uvg266/src/encoder.c

984 lines
33 KiB
C
Raw Normal View History

/**
* HEVC Encoder
* - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Computer Systems.
*/
/*! \file encoder.c
\brief Encoding related functions
\author Marko Viitanen
\date 2012-06
Encoder main level
*/
/* Suppress some windows warnings */
#ifdef WIN32
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "global.h"
#include "config.h"
#include "encoder.h"
#include "cabac.h"
#include "picture.h"
#include "nal.h"
#include "context.h"
#include "transform.h"
void initSigLastScan(uint32_t* pBuffZ, uint32_t* pBuffH, uint32_t* pBuffV, uint32_t* pBuffD, int32_t iWidth, int32_t iHeight, int32_t iDepth)
{
uint32_t uiNumScanPos = iWidth * iWidth;
uint32_t uiNextScanPos = 0;
int32_t iX,iY,x,y;
uint32_t uiScanLine;
uint32_t blkY,blkX;
uint32_t uiBlk;
uint32_t uiCnt = 0;
if( iWidth < 16 )
{
uint32_t* pBuffTemp = pBuffD;
if( iWidth == 8 )
{
pBuffTemp = (uint32_t *)g_sigLastScanCG32x32;
}
for( uiScanLine = 0; uiNextScanPos < uiNumScanPos; uiScanLine++ )
{
int iPrimDim = uiScanLine;
int iScndDim = 0;
while( iPrimDim >= iWidth )
{
iScndDim++;
iPrimDim--;
}
while( iPrimDim >= 0 && iScndDim < iWidth )
{
pBuffTemp[ uiNextScanPos ] = iPrimDim * iWidth + iScndDim ;
uiNextScanPos++;
iScndDim++;
iPrimDim--;
}
}
}
if( iWidth > 4 )
{
uint32_t uiNumBlkSide = iWidth >> 2;
uint32_t uiNumBlks = uiNumBlkSide * uiNumBlkSide;
uint32_t log2Blk = g_aucConvertToBit[ uiNumBlkSide ] + 1;
for(uiBlk = 0; uiBlk < uiNumBlks; uiBlk++ )
{
uint32_t initBlkPos = g_auiSigLastScan[ SCAN_DIAG ][ log2Blk ][ uiBlk ];
uiNextScanPos = 0;
if( iWidth == 32 )
{
initBlkPos = g_sigLastScanCG32x32[ uiBlk ];
}
{
uint32_t offsetY = initBlkPos / uiNumBlkSide;
uint32_t offsetX = initBlkPos - offsetY * uiNumBlkSide;
uint32_t offsetD = 4 * ( offsetX + offsetY * iWidth );
uint32_t offsetScan = 16 * uiBlk;
for( uiScanLine = 0; uiNextScanPos < 16; uiScanLine++ )
{
int iPrimDim = uiScanLine;
int iScndDim = 0;
while( iPrimDim >= 4 )
{
iScndDim++;
iPrimDim--;
}
while( iPrimDim >= 0 && iScndDim < 4 )
{
pBuffD[ uiNextScanPos + offsetScan ] = iPrimDim * iWidth + iScndDim + offsetD;
uiNextScanPos++;
iScndDim++;
iPrimDim--;
}
}
}
}
}
if( iWidth > 2 )
{
uint32_t numBlkSide = iWidth >> 2;
for(blkY=0; blkY < numBlkSide; blkY++)
{
for(blkX=0; blkX < numBlkSide; blkX++)
{
uint32_t offset = blkY * 4 * iWidth + blkX * 4;
for(y=0; y < 4; y++)
{
for(x=0; x < 4; x++)
{
pBuffH[uiCnt] = y*iWidth + x + offset;
uiCnt ++;
}
}
}
}
uiCnt = 0;
for(blkX=0; blkX < numBlkSide; blkX++)
{
for(blkY=0; blkY < numBlkSide; blkY++)
{
uint32_t offset = blkY * 4 * iWidth + blkX * 4;
for(x=0; x < 4; x++)
{
for(y=0; y < 4; y++)
{
pBuffV[uiCnt] = y*iWidth + x + offset;
uiCnt ++;
}
}
}
}
}
else
{
for(iY=0; iY < iHeight; iY++)
{
for(iX=0; iX < iWidth; iX++)
{
pBuffH[uiCnt] = iY*iWidth + iX;
uiCnt ++;
}
}
uiCnt = 0;
for(iX=0; iX < iWidth; iX++)
{
for(iY=0; iY < iHeight; iY++)
{
pBuffV[uiCnt] = iY*iWidth + iX;
uiCnt ++;
}
}
}
}
void init_tables(void)
{
int i;
int c = 0;
memset( g_aucConvertToBit,-1, sizeof( g_aucConvertToBit ) );
for ( i=4; i<(1<<7); i*=2 )
{
g_aucConvertToBit[i] = c;
c++;
}
g_aucConvertToBit[i] = c;
c = 2;
for ( i=0; i<7; i++ )
{
g_auiSigLastScan[0][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t));
g_auiSigLastScan[1][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t));
g_auiSigLastScan[2][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t));
