2020-08-05 20:23:16 +00:00
|
|
|
{-# LANGUAGE AllowAmbiguousTypes #-}
|
|
|
|
{-# LANGUAGE DeriveGeneric #-}
|
|
|
|
{-# LANGUAGE DeriveTraversable #-}
|
|
|
|
{-# LANGUAGE DerivingStrategies #-}
|
|
|
|
{-# LANGUAGE FlexibleInstances #-}
|
|
|
|
{-# LANGUAGE MultiParamTypeClasses #-}
|
|
|
|
{-# LANGUAGE RecordWildCards #-}
|
|
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
|
|
{-# LANGUAGE TypeApplications #-}
|
|
|
|
{-# LANGUAGE UndecidableInstances #-}
|
2020-08-04 06:15:06 +00:00
|
|
|
|
|
|
|
module Math.Bezier.Cubic
|
|
|
|
( Bezier(..)
|
|
|
|
, bezier, bezier'
|
2020-08-10 14:38:27 +00:00
|
|
|
, subdivide
|
2020-08-04 06:15:06 +00:00
|
|
|
)
|
|
|
|
where
|
|
|
|
|
|
|
|
-- base
|
|
|
|
import GHC.Generics
|
|
|
|
( Generic )
|
|
|
|
|
|
|
|
-- acts
|
|
|
|
import Data.Act
|
2020-08-05 20:23:16 +00:00
|
|
|
( Torsor
|
2020-08-04 06:15:06 +00:00
|
|
|
( (-->) )
|
|
|
|
)
|
|
|
|
|
|
|
|
-- MetaBrush
|
|
|
|
import Math.Module
|
|
|
|
( Module (..)
|
|
|
|
, lerp
|
|
|
|
)
|
|
|
|
import qualified Math.Bezier.Quadratic as Quadratic
|
|
|
|
( Bezier(Bezier), bezier )
|
|
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
-- | Points defining a cubic Bézier curve.
|
|
|
|
--
|
|
|
|
-- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points.
|
|
|
|
data Bezier p
|
|
|
|
= Bezier
|
|
|
|
{ p0 :: !p
|
|
|
|
, p1 :: !p
|
|
|
|
, p2 :: !p
|
|
|
|
, p3 :: !p
|
|
|
|
}
|
|
|
|
deriving stock ( Show, Generic, Functor, Foldable, Traversable )
|
|
|
|
|
|
|
|
-- | Cubic Bézier curve.
|
|
|
|
bezier :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> p
|
|
|
|
bezier ( Bezier { .. } ) t =
|
|
|
|
lerp @v t
|
2020-08-05 20:23:16 +00:00
|
|
|
( Quadratic.bezier @v ( Quadratic.Bezier p0 p1 p2 ) t )
|
|
|
|
( Quadratic.bezier @v ( Quadratic.Bezier p1 p2 p3 ) t )
|
2020-08-04 06:15:06 +00:00
|
|
|
|
|
|
|
-- | Derivative of cubic Bézier curve.
|
|
|
|
bezier' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v
|
|
|
|
bezier' ( Bezier { .. } ) t
|
|
|
|
= ( 3 *^ )
|
|
|
|
$ lerp @v t
|
|
|
|
( lerp @v t ( p0 --> p1 ) ( p1 --> p2 ) )
|
|
|
|
( lerp @v t ( p1 --> p2 ) ( p2 --> p3 ) )
|
2020-08-10 14:38:27 +00:00
|
|
|
|
|
|
|
-- | Subdivide a cubic Bézier curve into two parts.
|
|
|
|
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
|
|
|
subdivide ( Bezier { .. } ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 )
|
|
|
|
where
|
|
|
|
pt, s, q1, q2, r1, r2 :: p
|
|
|
|
q1 = lerp @v t p0 p1
|
|
|
|
s = lerp @v t p1 p2
|
|
|
|
r2 = lerp @v t p2 p3
|
|
|
|
q2 = lerp @v t q1 s
|
|
|
|
r1 = lerp @v t s r2
|
|
|
|
pt = lerp @v t q2 r1
|