From 15d50f8d76e3ff815569aaae972539fd4b45a89b Mon Sep 17 00:00:00 2001 From: sheaf Date: Sun, 16 May 2021 00:33:58 +0200 Subject: [PATCH] add signed curvature computation --- src/lib/Math/Bezier/Cubic.hs | 18 +++++++++++++----- src/lib/Math/Bezier/Quadratic.hs | 15 +++++++++++++-- src/lib/Math/Module.hs | 6 +++++- 3 files changed, 31 insertions(+), 8 deletions(-) diff --git a/src/lib/Math/Bezier/Cubic.hs b/src/lib/Math/Bezier/Cubic.hs index 930fe21..0f392a8 100644 --- a/src/lib/Math/Bezier/Cubic.hs +++ b/src/lib/Math/Bezier/Cubic.hs @@ -18,7 +18,7 @@ module Math.Bezier.Cubic ( Bezier(..) , fromQuadratic , bezier, bezier', bezier'' - , curvature, squaredCurvature + , curvature, squaredCurvature, signedCurvature , subdivide , ddist, closestPoint , drag, selfIntersectionParameters @@ -70,12 +70,13 @@ import Math.Epsilon import Math.Module ( Module (..) , lerp - , Inner(..), squaredNorm + , Inner(..), norm, squaredNorm + , cross ) import Math.Roots ( realRoots, solveQuadratic ) import Math.Vector2D - ( Point2D(..) ) + ( Point2D(..), Vector2D(..) ) -------------------------------------------------------------------------------- @@ -125,11 +126,11 @@ bezier'' ( Bezier {..} ) t ( p1 --> p0 ^+^ p1 --> p2 ) ( p2 --> p1 ^+^ p2 --> p3 ) --- | Curvature of a quadratic Bézier curve. +-- | Curvature of a cubic Bézier curve. curvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r curvature bez t = sqrt $ squaredCurvature @v bez t --- | Square of curvature of a quadratic Bézier curve. +-- | Square of curvature of a cubic Bézier curve. squaredCurvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r squaredCurvature bez t | sq_nm_g' < epsilon @@ -144,6 +145,13 @@ squaredCurvature bez t sq_nm_g' :: r sq_nm_g' = squaredNorm @v g' +-- | Signed curvature of a planar cubic Bézier curve. +signedCurvature :: forall r. Floating r => Bezier ( Point2D r ) -> r -> r +signedCurvature bez t = ( g' `cross` g'' ) / norm g' + where + g', g'' :: Vector2D r + g' = bezier' @( Vector2D r ) bez t + g'' = bezier'' @( Vector2D r ) bez t -- | Subdivide a cubic Bézier curve into two parts. subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p ) diff --git a/src/lib/Math/Bezier/Quadratic.hs b/src/lib/Math/Bezier/Quadratic.hs index 30e4b8d..f3f7f76 100644 --- a/src/lib/Math/Bezier/Quadratic.hs +++ b/src/lib/Math/Bezier/Quadratic.hs @@ -15,7 +15,7 @@ module Math.Bezier.Quadratic ( Bezier(..) , bezier, bezier', bezier'' - , curvature, squaredCurvature + , curvature, squaredCurvature, signedCurvature , subdivide , ddist, closestPoint , interpolate @@ -65,10 +65,13 @@ import Math.Epsilon import Math.Module ( Module (..) , lerp - , Inner(..), squaredNorm + , Inner(..), norm, squaredNorm + , cross ) import Math.Roots ( realRoots ) +import Math.Vector2D + ( Point2D(..), Vector2D(..) ) -------------------------------------------------------------------------------- @@ -119,6 +122,14 @@ squaredCurvature bez t sq_nm_g' :: r sq_nm_g' = squaredNorm @v g' +-- | Signed curvature of a planar quadratic Bézier curve. +signedCurvature :: forall r. Floating r => Bezier ( Point2D r ) -> r -> r +signedCurvature bez t = ( g' `cross` g'' ) / norm g' + where + g', g'' :: Vector2D r + g' = bezier' @( Vector2D r ) bez t + g'' = bezier'' @( Vector2D r ) bez + -- | Subdivide a quadratic Bézier curve into two parts. subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p ) subdivide ( Bezier {..} ) t = ( Bezier p0 q1 pt, Bezier pt r1 p2 ) diff --git a/src/lib/Math/Module.hs b/src/lib/Math/Module.hs index 7e8ac89..dad2727 100644 --- a/src/lib/Math/Module.hs +++ b/src/lib/Math/Module.hs @@ -9,7 +9,7 @@ module Math.Module ( Module(..), lerp , Inner(..) - , squaredNorm, quadrance, distance + , norm, squaredNorm, quadrance, distance , proj, projC, closestPointOnSegment , cross , strictlyParallel, convexCombination @@ -75,6 +75,10 @@ infixl 8 ^.^ class Module r m => Inner r m where (^.^) :: m -> m -> r +-- | Norm of a vector, computed using the inner product. +norm :: forall m r. ( Floating r, Inner r m ) => m -> r +norm = sqrt . squaredNorm + -- | Squared norm of a vector, computed using the inner product. squaredNorm :: forall m r. Inner r m => m -> r squaredNorm v = v ^.^ v