g_auiSigLastScan[3][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t));
initSigLastScan( g_auiSigLastScan[0][i], g_auiSigLastScan[1][i], g_auiSigLastScan[2][i], g_auiSigLastScan[3][i], c, c, i);
c <<= 1;
}
}
void init_encoder_control(encoder_control* control,bitstream* output)
{
control->stream = output;
}
void init_encoder_input(encoder_input* input,FILE* inputfile, uint32_t width, uint32_t height)
{
int i;
input->file = inputfile;
input->width = width;
input->height = height;
input->height_in_LCU = height / LCU_WIDTH;
input->width_in_LCU = width / LCU_WIDTH;
if(input->height_in_LCU * LCU_WIDTH < height)
input->height_in_LCU++;
if(input->width_in_LCU * LCU_WIDTH < width)
input->width_in_LCU++;
input->cur_pic.width = width;
input->cur_pic.height = height;
input->cur_pic.referenced = 0;
/* Allocate buffers */
input->cur_pic.yData = (uint8_t *)malloc(width*height);
input->cur_pic.uData = (uint8_t *)malloc((width*height)>>2);
input->cur_pic.vData = (uint8_t *)malloc((width*height)>>2);
/* Reconstruction buffers */
input->cur_pic.yRecData = (uint8_t *)malloc(width*height);
input->cur_pic.uRecData = (uint8_t *)malloc((width*height)>>2);
input->cur_pic.vRecData = (uint8_t *)malloc((width*height)>>2);
/* Allocate memory for CU info 2D array */
//ToDo: we don't need this much space on LCU...MAX_DEPTH-1
input->cur_pic.CU = (CU_info**)malloc((MAX_DEPTH+1)*sizeof(CU_info*));
for(i=0; i < MAX_DEPTH+1; i++)
{
input->cur_pic.CU[i] = (CU_info*)malloc((input->height_in_LCU<<MAX_DEPTH)*(input->width_in_LCU<<MAX_DEPTH)*sizeof(CU_info));
memset(input->cur_pic.CU[i], 0, (input->height_in_LCU<<MAX_DEPTH)*(input->width_in_LCU<<MAX_DEPTH)*sizeof(CU_info));
}
}
void encode_one_frame(encoder_control* encoder)
{
/* output parameters before first frame */
if(encoder->frame == 0)
{
/* Sequence Parameter Set (SPS) */
encode_seq_parameter_set(encoder);
bitstream_align(encoder->stream);
bitstream_flush(encoder->stream);
nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 1, NAL_SEQ_PARAMETER_SET, 1);
bitstream_clear_buffer(encoder->stream);
2012-08-14 08:02:08 +00:00
/* Video Parameter Set (VPS) */
2012-08-10 08:59:05 +00:00
encode_vid_parameter_set(encoder);
bitstream_align(encoder->stream);
bitstream_flush(encoder->stream);
nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 1, NAL_VID_PARAMETER_SET, 0);
bitstream_clear_buffer(encoder->stream);
2012-08-14 08:02:08 +00:00
/* Picture Parameter Set (PPS) */
encode_pic_parameter_set(encoder);
bitstream_align(encoder->stream);
bitstream_flush(encoder->stream);
nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 1, NAL_PIC_PARAMETER_SET, 0);
bitstream_clear_buffer(encoder->stream);
2012-06-05 14:45:17 +00:00
/* First slice is IDR */
cabac_start(&cabac);
encoder->in.cur_pic.type = NAL_IDR_SLICE;
encode_slice_header(encoder);
2012-08-14 08:02:08 +00:00
bitstream_align(encoder->stream);
encode_slice_data(encoder);
cabac_flush(&cabac);
bitstream_align(encoder->stream);
bitstream_flush(encoder->stream);
2012-08-14 08:02:08 +00:00
nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_IDR_SLICE, 1);
bitstream_clear_buffer(encoder->stream);
}
else if(encoder->frame < 3)
{
/* Non-IDR slice */
cabac_start(&cabac);
encoder->in.cur_pic.type = NAL_NONIDR_SLICE;
encode_slice_header(encoder);
bitstream_align(encoder->stream);
encode_slice_data(encoder);
cabac_flush(&cabac);
bitstream_align(encoder->stream);
bitstream_flush(encoder->stream);
2012-08-14 08:02:08 +00:00
nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_NONIDR_SLICE, encoder->frame+1);
bitstream_clear_buffer(encoder->stream);
}
}
void encode_pic_parameter_set(encoder_control* encoder)
{
#ifdef _DEBUG
printf("=========== Picture Parameter Set ID: 0 ===========\n");
#endif
WRITE_UE(encoder->stream, 0, "pic_parameter_set_id");
WRITE_UE(encoder->stream, 0, "seq_parameter_set_id");
WRITE_U(encoder->stream, 0, 1, "sign_data_hiding_flag");
WRITE_U(encoder->stream, 0, 1, "cabac_init_present_flag");
WRITE_UE(encoder->stream, 0, "num_ref_idx_l0_default_active_minus1");
WRITE_UE(encoder->stream, 0, "num_ref_idx_l1_default_active_minus1");
WRITE_SE(encoder->stream, encoder->QP-26, "pic_init_qp_minus26");
WRITE_U(encoder->stream, 0, 1, "constrained_intra_pred_flag");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "transform_skip_enabled_flag");
WRITE_U(encoder->stream, 0, 1, "cu_qp_delta_enabled_flag");
//if cu_qp_delta_enabled_flag
//WRITE_UE(encoder->stream, 0, "diff_cu_qp_delta_depth");
WRITE_SE(encoder->stream, 0, "cb_qp_offset");
WRITE_SE(encoder->stream, 0, "cr_qp_offset");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "slicelevel_chroma_qp_flag");
WRITE_U(encoder->stream, 0, 1, "weighted_pred_flag");
2012-08-14 08:02:08 +00:00
WRITE_U(encoder->stream, 0, 1, "weighted_bipred_idc");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 1, 1, "output_flag_present_flag");
WRITE_U(encoder->stream, 0, 1, "dependent_slices_enabled_flag");
WRITE_U(encoder->stream, 0, 1, "transquant_bypass_enable_flag");
WRITE_U(encoder->stream, 0, 2, "tiles_or_entropy_coding_sync_idc");
WRITE_U(encoder->stream, 0, 1, "loop_filter_across_slice_flag");
WRITE_U(encoder->stream, 0, 1, "deblocking_filter_control_present_flag");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "pps_scaling_list_data_present_flag");
WRITE_UE(encoder->stream, 0, "log2_parallel_merge_level_minus2");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "slice_header_extension_present_flag");
WRITE_U(encoder->stream, 0, 1, "pps_extension_flag");
}
void encode_seq_parameter_set(encoder_control* encoder)
{
int i;
#ifdef _DEBUG
printf("=========== Sequence Parameter Set ID: 0 ===========\n");
#endif
/* ToDo: profile IDC and level IDC should be defined later on */
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 3, "profile_space");
WRITE_U(encoder->stream, 0, 5, "profile_idc");
WRITE_U(encoder->stream, 0, 16, "reserved_indicator_flags");
WRITE_U(encoder->stream, 0, 8, "level_idc");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 32, "profile_compatibility");
WRITE_UE(encoder->stream, 0, "seq_parameter_set_id");
2012-08-10 08:59:05 +00:00
WRITE_UE(encoder->stream, 0, "video_parameter_set_id");
WRITE_UE(encoder->stream, encoder->in.video_format, "chroma_format_idc"); /* 0 = 4:0:0, 1 = 4:2:0, 2 = 4:2:2, 3 = 4:4:4 */
WRITE_U(encoder->stream, 0, 3, "max_temporal_layers_minus1");
WRITE_UE(encoder->stream, encoder->in.width, "pic_width_in_luma_samples");
WRITE_UE(encoder->stream, encoder->in.height, "pic_height_in_luma_samples");
WRITE_U(encoder->stream, 0, 1, "pic_cropping_flag");
/* ToDo: 10bit support? */
WRITE_UE(encoder->stream, 0, "bit_depth_luma_minus8");
WRITE_UE(encoder->stream, 0, "bit_depth_chroma_minus8");
WRITE_U(encoder->stream, ENABLE_PCM, 1, "pcm_enabled_flag");
#if ENABLE_PCM == 1
WRITE_U(encoder->stream, 7, 4, "pcm_bit_depth_luma_minus1");
WRITE_U(encoder->stream, 7, 4, "pcm_bit_depth_chroma_minus1");
