metabrush/src/lib/Math/Bezier/Cubic.hs

77 lines
2 KiB
Haskell
Raw Normal View History

2020-08-05 20:23:16 +00:00
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE UndecidableInstances #-}
2020-08-04 06:15:06 +00:00
module Math.Bezier.Cubic
( Bezier(..)
, bezier, bezier'
2020-08-10 14:38:27 +00:00
, subdivide
2020-08-04 06:15:06 +00:00
)
where
-- base
import GHC.Generics
( Generic )
-- acts
import Data.Act
2020-08-05 20:23:16 +00:00
( Torsor
2020-08-04 06:15:06 +00:00
( (-->) )
)
-- MetaBrush
import Math.Module
( Module (..)
, lerp
)
import qualified Math.Bezier.Quadratic as Quadratic
( Bezier(Bezier), bezier )
--------------------------------------------------------------------------------
-- | Points defining a cubic Bézier curve.
--
-- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points.
data Bezier p
= Bezier
{ p0 :: !p
, p1 :: !p
, p2 :: !p
, p3 :: !p
}
deriving stock ( Show, Generic, Functor, Foldable, Traversable )
-- | Cubic Bézier curve.
bezier :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> p
bezier ( Bezier { .. } ) t =
lerp @v t
2020-08-05 20:23:16 +00:00
( Quadratic.bezier @v ( Quadratic.Bezier p0 p1 p2 ) t )
( Quadratic.bezier @v ( Quadratic.Bezier p1 p2 p3 ) t )
2020-08-04 06:15:06 +00:00
-- | Derivative of cubic Bézier curve.
bezier' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v
bezier' ( Bezier { .. } ) t
= ( 3 *^ )
$ lerp @v t
( lerp @v t ( p0 --> p1 ) ( p1 --> p2 ) )
( lerp @v t ( p1 --> p2 ) ( p2 --> p3 ) )
2020-08-10 14:38:27 +00:00
-- | Subdivide a cubic Bézier curve into two parts.
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
subdivide ( Bezier { .. } ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 )
where
pt, s, q1, q2, r1, r2 :: p
q1 = lerp @v t p0 p1
s = lerp @v t p1 p2
r2 = lerp @v t p2 p3
q2 = lerp @v t q1 s
r1 = lerp @v t s r2
pt = lerp @v t q2 r1