mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-06 15:23:37 +00:00
252 lines
7.8 KiB
Haskell
252 lines
7.8 KiB
Haskell
{-# LANGUAGE AllowAmbiguousTypes #-}
|
||
{-# LANGUAGE ScopedTypeVariables #-}
|
||
{-# LANGUAGE UndecidableInstances #-}
|
||
|
||
module Math.Bezier.Cubic
|
||
( Bezier(..)
|
||
, fromQuadratic
|
||
, bezier, bezier', bezier''
|
||
, curvature, squaredCurvature, signedCurvature
|
||
, subdivide
|
||
, ddist, closestPoint
|
||
, drag, selfIntersectionParameters
|
||
)
|
||
where
|
||
|
||
-- base
|
||
import Data.List.NonEmpty
|
||
( NonEmpty(..) )
|
||
import Data.Monoid
|
||
( Ap(..) )
|
||
import Data.Semigroup
|
||
( ArgMin, Min(..), Arg(..) )
|
||
import GHC.Generics
|
||
( Generic, Generic1
|
||
, Generically(..), Generically1(..)
|
||
)
|
||
|
||
-- acts
|
||
import Data.Act
|
||
( Act(..)
|
||
, Torsor
|
||
( (-->) )
|
||
)
|
||
|
||
-- deepseq
|
||
import Control.DeepSeq
|
||
( NFData, NFData1 )
|
||
|
||
-- groups
|
||
import Data.Group
|
||
( Group )
|
||
|
||
-- groups-generic
|
||
import Data.Group.Generics
|
||
()
|
||
|
||
-- primitive
|
||
import Data.Primitive.Types
|
||
( Prim )
|
||
|
||
-- MetaBrush
|
||
import qualified Math.Bezier.Quadratic as Quadratic
|
||
( Bezier(..), bezier )
|
||
import Math.Epsilon
|
||
( epsilon )
|
||
import Math.Module
|
||
( Module (..)
|
||
, lerp
|
||
, Inner(..), norm, squaredNorm
|
||
, cross
|
||
)
|
||
import Math.Roots
|
||
( realRoots, solveQuadratic )
|
||
import Math.Linear
|
||
( ℝ(..), T(..) )
|
||
import qualified Math.Ring as Ring
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
-- | Points defining a cubic Bézier curve (Bernstein form).
|
||
--
|
||
-- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points.
|
||
data Bezier p
|
||
= Bezier
|
||
{ p0, p1, p2, p3 :: !p }
|
||
deriving stock ( Generic, Generic1, Functor, Foldable, Traversable )
|
||
deriving ( Semigroup, Monoid, Group )
|
||
via Generically ( Bezier p )
|
||
deriving Applicative
|
||
via Generically1 Bezier
|
||
deriving anyclass ( NFData, NFData1 )
|
||
|
||
deriving via Ap Bezier p
|
||
instance {-# OVERLAPPING #-} Act v p => Act v ( Bezier p )
|
||
deriving via Ap Bezier ( T b )
|
||
instance Module r ( T b ) => Module r ( T ( Bezier b ) )
|
||
|
||
instance Show p => Show (Bezier p) where
|
||
show (Bezier p1 p2 p3 p4) =
|
||
show p1 ++ "--" ++ show p2 ++ "--" ++ show p3 ++ "->" ++ show p4
|
||
|
||
-- | Degree raising: convert a quadratic Bézier curve to a cubic Bézier curve.
|
||
fromQuadratic :: forall v r p. ( Torsor v p, Module r v, Fractional r ) => Quadratic.Bezier p -> Bezier p
|
||
fromQuadratic ( Quadratic.Bezier { p0 = q0, p1 = q1, p2 = q2 } ) = Bezier {..}
|
||
where
|
||
p0 = q0
|
||
p1 = lerp @v (2/3) q0 q1
|
||
p2 = lerp @v (1/3) q1 q2
|
||
p3 = q2
|
||
|
||
-- | Cubic Bézier curve.