#endif
WRITE_UE(encoder->stream, 4, "log2_max_pic_order_cnt_lsb_minus4");
WRITE_UE(encoder->stream, 0, "max_dec_pic_buffering");
WRITE_UE(encoder->stream, 0, "num_reorder_pics");
WRITE_UE(encoder->stream, 0, "max_latency_increase");
WRITE_U(encoder->stream, 0, 1, "restricted_ref_pic_lists_flag");
WRITE_UE(encoder->stream, MIN_SIZE, "log2_min_coding_block_size_minus3");
WRITE_UE(encoder->stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size");
WRITE_UE(encoder->stream, 0, "log2_min_transform_block_size_minus2");
WRITE_UE(encoder->stream, 3, "log2_diff_max_min_transform_block_size");
//If log2MinCUSize == 3
#if MAX_DEPTH == 3
//WRITE_U(encoder->stream, 0, 1, "DisInter4x4");
#endif
#if ENABLE_PCM == 1
WRITE_UE(encoder->stream, 0, "log2_min_pcm_coding_block_size_minus3");
WRITE_UE(encoder->stream, 2, "log2_diff_max_min_pcm_coding_block_size");
#endif
WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_inter");
WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_intra");
WRITE_U(encoder->stream, 0, 1, "scaling_list_enable_flag");
WRITE_U(encoder->stream, 0, 1, "asymmetric_motion_partitions_enabled_flag");
WRITE_U(encoder->stream, 0, 1, "sample_adaptive_offset_enabled_flag");
2012-08-14 08:02:08 +00:00
//WRITE_U(encoder->stream, 0, 1, "adaptive_loop_filter_enabled_flag");
#if ENABLE_PCM == 1
WRITE_U(encoder->stream, 1, 1, "pcm_loop_filter_disable_flag");
#endif
WRITE_U(encoder->stream, 0, 1, "temporal_id_nesting_flag");
2012-08-14 08:02:08 +00:00
WRITE_UE(encoder->stream, 0, "num_short_term_ref_pic_sets");
//WRITE_U(encoder->stream, 0, 1, "inter_ref_pic_set_prediction_flag");
WRITE_U(encoder->stream, 0, 1, "long_term_ref_pics_present_flag");
WRITE_U(encoder->stream, 0, 1, "sps_temporal_mvp_enable_flag");
for(i = 0; i < MAX_DEPTH; i++)
{
WRITE_U(encoder->stream, 0, 1, "AMVP modeflag");
}
WRITE_U(encoder->stream, 0, 1, "sps_extension_flag");
2012-08-10 08:59:05 +00:00
}
2012-08-10 08:59:05 +00:00
void encode_vid_parameter_set(encoder_control* encoder)
{
#ifdef _DEBUG
printf("=========== Video Parameter Set ID: 0 ===========\n");
#endif
WRITE_U(encoder->stream, 0, 3, "vps_max_temporal_layers_minus1");
WRITE_U(encoder->stream, 0, 5, "vps_max_layers_minus1");
WRITE_UE(encoder->stream, 0, "video_parameter_set_id");
2012-08-14 08:02:08 +00:00
WRITE_U(encoder->stream, 0, 1, "vps_temporal_id_nesting_flag");
2012-08-10 08:59:05 +00:00
2012-08-14 08:02:08 +00:00
WRITE_UE(encoder->stream, 0, "vps_max_dec_pic_buffering");
WRITE_UE(encoder->stream, 0, "vps_num_reorder_pics");
WRITE_UE(encoder->stream, 0, "vps_max_latency_increase");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "vps_extension_flag");
}
void encode_slice_header(encoder_control* encoder)
{
#ifdef _DEBUG
printf("=========== Slice ===========\n");
#endif
WRITE_U(encoder->stream, 1, 1, "first_slice_in_pic_flag");
2012-08-10 08:59:05 +00:00
if(encoder->in.cur_pic.type == NAL_IDR_SLICE)
{
WRITE_U(encoder->stream, 0, 1, "no_output_of_prior_pics_flag");
}
WRITE_UE(encoder->stream, 0, "pic_parameter_set_id");
WRITE_UE(encoder->stream, SLICE_I, "slice_type");
2012-08-10 08:59:05 +00:00
WRITE_U(encoder->stream, 0, 1, "dependent_slice_flag");
// if !entropy_slice_flag
2012-08-10 08:59:05 +00:00
//if output_flag_present_flag
WRITE_U(encoder->stream, 1, 1, "pic_output_flag");
//end if
//if( IdrPicFlag ) <- nal_unit_type == 5
if(encoder->in.cur_pic.type == NAL_IDR_SLICE)
{
2012-08-10 08:59:05 +00:00
