> auto operator()(T value) -> iterator {
|
|
return write<Char>(out, value);
|
|
}
|
|
auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
|
|
basic_format_parse_context<Char> parse_ctx({});
|
|
context format_ctx(out, args, loc);
|
|
h.format(parse_ctx, format_ctx);
|
|
return format_ctx.out();
|
|
}
|
|
};
|
|
|
|
template <typename Char> struct arg_formatter {
|
|
using iterator = buffer_appender<Char>;
|
|
using context = buffer_context<Char>;
|
|
|
|
iterator out;
|
|
const format_specs<Char>& specs;
|
|
locale_ref locale;
|
|
|
|
template <typename T>
|
|
FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
|
|
return detail::write(out, value, specs, locale);
|
|
}
|
|
auto operator()(typename basic_format_arg<context>::handle) -> iterator {
|
|
// User-defined types are handled separately because they require access
|
|
// to the parse context.
|
|
return out;
|
|
}
|
|
};
|
|
|
|
template <typename Char> struct custom_formatter {
|
|
basic_format_parse_context<Char>& parse_ctx;
|
|
buffer_context<Char>& ctx;
|
|
|
|
void operator()(
|
|
typename basic_format_arg<buffer_context<Char>>::handle h) const {
|
|
h.format(parse_ctx, ctx);
|
|
}
|
|
template <typename T> void operator()(T) const {}
|
|
};
|
|
|
|
template <typename ErrorHandler> class width_checker {
|
|
public:
|
|
explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}
|
|
|
|
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
|
|
FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
|
|
if (is_negative(value)) handler_.on_error("negative width");
|
|
return static_cast<unsigned long long>(value);
|
|
}
|
|
|
|
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
|
|
FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
|
|
handler_.on_error("width is not integer");
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
ErrorHandler& handler_;
|
|
};
|
|
|
|
template <typename ErrorHandler> class precision_checker {
|
|
public:
|
|
explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}
|
|
|
|
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
|
|
FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
|
|
if (is_negative(value)) handler_.on_error("negative precision");
|
|
return static_cast<unsigned long long>(value);
|
|
}
|
|
|
|
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
|
|
FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
|
|
handler_.on_error("precision is not integer");
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
ErrorHandler& handler_;
|
|
};
|
|
|
|
template <template <typename> class Handler, typename FormatArg,
|
|
typename ErrorHandler>
|
|
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
|
|
unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
|
|
if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
|
|
return static_cast<int>(value);
|
|
}
|
|
|
|
template <typename Context, typename ID>
|
|
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
|
|
typename Context::format_arg {
|
|
auto arg = ctx.arg(id);
|
|
if (!arg) ctx.on_error("argument not found");
|
|
return arg;
|
|
}
|
|
|
|
template <template <typename> class Handler, typename Context>
|
|
FMT_CONSTEXPR void handle_dynamic_spec(int& value,
|
|
arg_ref<typename Context::char_type> ref,
|
|
Context& ctx) {
|
|
switch (ref.kind) {
|
|
case arg_id_kind::none:
|
|
break;
|
|
case arg_id_kind::index:
|
|
value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index),
|
|
ctx.error_handler());
|
|
break;
|
|
case arg_id_kind::name:
|
|
value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name),
|
|
ctx.error_handler());
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if FMT_USE_USER_DEFINED_LITERALS
|
|
template <typename Char> struct udl_formatter {
|
|
basic_string_view<Char> str;
|
|
|
|
template <typename... T>
|
|
auto operator()(T&&... args) const -> std::basic_string<Char> {
|
|
return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...));