|
||
bezier :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> p
|
||
bezier ( Bezier {..} ) t =
|
||
lerp @v t
|
||
( Quadratic.bezier @v ( Quadratic.Bezier p0 p1 p2 ) t )
|
||
( Quadratic.bezier @v ( Quadratic.Bezier p1 p2 p3 ) t )
|
||
|
||
-- | Derivative of a cubic Bézier curve.
|
||
bezier' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v
|
||
bezier' ( Bezier {..} )
|
||
= ( Ring.fromInteger 3 *^ )
|
||
. Quadratic.bezier @v ( Quadratic.Bezier ( p0 --> p1 ) ( p1 --> p2 ) ( p2 --> p3 ) )
|
||
|
||
-- | Second derivative of a cubic Bézier curve.
|
||
bezier'' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v
|
||
bezier'' ( Bezier {..} ) t
|
||
= ( Ring.fromInteger 6 *^ )
|
||
$ lerp @v t
|
||
( p1 --> p0 ^+^ p1 --> p2 )
|
||
( p2 --> p1 ^+^ p2 --> p3 )
|
||
|
||
-- | Curvature of a cubic Bézier curve.
|
||
curvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
||
curvature bez t = sqrt $ squaredCurvature @v bez t
|
||
|
||
-- | Square of curvature of a cubic Bézier curve.
|
||
squaredCurvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
||
squaredCurvature bez t
|
||
| sq_nm_g' < epsilon
|
||
= 1 / 0
|
||
| otherwise
|
||
= ( sq_nm_g' * squaredNorm @v g'' - ( g' ^.^ g'' ) ^ ( 2 :: Int ) )
|
||
/ ( sq_nm_g' ^ ( 3 :: Int ) )
|
||
where
|
||
g', g'' :: v
|
||
g' = bezier' @v bez t
|
||
g'' = bezier'' @v bez t
|
||
sq_nm_g' :: r
|
||
sq_nm_g' = squaredNorm @v g'
|
||
|
||
-- | Signed curvature of a planar cubic Bézier curve.
|
||
signedCurvature :: Bezier ( ℝ 2 ) -> Double -> Double
|
||
signedCurvature bez t = ( g' `cross` g'' ) / norm g' ^ ( 3 :: Int )
|
||
where
|
||
g', g'' :: T ( ℝ 2 )
|
||
g' = bezier' @( T ( ℝ 2 ) ) bez t
|
||
g'' = bezier'' @( T ( ℝ 2 ) ) bez t
|
||
|
||
-- | Subdivide a cubic Bézier curve into two parts.
|
||
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
||
subdivide ( Bezier {..} ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 )
|
||
where
|
||
pt, s, q1, q2, r1, r2 :: p
|
||
q1 = lerp @v t p0 p1
|
||
s = lerp @v t p1 p2
|
||
r2 = lerp @v t p2 p3
|
||
q2 = lerp @v t q1 s
|
||
r1 = lerp @v t s r2
|
||
pt = lerp @v t q2 r1
|
||
|
||
-- | Polynomial coefficients of the derivative of the distance to a cubic Bézier curve.
|
||
ddist :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> [ r ]
|
||
ddist ( Bezier {..} ) c = [ a5, a4, a3, a2, a1, a0 ]
|
||
where
|
||
v, v', v'', v''' :: v
|
||
!v = c --> p0
|
||
!v' = p0 --> p1
|
||
!v'' = p1 --> p0 ^+^ p1 --> p2
|
||
!v''' = p0 --> p3 ^+^ 3 *^ ( p2 --> p1 )
|
||
|
||
a0, a1, a2, a3, a4, a5 :: r
|
||
!a0 = v ^.^ v'
|
||
!a1 = 3 * squaredNorm v' + 2 * v ^.^ v''
|
||
!a2 = 9 * v' ^.^ v'' + v ^.^ v'''
|
||
!a3 = 6 * squaredNorm v'' + 4 * v' ^.^ v'''
|
||
!a4 = 5 * v'' ^.^ v'''
|
||
!a5 = squaredNorm v'''
|
||
|
||
-- | Finds the closest point to a given point on a cubic Bézier curve.
