{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE UndecidableInstances #-} module Math.Bezier.Cubic ( Bezier(..) , bezier, bezier', bezier'' , curvature, squaredCurvature , subdivide , ddist, closestPoint ) where -- base import Data.List.NonEmpty ( NonEmpty(..) ) import Data.Monoid ( Ap(..) ) import Data.Semigroup ( ArgMin, Min(..), Arg(..) ) import GHC.Generics ( Generic, Generic1 ) -- acts import Data.Act ( Act(..) , Torsor ( (-->) ) ) -- deepseq import Control.DeepSeq ( NFData, NFData1 ) -- generic-data import Generic.Data ( GenericProduct(..), Generically1(..) ) -- groups import Data.Group ( Group ) -- groups-generic import Data.Group.Generics () -- MetaBrush import qualified Math.Bezier.Quadratic as Quadratic ( Bezier(Bezier), bezier ) import Math.Epsilon ( epsilon ) import Math.Module ( Module (..) , lerp , Inner(..), squaredNorm ) import Math.Roots ( realRoots ) -------------------------------------------------------------------------------- -- | Points defining a cubic Bézier curve (Bernstein form). -- -- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points. data Bezier p = Bezier { p0, p1, p2, p3 :: !p } deriving stock ( Show, Generic, Generic1, Functor, Foldable, Traversable ) deriving ( Semigroup, Monoid, Group ) via GenericProduct ( Bezier p ) deriving Applicative via Generically1 Bezier deriving anyclass ( NFData, NFData1 ) deriving via Ap Bezier p instance Act v p => Act v ( Bezier p ) -- | Cubic Bézier curve. bezier :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> p bezier ( Bezier {..} ) t = lerp @v t ( Quadratic.bezier @v ( Quadratic.Bezier p0 p1 p2 ) t ) ( Quadratic.bezier @v ( Quadratic.Bezier p1 p2 p3 ) t ) -- | Derivative of cubic Bézier curve. bezier' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v bezier' ( Bezier {..} ) t = ( 3 *^ ) $ lerp @v t ( lerp @v t ( p0 --> p1 ) ( p1 --> p2 ) ) ( lerp @v t ( p1 --> p2 ) ( p2 --> p3 ) ) -- | Second derivative of a cubic Bézier curve. bezier'' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v bezier'' ( Bezier {..} ) t = ( 6 *^ ) $ lerp @v t ( p1 --> p0 ^+^ p1 --> p2 ) ( p2 --> p1 ^+^ p2 --> p3 ) -- | Curvature of a quadratic Bézier curve. curvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r curvature bez t = sqrt $ squaredCurvature @v bez t -- | Square of curvature of a quadratic Bézier curve. squaredCurvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r squaredCurvature bez t | sq_nm_g' < epsilon = 1 / 0 | otherwise = ( sq_nm_g' * squaredNorm @v g'' - ( g' ^.^ g'' ) ^ ( 2 :: Int ) ) / ( sq_nm_g' ^ ( 3 :: Int ) ) where g', g'' :: v g' = bezier' @v bez t g'' = bezier'' @v bez t sq_nm_g' :: r sq_nm_g' = squaredNorm @v g' -- | Subdivide a cubic Bézier curve into two parts. subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p ) subdivide ( Bezier {..} ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 ) where pt, s, q1, q2, r1, r2 :: p q1 = lerp @v t p0 p1 s = lerp @v t p1 p2 r2 = lerp @v t p2 p3 q2 = lerp @v t q1 s r1 = lerp @v t s r2 pt = lerp @v t q2 r1 -- | Polynomial coefficients of the derivative of the distance to a cubic Bézier curve. ddist :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> [ r ] ddist ( Bezier {..} ) c = [ a0, a1, a2, a3, a4, a5 ] where v, v', v'', v''' :: v v = c --> p0 v' = p0 --> p1 v'' = p1 --> p0 ^+^ p1 --> p2 v''' = p0 --> p3 ^+^ 3 *^ ( p2 --> p1 ) a0, a1, a2, a3, a4, a5 :: r a0 = v ^.^ v' a1 = 3 * squaredNorm v' + 2 * v ^.^ v'' a2 = 9 * v' ^.^ v'' + v ^.^ v''' a3 = 6 * squaredNorm v'' + 4 * v' ^.^ v''' a4 = 5 * v'' ^.^ v''' a5 = squaredNorm v''' -- | Finds the closest point to a given point on a cubic Bézier curve. closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p ) closestPoint pts@( Bezier {..} ) c = pickClosest ( 0 :| 1 : roots ) -- todo: also include the self-intersection point if one exists where roots :: [ r ] roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots $ ddist @v pts c ) pickClosest :: NonEmpty r -> ArgMin r ( r, p ) pickClosest ( s :| ss ) = go s q nm0 ss where q :: p q = bezier @v pts s nm0 :: r nm0 = squaredNorm ( c --> q :: v ) go t p nm [] = Min ( Arg nm ( t, p ) ) go t p nm ( t' : ts ) | nm' < nm = go t' p' nm' ts | otherwise = go t p nm ts where p' :: p p' = bezier @v pts t' nm' :: r nm' = squaredNorm ( c --> p' :: v )