|
|
}
|
|
};
|
|
|
|
# if FMT_USE_NONTYPE_TEMPLATE_ARGS
|
|
template <typename T, typename Char, size_t N,
|
|
fmt::detail_exported::fixed_string<Char, N> Str>
|
|
struct statically_named_arg : view {
|
|
static constexpr auto name = Str.data;
|
|
|
|
const T& value;
|
|
statically_named_arg(const T& v) : value(v) {}
|
|
};
|
|
|
|
template <typename T, typename Char, size_t N,
|
|
fmt::detail_exported::fixed_string<Char, N> Str>
|
|
struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
|
|
|
|
template <typename T, typename Char, size_t N,
|
|
fmt::detail_exported::fixed_string<Char, N> Str>
|
|
struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
|
|
: std::true_type {};
|
|
|
|
template <typename Char, size_t N,
|
|
fmt::detail_exported::fixed_string<Char, N> Str>
|
|
struct udl_arg {
|
|
template <typename T> auto operator=(T&& value) const {
|
|
return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
|
|
}
|
|
};
|
|
# else
|
|
template <typename Char> struct udl_arg {
|
|
const Char* str;
|
|
|
|
template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
|
|
return {str, std::forward<T>(value)};
|
|
}
|
|
};
|
|
# endif
|
|
#endif // FMT_USE_USER_DEFINED_LITERALS
|
|
|
|
template <typename Locale, typename Char>
|
|
auto vformat(const Locale& loc, basic_string_view<Char> fmt,
|
|
basic_format_args<buffer_context<type_identity_t<Char>>> args)
|
|
-> std::basic_string<Char> {
|
|
auto buf = basic_memory_buffer<Char>();
|
|
detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
|
|
return {buf.data(), buf.size()};
|
|
}
|
|
|
|
using format_func = void (*)(detail::buffer<char>&, int, const char*);
|
|
|
|
FMT_API void format_error_code(buffer<char>& out, int error_code,
|
|
string_view message) noexcept;
|
|
|
|
FMT_API void report_error(format_func func, int error_code,
|
|
const char* message) noexcept;
|
|
FMT_END_DETAIL_NAMESPACE
|
|
|
|
FMT_API auto vsystem_error(int error_code, string_view format_str,
|
|
format_args args) -> std::system_error;
|
|
|
|
/**
|
|
\rst
|
|
Constructs :class:`std::system_error` with a message formatted with
|
|
``fmt::format(fmt, args...)``.
|
|
*error_code* is a system error code as given by ``errno``.
|
|
|
|
**Example**::
|
|
|
|
// This throws std::system_error with the description
|
|
// cannot open file 'madeup': No such file or directory
|
|
// or similar (system message may vary).
|
|
const char* filename = "madeup";
|
|
std::FILE* file = std::fopen(filename, "r");
|
|
if (!file)
|
|
throw fmt::system_error(errno, "cannot open file '{}'", filename);
|
|
\endrst
|
|
*/
|
|
template <typename... T>
|
|
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
|
|
-> std::system_error {
|
|
return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Formats an error message for an error returned by an operating system or a
|
|
language runtime, for example a file opening error, and writes it to *out*.
|
|
The format is the same as the one used by ``std::system_error(ec, message)``
|
|
where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
|
|
It is implementation-defined but normally looks like:
|
|
|
|
.. parsed-literal::
|
|
*<message>*: *<system-message>*
|
|
|
|
where *<message>* is the passed message and *<system-message>* is the system
|
|
message corresponding to the error code.
|
|
*error_code* is a system error code as given by ``errno``.
|
|
\endrst
|
|
*/
|
|
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
|
|
const char* message) noexcept;
|
|
|
|
// Reports a system error without throwing an exception.
|
|
// Can be used to report errors from destructors.
|
|
FMT_API void report_system_error(int error_code, const char* message) noexcept;
|
|
|
|
/** Fast integer formatter. */
|
|
class format_int {
|
|
private:
|
|
// Buffer should be large enough to hold all digits (digits10 + 1),
|
|
// a sign and a null character.