|
||
closestPoint
|
||
:: forall v r p. ( Torsor v p, Inner r v, RealFloat r, Prim r, NFData r )
|
||
=> Bezier p -> p -> ArgMin r ( r, p )
|
||
closestPoint pts c = pickClosest ( 0 :| 1 : roots )
|
||
where
|
||
roots :: [ r ]
|
||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots 50 $ ddist @v pts c )
|
||
|
||
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
|
||
pickClosest ( s :| ss ) = go s q nm0 ss
|
||
where
|
||
q :: p
|
||
q = bezier @v pts s
|
||
nm0 :: r
|
||
nm0 = squaredNorm ( c --> q :: v )
|
||
go t p nm [] = Min ( Arg nm ( t, p ) )
|
||
go t p nm ( t' : ts )
|
||
| nm' < nm = go t' p' nm' ts
|
||
| otherwise = go t p nm ts
|
||
where
|
||
p' :: p
|
||
p' = bezier @v pts t'
|
||
nm' :: r
|
||
nm' = squaredNorm ( c --> p' :: v )
|
||
|
||
-- | Drag a cubic Bézier curve to pass through a given point.
|
||
--
|
||
-- Given a cubic Bézier curve, a time \( 0 < t < 1 \) and a point `q`,
|
||
-- modifies the control points to make the curve pass through `q` at time `t`.
|
||
--
|
||
-- Affects the two control points depending on how far along the dragged point is.
|
||
-- For instance, dragging near the middle moves both control points equally,
|
||
-- while dragging near an endpoint will mostly affect the control point associated with that endpoint.
|
||
drag :: forall v r p. ( Torsor v p, Module r v, Fractional r ) => Bezier p -> r -> p -> Bezier p
|
||
drag ( Bezier {..} ) t q = Bezier { p0, p1 = p1', p2 = p2', p3 }
|
||
where
|
||
v0, v1, v2, v3, delta :: v
|
||
v0 = q --> p0
|
||
v1 = q --> p1
|
||
v2 = q --> p2
|
||
v3 = q --> p3
|
||
delta = ( recip $ t * ( -3 + t * ( 9 + t * ( -12 + 6 * t ) ) ) )
|
||
*^ bezier @v ( Bezier v0 v1 v2 v3 ) t
|
||
p1', p2' :: p
|
||
p1' = ( ( 1 - t ) *^ delta ) • p1
|
||
p2' = ( t *^ delta ) • p2
|
||
|
||
-- | Compute parameter values for the self-intersection of a planar cubic Bézier curve, if such exist.
|
||
--
|
||
-- The parameter values might lie outside the interval [0,1],
|
||
-- indicating a self-intersection of the extended curve.
|
||
--
|
||
-- Formula taken from:
|
||
-- "A Basis for the Implicit Representation of Planar Rational Cubic Bézier Curves"
|
||
-- – Oliver J. D. Barrowclough, 2016
|
||
selfIntersectionParameters :: Bezier ( ℝ 2 ) -> [ Double ]
|
||
selfIntersectionParameters ( Bezier {..} ) = solveQuadratic c0 c1 c2
|
||
where
|
||
areaConstant :: ℝ 2 -> ℝ 2 -> ℝ 2 -> Double
|
||
areaConstant ( ℝ2 x1 y1 ) ( ℝ2 x2 y2 ) ( ℝ2 x3 y3 ) =
|
||
x1 * ( y2 - y3 ) + x2 * ( y3 - y1 ) + x3 * ( y1 - y2 )
|
||
l0, l1, l2, l3, f1, f2, f3, c0, c1, c2 :: Double
|
||
l0 = areaConstant p3 p2 p1
|
||
l1 = areaConstant p2 p3 p0
|
||
l2 = areaConstant p1 p0 p3
|
||
l3 = areaConstant p0 p1 p2
|
||
f1 = 3 * ( l1 * l1 - 3 * l0 * l2 )
|
||
f2 = 3 * ( l2 * l2 - 3 * l1 * l3 )
|
||
f3 = 3 * ( 9 * l0 * l3 - l1 * l2 )
|
||
c0 = f2
|
||
c1 = f3 - 2 * f2
|
||
c2 = f1 + f2 - f3
|