//WRITE_UE(encoder->stream, encoder->frame&3, "idr_pic_id");
}
else
{
2012-08-14 08:02:08 +00:00
WRITE_U(encoder->stream, encoder->frame+1, 8, "pic_order_cnt_lsb");
WRITE_U(encoder->stream, 1, 1, "short_term_ref_pic_set_sps_flag");
2012-08-14 08:02:08 +00:00
//WRITE_U(encoder->stream, 1, 1, "inter_ref_pic_set_prediction_flag");
WRITE_UE(encoder->stream, 0, "short_term_ref_pic_set_idx");
}
//end if
//end if
/* Skip flags that are not present */
// if !entropy_slice_flag
2012-08-14 08:02:08 +00:00
WRITE_SE(encoder->stream, 0, "slice_qp_delta");
WRITE_UE(encoder->stream, 0, "5_minus_max_num_merge_cand");
2012-08-14 08:02:08 +00:00
WRITE_U(encoder->stream, 1, 1, "alignment");
}
2012-06-13 15:08:15 +00:00
void encode_slice_data(encoder_control* encoder)
{
uint16_t xCtb,yCtb;
init_contexts(encoder,SLICE_I);
//encoder->in.cur_pic.CU[3][5].type = CU_INTRA;
//encoder->in.cur_pic.CU[3][6].type = CU_INTRA;
/* Loop through every LCU in the slice */
for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++)
{
uint8_t lastCUy = (yCtb == (encoder->in.height_in_LCU-1))?1:0;
for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++)
{
uint8_t lastCUx = (xCtb == (encoder->in.width_in_LCU-1))?1:0;
uint8_t depth = 0;
/* Recursive function for looping through all the sub-blocks */
encode_coding_tree(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
/* signal Terminating bit */
if(!lastCUx || !lastCUy)
{
cabac_encodeBinTrm(&cabac, 0);
}
}
}
}
void encode_coding_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
int x,y;
uint8_t split_flag = (depth<1)?1:0; /* ToDo: get from CU data */
uint8_t split_model = 0;
/* Check for slice border */
uint8_t border_x = ((encoder->in.width)<(uint32_t)( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_y = ((encoder->in.height)<(uint32_t)( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border = border_x | border_y;
CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][(xCtb>>(MAX_DEPTH-depth))+(yCtb>>(MAX_DEPTH-depth))*(encoder->in.width_in_LCU<<MAX_DEPTH)];
/* When not in MAX_DEPTH, insert split flag and split the blocks if needed */
if(depth != MAX_DEPTH)
{
SET_SPLITDATA(cur_CU,split_flag);
//Implisit split flag when on border
if(!border)
{
/* Get left and top block split_flags and if they are present and true, increase model number */
if(xCtb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic.CU[depth][(xCtb>>(MAX_DEPTH-depth))-1+(yCtb>>(MAX_DEPTH-depth))*(encoder->in.width_in_LCU<<MAX_DEPTH)])) == 1)
{
split_model++;
}
if(yCtb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic.CU[depth][(xCtb>>(MAX_DEPTH-depth))+((yCtb>>(MAX_DEPTH-depth))-1)*(encoder->in.width_in_LCU<<MAX_DEPTH)])) == 1)
{
split_model++;
}
cabac.ctx = &g_SplitFlagSCModel[split_model];
CABAC_BIN(&cabac, split_flag, "SplitFlag");
}
if(split_flag || border)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
encode_coding_tree(encoder,xCtb,yCtb,depth+1);
if(!border_x)
{
encode_coding_tree(encoder,xCtb+change,yCtb,depth+1);
}
if(!border_y)
{
encode_coding_tree(encoder,xCtb,yCtb+change,depth+1);
}
if(!border)
{
encode_coding_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
/* We don't need to do anything else here */
return;
}
}
if(yCtb > 20 && xCtb > 20)
{
cur_CU->type = CU_INTRA;
}
/* coding_unit( x0, y0, log2CbSize ) */
/* prediction_unit 2Nx2N*/
//if !intra PREDMODE
/* if depth = MAX_DEPTH */
//PartSize
if(depth == MAX_DEPTH)
{
cabac.ctx = &g_PartSizeSCModel;