|
|
enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
|
|
mutable char buffer_[buffer_size];
|
|
char* str_;
|
|
|
|
template <typename UInt> auto format_unsigned(UInt value) -> char* {
|
|
auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
|
|
return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
|
|
}
|
|
|
|
template <typename Int> auto format_signed(Int value) -> char* {
|
|
auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
|
|
bool negative = value < 0;
|
|
if (negative) abs_value = 0 - abs_value;
|
|
auto begin = format_unsigned(abs_value);
|
|
if (negative) *--begin = '-';
|
|
return begin;
|
|
}
|
|
|
|
public:
|
|
explicit format_int(int value) : str_(format_signed(value)) {}
|
|
explicit format_int(long value) : str_(format_signed(value)) {}
|
|
explicit format_int(long long value) : str_(format_signed(value)) {}
|
|
explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
|
|
explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
|
|
explicit format_int(unsigned long long value)
|
|
: str_(format_unsigned(value)) {}
|
|
|
|
/** Returns the number of characters written to the output buffer. */
|
|
auto size() const -> size_t {
|
|
return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
|
|
}
|
|
|
|
/**
|
|
Returns a pointer to the output buffer content. No terminating null
|
|
character is appended.
|
|
*/
|
|
auto data() const -> const char* { return str_; }
|
|
|
|
/**
|
|
Returns a pointer to the output buffer content with terminating null
|
|
character appended.
|
|
*/
|
|
auto c_str() const -> const char* {
|
|
buffer_[buffer_size - 1] = '\0';
|
|
return str_;
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Returns the content of the output buffer as an ``std::string``.
|
|
\endrst
|
|
*/
|
|
auto str() const -> std::string { return std::string(str_, size()); }
|
|
};
|
|
|
|
template <typename T, typename Char>
|
|
struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
|
|
: private formatter<detail::format_as_t<T>> {
|
|
using base = formatter<detail::format_as_t<T>>;
|
|
using base::parse;
|
|
|
|
template <typename FormatContext>
|
|
auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
|
|
return base::format(format_as(value), ctx);
|
|
}
|
|
};
|
|
|
|
template <typename Char>
|
|
struct formatter<void*, Char> : formatter<const void*, Char> {
|
|
template <typename FormatContext>
|
|
auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
|
|
return formatter<const void*, Char>::format(val, ctx);
|
|
}
|
|
};
|
|
|
|
template <typename Char, size_t N>
|
|
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
|
|
template <typename FormatContext>
|
|
FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
|
|
-> decltype(ctx.out()) {
|
|
return formatter<basic_string_view<Char>, Char>::format(val, ctx);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\rst
|
|
Converts ``p`` to ``const void*`` for pointer formatting.
|
|
|
|
**Example**::
|
|
|
|
auto s = fmt::format("{}", fmt::ptr(p));
|
|
\endrst
|
|
*/
|
|
template <typename T> auto ptr(T p) -> const void* {
|
|
static_assert(std::is_pointer<T>::value, "");
|
|
return detail::bit_cast<const void*>(p);
|
|
}
|
|
template <typename T, typename Deleter>
|
|
auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* {
|
|
return p.get();
|
|
}
|
|
template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
|
|
return p.get();
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Converts ``e`` to the underlying type.
|
|
|
|
**Example**::
|
|
|
|
enum class color { red, green, blue };
|
|
auto s = fmt::format("{}", fmt::underlying(color::red));
|
|
\endrst
|
|
*/
|
|
template <typename Enum>
|
|
constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
|
|
return static_cast<underlying_t<Enum>>(e);
|
|
}
|
|
|
|
namespace enums {
|
|
template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
|
|
constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
|
|
return static_cast<underlying_t<Enum>>(e);
|
|
}
|
|
} // namespace enums
|
|
|
|
class bytes {
|
|
private:
|
|
string_view data_;
|
|
friend struct formatter<bytes>;
|
|
|
|
public:
|
|
explicit bytes(string_view data) : data_(data) {}
|
|
};
|
|
|
|
template <> struct formatter<bytes> {
|
|
private:
|
|
detail::dynamic_format_specs<> specs_;
|
|
|
|
public:
|
|
template <typename ParseContext>
|
|
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
|
|
return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
|
|
detail::type::string_type);
|
|
}
|
|
|
|
template <typename FormatContext>
|
|
auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
|
|
detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
|
|
specs_.width_ref, ctx);
|
|
detail::handle_dynamic_spec<detail::precision_checker>(
|
|
specs_.precision, specs_.precision_ref, ctx);
|
|
return detail::write_bytes(ctx.out(), b.data_, specs_);
|
|
}
|
|
};
|
|
|
|
// group_digits_view is not derived from view because it copies the argument.
