uvg266/src/search.c

161 lines
5.4 KiB
C
Raw Normal View History

/**
* HEVC Encoder
* - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing.
*/
/*! \file search.c
\brief searching
\author Marko Viitanen
\date 2013-04
Search related functions
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "global.h"
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "intra.h"
#include "encoder.h"
#include "filter.h"
#include "search.h"
void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][(xCtb>>(MAX_DEPTH-depth))+(yCtb>>(MAX_DEPTH-depth))*(encoder->in.width_in_LCU<<MAX_DEPTH)];
cur_CU->intra.cost = (uint32_t)-1;
/* Force split on border */
if(depth != MAX_DEPTH)
{
if(border)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
SET_SPLITDATA(cur_CU,1);
search_tree(encoder,xCtb,yCtb,depth+1);
if(!border_x)
{
search_tree(encoder,xCtb+change,yCtb,depth+1);
}
if(!border_y)
{
search_tree(encoder,xCtb,yCtb+change,depth+1);
}
if(!border)
{
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
/* We don't need to do anything else here */
return;
}
}
if(encoder->in.cur_pic.slicetype != SLICE_I)
{
}
/* INTRA SEARCH */
if(depth > 0)
{
uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width];
uint8_t *baseU = &encoder->in.cur_pic.uData[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)];
uint8_t *baseV = &encoder->in.cur_pic.vData[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)];
uint32_t width = LCU_WIDTH>>depth;
/* INTRAPREDICTION */
/* ToDo: split to a function */
int16_t pred[LCU_WIDTH*LCU_WIDTH];
int16_t predU[LCU_WIDTH*LCU_WIDTH>>2];
int16_t predV[LCU_WIDTH*LCU_WIDTH>>2];
int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)];
int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1];
int16_t *recShiftU = &rec[(LCU_WIDTH>>(depth+1))*2+8+1];
uint8_t *recbase = &encoder->in.cur_pic.yRecData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width];
uint8_t *recbaseU = &encoder->in.cur_pic.uRecData[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)];
uint8_t *recbaseV = &encoder->in.cur_pic.vRecData[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)];
/* Build reconstructed block to use in prediction with extrapolated borders */
intra_buildReferenceBorder(&encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0);
cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic.yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost);
}
/* Split and search to max_depth */
if(depth != 2)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
search_tree(encoder,xCtb,yCtb,depth+1);
search_tree(encoder,xCtb+change,yCtb,depth+1);
search_tree(encoder,xCtb,yCtb+change,depth+1);
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
}
uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][(xCtb>>(MAX_DEPTH-depth))+(yCtb>>(MAX_DEPTH-depth))*(encoder->in.width_in_LCU<<MAX_DEPTH)];
uint32_t bestCost = cur_CU->intra.cost;
int8_t bestMode = cur_CU->type;
uint32_t cost = 0;
/* Split and search to max_depth */
if(depth != MAX_DEPTH)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
cost = 4*g_lambda_cost[encoder->QP];
cost += search_best_mode(encoder,xCtb,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1);
if(cost != 0 && cost < bestCost)
{
cur_CU->split = 1;
bestCost = cost;
}
else
{
cur_CU->split = 0;
}
}
return bestCost;
}
void search_slice_data(encoder_control* encoder)
{
uint16_t xCtb,yCtb;
/* Loop through every LCU in the slice */
for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++)
{
uint8_t lastCUy = (yCtb == (encoder->in.height_in_LCU-1))?1:0;
for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++)
{
uint8_t lastCUx = (xCtb == (encoder->in.width_in_LCU-1))?1:0;
uint8_t depth = 0;
/* Recursive function for looping through all the sub-blocks */
search_tree(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
/* Decide actual coding modes */
search_best_mode(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
}
}
}