CABAC_BIN(&cabac, 1, "PartSize");
}
/*end partsize*/
//If MODE_INTRA
/* Code IPCM block */
if(cur_CU->type == CU_PCM || cur_CU->type == CU_NOTSET)
{
cabac_encodeBinTrm(&cabac, 1); /* IPCMFlag == 1 */
//printf("\tIPCMFlag = 1\n");
cabac_finish(&cabac);
WRITE_U(cabac.stream, 1, 1, "stop_bit");
WRITE_U(cabac.stream, 0, 1, "numSubseqIPCM_flag");
bitstream_align(cabac.stream);
/* PCM sample */
{
uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH)))*encoder->in.width];
uint8_t *baseCb = &encoder->in.cur_pic.uData[(xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*encoder->in.width/2)];
uint8_t *baseCr = &encoder->in.cur_pic.vData[(xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*encoder->in.width/2)];
for(y = 0; y < LCU_WIDTH>>depth; y++)
{
for(x = 0; x < LCU_WIDTH>>depth; x++)
{
bitstream_put(cabac.stream, base[x+y*encoder->in.width], 8);
}
}
if(encoder->in.video_format != FORMAT_400)
{
//Cb
for(y = 0; y < LCU_WIDTH>>(depth+1); y++)
{
for(x = 0; x < LCU_WIDTH>>(depth+1); x++)
{
bitstream_put(cabac.stream, baseCb[x+y*(encoder->in.width>>1)], 8);
}
}
//Cr
for(y = 0; y < LCU_WIDTH>>(depth+1); y++)
{
for(x = 0; x < LCU_WIDTH>>(depth+1); x++)
{
bitstream_put(cabac.stream, baseCr[x+y*(encoder->in.width>>1)], 8);
}
}
}
}
/* end PCM sample */
cabac_start(&cabac);
} /* end Code IPCM block */
else if(cur_CU->type == CU_INTRA)
{
cabac_encodeBinTrm(&cabac, 0); /* IPCMFlag == 0 */
cabac.ctx = &g_IntraModeSCModel;
CABAC_BIN(&cabac,0,"IntraPred");
/*
Int preds[3] = {-1, -1, -1};
Int predNum = pcCU->getIntraDirLumaPredictor(absPartIdx+partOffset*j, preds);
*/
CABAC_BINS_EP(&cabac, 0, 5, "intraPredMode");
if(encoder->in.video_format != FORMAT_400)
{
cabac.ctx = &g_ChromaPredSCModel[0];
CABAC_BIN(&cabac,0,"IntraPredChroma");
}
/* Coeff */
/* Transform tree */
cabac.ctx = &g_TransSubdivSCModel[1]; /* //uiLog2TransformBlockSize */
CABAC_BIN(&cabac,0,"TransformSubdivFlag");
2012-06-13 12:15:07 +00:00
/* We don't subdiv and we have 64>>depth transform size */
/* ToDo: allow other sized */
{
uint8_t CbY = 0,CbU = 0,CbV = 0;
/*
Quant and transform here...
*/
CbY = 1; /* Let's pretend we have luma coefficients */
if(encoder->in.video_format != FORMAT_400)
{
/* Non-zero chroma U Tcoeffs */
cabac.ctx = &g_QtCbfSCModelU[0];
CABAC_BIN(&cabac,CbU,"cbf_chroma_u");
/* Non-zero chroma V Tcoeffs */
/* Using the same ctx as before */
CABAC_BIN(&cabac,CbV,"cbf_chroma_v");
}
/* Non-zero luma Tcoeffs */
2012-06-13 12:15:07 +00:00
cabac.ctx = &g_QtCbfSCModelY[1];
CABAC_BIN(&cabac,CbY,"cbf_luma");
/* CoeffNxN */
if(CbY)
{
//void encode_CoeffNxN(encoder_control* encoder,uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan)
int c1 = 0;//,c1_num;
2012-08-10 08:59:05 +00:00
//int patternSigCtx;
/* scanCG == g_sigLastScanCG32x32 */
2012-06-13 12:15:07 +00:00
/* Residual Coding */
/* LastSignificantXY */
int16_t pre_quant_coeff[32*32];
int16_t coeff[32*32];
uint8_t last_coeff_x = 0;
uint8_t last_coeff_y = 0;
int32_t i,ii;
uint32_t sig_coeffgroup_flag[64];
uint32_t width = LCU_WIDTH>>depth;
uint32_t num_nonzero = 0;
int32_t scanPosLast = -1;
int32_t posLast = 0;
int8_t type = 0; /* LUMA */
int32_t shift = 4>>1;
int32_t iScanPosSig;
int32_t iLastScanSet;
uint32_t uiGoRiceParam = 0;
int16_t block[32*32];
uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH)))*encoder->in.width];
uint32_t uiBlkPos, uiPosY, uiPosX, uiSig, uiCtxSig;
/* CONSTANTS */
const uint32_t uiNumBlkSide = width >> shift;