|
|
template <typename T> struct group_digits_view { T value; };
|
|
|
|
/**
|
|
\rst
|
|
Returns a view that formats an integer value using ',' as a locale-independent
|
|
thousands separator.
|
|
|
|
**Example**::
|
|
|
|
fmt::print("{}", fmt::group_digits(12345));
|
|
// Output: "12,345"
|
|
\endrst
|
|
*/
|
|
template <typename T> auto group_digits(T value) -> group_digits_view<T> {
|
|
return {value};
|
|
}
|
|
|
|
template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
|
|
private:
|
|
detail::dynamic_format_specs<> specs_;
|
|
|
|
public:
|
|
template <typename ParseContext>
|
|
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
|
|
return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
|
|
detail::type::int_type);
|
|
}
|
|
|
|
template <typename FormatContext>
|
|
auto format(group_digits_view<T> t, FormatContext& ctx)
|
|
-> decltype(ctx.out()) {
|
|
detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
|
|
specs_.width_ref, ctx);
|
|
detail::handle_dynamic_spec<detail::precision_checker>(
|
|
specs_.precision, specs_.precision_ref, ctx);
|
|
return detail::write_int(
|
|
ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
|
|
detail::digit_grouping<char>("\3", ","));
|
|
}
|
|
};
|
|
|
|
// DEPRECATED! join_view will be moved to ranges.h.
|
|
template <typename It, typename Sentinel, typename Char = char>
|
|
struct join_view : detail::view {
|
|
It begin;
|
|
Sentinel end;
|
|
basic_string_view<Char> sep;
|
|
|
|
join_view(It b, Sentinel e, basic_string_view<Char> s)
|
|
: begin(b), end(e), sep(s) {}
|
|
};
|
|
|
|
template <typename It, typename Sentinel, typename Char>
|
|
struct formatter<join_view<It, Sentinel, Char>, Char> {
|
|
private:
|
|
using value_type =
|
|
#ifdef __cpp_lib_ranges
|
|
std::iter_value_t<It>;
|
|
#else
|
|
typename std::iterator_traits<It>::value_type;
|
|
#endif
|
|
formatter<remove_cvref_t<value_type>, Char> value_formatter_;
|
|
|
|
public:
|
|
template <typename ParseContext>
|
|
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
|
|
return value_formatter_.parse(ctx);
|
|
}
|
|
|
|
template <typename FormatContext>
|
|
auto format(const join_view<It, Sentinel, Char>& value,
|
|
FormatContext& ctx) const -> decltype(ctx.out()) {
|
|
auto it = value.begin;
|
|
auto out = ctx.out();
|
|
if (it != value.end) {
|
|
out = value_formatter_.format(*it, ctx);
|
|
++it;
|
|
while (it != value.end) {
|
|
out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
|
|
ctx.advance_to(out);
|
|
out = value_formatter_.format(*it, ctx);
|
|
++it;
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
/**
|
|
Returns a view that formats the iterator range `[begin, end)` with elements
|
|
separated by `sep`.
|
|
*/
|
|
template <typename It, typename Sentinel>
|
|
auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
|
|
return {begin, end, sep};
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Returns a view that formats `range` with elements separated by `sep`.
|
|
|
|
**Example**::
|
|
|
|
std::vector<int> v = {1, 2, 3};
|
|
fmt::print("{}", fmt::join(v, ", "));
|
|
// Output: "1, 2, 3"
|
|
|
|
``fmt::join`` applies passed format specifiers to the range elements::
|
|
|
|
fmt::print("{:02}", fmt::join(v, ", "));
|
|
// Output: "01, 02, 03"
|
|
\endrst
|
|
*/
|
|
template <typename Range>
|
|
auto join(Range&& range, string_view sep)
|
|
-> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
|
|
return join(std::begin(range), std::end(range), sep);
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
Converts *value* to ``std::string`` using the default format for type *T*.
|
|
|
|
**Example**::
|
|
|
|
#include <fmt/format.h>
|
|
|
|
std::string answer = fmt::to_string(42);
|
|
\endrst
|
|
*/
|
|
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
|
|
inline auto to_string(const T& value) -> std::string {
|
|
auto buffer = memory_buffer();
|
|
detail::write<char>(appender(buffer), value);
|
|
return {buffer.data(), buffer.size()};
|
|
}
|
|
|
|
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
|
|
FMT_NODISCARD inline auto to_string(T value) -> std::string {
|
|
// The buffer should be large enough to store the number including the sign
|
|
// or "false" for bool.
|
|
constexpr int max_size = detail::digits10<T>() + 2;
|
|
char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
|
|
char* begin = buffer;
|
|
return std::string(begin, detail::write<char>(begin, value));
|
|
}
|
|
|
|
template <typename Char, size_t SIZE>
|
|
FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
|
|
-> std::basic_string<Char> {
|
|
auto size = buf.size();
|
|
detail::assume(size < std::basic_string<Char>().max_size());
|
|
return std::basic_string<Char>(buf.data(), size);
|
|
}
|
|
|
|
FMT_BEGIN_DETAIL_NAMESPACE
|
|
|
|
template <typename Char>
|
|
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
|
|
typename vformat_args<Char>::type args, locale_ref loc) {
|
|
auto out = buffer_appender<Char>(buf);
|
|
if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
|
|
auto arg = args.get(0);
|
|
if (!arg) error_handler().on_error("argument not found");
|
|
visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
|
|
return;
|
|
}
|
|
|
|
struct format_handler : error_handler {
|
|
basic_format_parse_context<Char> parse_context;
|
|
buffer_context<Char> context;
|
|
|
|
format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
|
|
basic_format_args<buffer_context<Char>> p_args,
|
|
locale_ref p_loc)
|
|
: parse_context(str), context(p_out, p_args, p_loc) {}
|
|
|
|
void on_text(const Char* begin, const Char* end) {
|
|
auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
|
|
context.advance_to(write<Char>(context.out(), text));
|
|
}
|
|
|
|
FMT_CONSTEXPR auto on_arg_id() -> int {
|
|
return parse_context.next_arg_id();
|
|
}
|
|
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
|
|
return parse_context.check_arg_id(id), id;
|
|
}
|
|
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
|
|
int arg_id = context.arg_id(id);
|
|
if (arg_id < 0) on_error("argument not found");
|
|
return arg_id;
|
|
}
|
|
|
|
FMT_INLINE void on_replacement_field(int id, const Char*) {
|
|
auto arg = get_arg(context, id);
|
|
context.advance_to(visit_format_arg(
|
|
default_arg_formatter<Char>{context.out(), context.args(),
|
|
context.locale()},
|
|
arg));
|
|
}
|
|
|
|
auto on_format_specs(int id, const Char* begin, const Char* end)
|
|
-> const Char* {
|
|
auto arg = get_arg(context, id);
|
|
if (arg.type() == type::custom_type) {
|
|
parse_context.advance_to(begin);
|
|
visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
|
|
return parse_context.begin();
|
|
}
|
|
auto specs = detail::dynamic_format_specs<Char>();
|
|
begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
|
|
detail::handle_dynamic_spec<detail::width_checker>(
|
|
specs.width, specs.width_ref, context);
|
|
detail::handle_dynamic_spec<detail::precision_checker>(
|
|
specs.precision, specs.precision_ref, context);
|
|
if (begin == end || *begin != '}')
|
|
on_error("missing '}' in format string");
|
|
auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
|
|
context.advance_to(visit_format_arg(f, arg));
|
|
return begin;
|
|
}
|
|
};
|
|
detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
|
|
}
|
|
|
|
#ifndef FMT_HEADER_ONLY
|
|
extern template FMT_API void vformat_to(buffer<char>&, string_view,
|
|
typename vformat_args<>::type,
|
|
locale_ref);
|
|
extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
|
|
-> thousands_sep_result<char>;
|
|
extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
|
|
-> thousands_sep_result<wchar_t>;
|
|
extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
|
|
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
|
|
#endif // FMT_HEADER_ONLY
|
|
|
|
FMT_END_DETAIL_NAMESPACE
|
|
|
|
#if FMT_USE_USER_DEFINED_LITERALS
|
|
inline namespace literals {
|
|
/**
|
|
\rst
|
|
User-defined literal equivalent of :func:`fmt::arg`.