const uint32_t uiLog2BlockSize = g_aucConvertToBit[ width ] + 2;
const uint32_t* scan = g_auiSigLastScan[ SCAN_DIAG ][ uiLog2BlockSize - 1 ];
const uint32_t* scanCG = NULL;
cabac_ctx* baseCoeffGroupCtx = &g_CUSigCoeffGroupSCModel[type];
cabac_ctx* baseCtx = (type==0) ? &g_CUSigSCModel_luma[0] :&g_CUSigSCModel_chroma[0];
memset(pre_quant_coeff,0,sizeof(int16_t)*32*32);
memset(coeff,0,sizeof(int16_t)*32*32);
memset(sig_coeffgroup_flag,0,sizeof(uint32_t)*64);
i = 0;
for(y = 0; y < LCU_WIDTH>>depth; y++)
{
for(x = 0; x < LCU_WIDTH>>depth; x++)
{
block[i++]=base[x+y*encoder->in.width];
}
2012-06-13 15:08:15 +00:00
}
2012-06-13 12:15:07 +00:00
/* Our coeffs */
transform2d(block,pre_quant_coeff,LCU_WIDTH>>depth,0);
{
//uint32_t uiAcSum;
//quant(encoder, pre_quant_coeff, coeff, width, width, &uiAcSum, type);
i = 0;
for(y = 0; y < LCU_WIDTH>>depth; y++)
{
for(x = 0; x < LCU_WIDTH>>depth; x++)
{
coeff[i++]=pre_quant_coeff[x+y*(LCU_WIDTH>>depth)]/encoder->QP;
}
}
}
/* Count non-zero coeffs */
for(i = 0; (uint32_t)i < width*width; i++)
{
if(coeff[i] != 0)
{
num_nonzero++;
ii = i;
}
}
last_coeff_x = ii & (width-1);
last_coeff_y = ii/width;
scanCG = g_auiSigLastScan[ SCAN_DIAG ][ uiLog2BlockSize > 3 ? uiLog2BlockSize-2-1 : 0 ];
if( uiLog2BlockSize == 3 )
{
scanCG = g_sigLastScan8x8[ SCAN_DIAG ];
}
else if( uiLog2BlockSize == 5 )
{
scanCG = g_sigLastScanCG32x32;
}
/* Significance mapping */
while(num_nonzero)
{
posLast = scan[ ++scanPosLast ];
#define POSY (posLast >> uiLog2BlockSize)
#define POSX (posLast - ( POSY << uiLog2BlockSize ))
if( coeff[ posLast ] )
{
sig_coeffgroup_flag[(uiNumBlkSide * (POSY >> shift) + (POSX >> shift))] = 1;
}
num_nonzero -= ( coeff[ posLast ] != 0 )?1:0;
#undef POSY
#undef POSX
}
/* Code last_coeff_x and last_coeff_y */
encode_lastSignificantXY(encoder,last_coeff_x, last_coeff_y, width, width, type, 0);
iScanPosSig = scanPosLast;
iLastScanSet = (scanPosLast >> 4);
/* significant_coeff_flag */
for(i = iLastScanSet; i >= 0; i-- )
{
int32_t iSubPos = i << 4 /*LOG2_SCAN_SET_SIZE*/;
int32_t abs_coeff[16];
int32_t iCGBlkPos = scanCG[ i ];
int32_t iCGPosY = iCGBlkPos / uiNumBlkSide;
int32_t iCGPosX = iCGBlkPos - (iCGPosY * uiNumBlkSide);
uint32_t coeffSigns = 0;
int32_t lastNZPosInCG = -1, firstNZPosInCG = 16;
int32_t numNonZero = 0;
if( iScanPosSig == scanPosLast )
{
abs_coeff[ 0 ] = abs( coeff[ posLast ] );
coeffSigns = ( coeff[ posLast ] < 0 )?1:0;
numNonZero = 1;
lastNZPosInCG = iScanPosSig;
firstNZPosInCG = iScanPosSig;
iScanPosSig--;
}
if( i == iLastScanSet || i == 0)
{
sig_coeffgroup_flag[ iCGBlkPos ] = 1;
}
else
{
uint32_t uiSigCoeffGroup = (sig_coeffgroup_flag[ iCGBlkPos ] != 0);
uint32_t uiCtxSig = context_get_sigCoeffGroup(sig_coeffgroup_flag, iCGPosX, iCGPosY, SCAN_DIAG, width);
cabac.ctx = &baseCoeffGroupCtx[ uiCtxSig ];
CABAC_BIN(&cabac,uiSigCoeffGroup,"significant_coeff_group");
}
if( sig_coeffgroup_flag[ iCGBlkPos ] )
{
int32_t patternSigCtx = context_calcPatternSigCtx( sig_coeffgroup_flag, iCGPosX, iCGPosY, width);
for( ; iScanPosSig >= iSubPos; iScanPosSig-- )
{
uiBlkPos = scan[ iScanPosSig ];
uiPosY = uiBlkPos >> uiLog2BlockSize;
uiPosX = uiBlkPos - ( uiPosY << uiLog2BlockSize );
uiSig = (coeff[ uiBlkPos ] != 0);
if( iScanPosSig > iSubPos || i == 0 || numNonZero )
{
uiCtxSig = context_getSigCtxInc( patternSigCtx, SCAN_DIAG, uiPosX, uiPosY, uiLog2BlockSize, width, type );
cabac.ctx = &baseCtx[ uiCtxSig ];
CABAC_BIN(&cabac,uiSig,"significant_coeff_flag");