|
|
|
|
**Example**::
|
|
|
|
using namespace fmt::literals;
|
|
fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
|
|
\endrst
|
|
*/
|
|
# if FMT_USE_NONTYPE_TEMPLATE_ARGS
|
|
template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
|
|
using char_t = remove_cvref_t<decltype(Str.data[0])>;
|
|
return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
|
|
}
|
|
# else
|
|
constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
|
|
return {s};
|
|
}
|
|
# endif
|
|
} // namespace literals
|
|
#endif // FMT_USE_USER_DEFINED_LITERALS
|
|
|
|
template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
|
|
inline auto vformat(const Locale& loc, string_view fmt, format_args args)
|
|
-> std::string {
|
|
return detail::vformat(loc, fmt, args);
|
|
}
|
|
|
|
template <typename Locale, typename... T,
|
|
FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
|
|
inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
|
|
-> std::string {
|
|
return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...));
|
|
}
|
|
|
|
template <typename OutputIt, typename Locale,
|
|
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
|
|
detail::is_locale<Locale>::value)>
|
|
auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
|
|
format_args args) -> OutputIt {
|
|
using detail::get_buffer;
|
|
auto&& buf = get_buffer<char>(out);
|
|
detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
|
|
return detail::get_iterator(buf, out);
|
|
}
|
|
|
|
template <typename OutputIt, typename Locale, typename... T,
|
|
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
|
|
detail::is_locale<Locale>::value)>
|
|
FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
|
|
format_string<T...> fmt, T&&... args) -> OutputIt {
|
|
return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
|
|
}
|
|
|
|
template <typename Locale, typename... T,
|
|
FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
|
|
FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc,
|
|
format_string<T...> fmt,
|
|
T&&... args) -> size_t {
|
|
auto buf = detail::counting_buffer<>();
|
|
detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...),
|
|
detail::locale_ref(loc));
|
|
return buf.count();
|
|
}
|
|
|
|
FMT_END_EXPORT
|
|
|
|
template <typename T, typename Char>
|
|
template <typename FormatContext>
|
|
FMT_CONSTEXPR FMT_INLINE auto
|
|
formatter<T, Char,
|
|
enable_if_t<detail::type_constant<T, Char>::value !=
|
|
detail::type::custom_type>>::format(const T& val,
|
|
FormatContext& ctx)
|
|
const -> decltype(ctx.out()) {
|
|
if (specs_.width_ref.kind != detail::arg_id_kind::none ||
|
|
specs_.precision_ref.kind != detail::arg_id_kind::none) {
|
|
auto specs = specs_;
|
|
detail::handle_dynamic_spec<detail::width_checker>(specs.width,
|
|
specs.width_ref, ctx);
|
|
detail::handle_dynamic_spec<detail::precision_checker>(
|
|
specs.precision, specs.precision_ref, ctx);
|
|
return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
|
|
}
|
|
return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
|
|
}
|
|
|
|
FMT_END_NAMESPACE
|
|
|
|
#ifdef FMT_HEADER_ONLY
|
|
# define FMT_FUNC inline
|
|
# include "format-inl.h"
|
|
#else
|
|
# define FMT_FUNC
|
|
#endif
|
|
|
|
#endif // FMT_FORMAT_H_
|