}
else
{
uiSig = 1;
}
if( uiSig )
{
abs_coeff[ numNonZero ] = abs( coeff[ uiBlkPos ] );
coeffSigns = 2 * coeffSigns + ( coeff[ uiBlkPos ] < 0 );
numNonZero++;
if( lastNZPosInCG == -1 )
{
lastNZPosInCG = iScanPosSig;
}
firstNZPosInCG = iScanPosSig;
}
}
}
else
{
iScanPosSig = iSubPos - 1;
}
if( numNonZero > 0 )
{
uint8_t signHidden = ( lastNZPosInCG - firstNZPosInCG >= 4 );
uint32_t uiCtxSet = (i > 0 && type==0) ? 2 : 0;
cabac_ctx* baseCtxMod;
int32_t numC1Flag,firstC2FlagIdx,idx,iFirstCoeff2;
if( c1 == 0 )
{
uiCtxSet++;
}
c1 = 1;
baseCtxMod = ( type==0 ) ? &g_CUOneSCModel_luma[4 * uiCtxSet] : &g_CUOneSCModel_chroma[4 * uiCtxSet];
numC1Flag = MIN(numNonZero, C1FLAG_NUMBER);
firstC2FlagIdx = -1;
for(idx = 0; idx < numC1Flag; idx++ )
{
uint32_t uiSymbol = (abs_coeff[ idx ] > 1)?1:0;
cabac.ctx = &baseCtxMod[c1];
CABAC_BIN(&cabac,uiSymbol,"significant_coeff2_flag");
if( uiSymbol )
{
c1 = 0;
if (firstC2FlagIdx == -1)
{
firstC2FlagIdx = idx;
}
}
else if( (c1 < 3) && (c1 > 0) )
{
c1++;
}
}
if (c1 == 0)
{
baseCtxMod = ( type==0 ) ? &g_cCUAbsSCModel_luma[uiCtxSet] : &g_cCUAbsSCModel_chroma[uiCtxSet];
if ( firstC2FlagIdx != -1)
{
uint8_t symbol = (abs_coeff[ firstC2FlagIdx ] > 2)?1:0;
cabac.ctx = &baseCtxMod[0];
CABAC_BIN(&cabac,symbol,"first_c2_flag");
}
}
if( 0 && /*beValid */ signHidden )
{
CABAC_BINS_EP(&cabac,(coeffSigns >> 1),(numNonZero-1),"");
}
else
{
CABAC_BINS_EP(&cabac,coeffSigns,numNonZero,"");
}
iFirstCoeff2 = 1;
if (c1 == 0 || numNonZero > C1FLAG_NUMBER)
{
for (idx = 0; idx < numNonZero; idx++ )
{
int32_t baseLevel = (idx < C1FLAG_NUMBER)? (2 + iFirstCoeff2 ) : 1;
if( abs_coeff[ idx ] >= baseLevel)
{
cabac_writeCoeffRemain(&cabac, abs_coeff[ idx ] - baseLevel, uiGoRiceParam );
if(abs_coeff[idx] > 3*(1<<uiGoRiceParam))
{
uiGoRiceParam = MIN(uiGoRiceParam+ 1, 4);
}
}
if(abs_coeff[ idx ] >= 2)
{
iFirstCoeff2 = 0;
}
}
}
}
}
2012-06-13 12:15:07 +00:00
/* end Residual Coding */
}
}
/* end Transform tree */
/* end Coeff */
}
else
{
//printf("UNHANDLED TYPE!\r\n");
//exit(1);
}
//endif
/* end prediction unit */
//cabac_encodeBin(&cabac, 0); //prev_intra_luma_pred_flag
//cabac_encodeBin(&cabac, 1); //rem_intra_luma_pred_mode
/* end coding_unit */
}
void encode_CoeffNxN(encoder_control* encoder,uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan)
{
}
/* ToDo: fix for others than 32x32 */
void encode_lastSignificantXY(encoder_control* encoder,uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan)
{
uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x;
uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x;
int uiGroupIdxX = g_uiGroupIdx[lastpos_x];
int uiGroupIdxY = g_uiGroupIdx[lastpos_y];
int last_x,last_y,i;
/* Last X binarization */
for(last_x = 0; last_x < uiGroupIdxX ; last_x++)
{
cabac.ctx = &g_CuCtxLastX_luma[offset_x+(last_x>>shift_x)];
CABAC_BIN(&cabac,1,"LastSignificantX");
}
if(uiGroupIdxX < g_uiGroupIdx[width-1])
{
cabac.ctx = &g_CuCtxLastX_luma[offset_x+(last_x>>shift_x)];
CABAC_BIN(&cabac,0,"LastSignificantX");
}
/* Last Y binarization */
for(last_y = 0; last_y < uiGroupIdxY ; last_y++)
{
cabac.ctx = &g_CuCtxLastY_luma[offset_y+(last_y>>shift_y)];
CABAC_BIN(&cabac,1,"LastSignificantY");
}
if(uiGroupIdxY < g_uiGroupIdx[height-1])
{
cabac.ctx = &g_CuCtxLastY_luma[offset_y+(last_y>>shift_y)];
CABAC_BIN(&cabac,0,"LastSignificantY");
}
/* Last X */
if(uiGroupIdxX > 3)
{
lastpos_x -= g_uiMinInGroup[uiGroupIdxX];
for(i = ((uiGroupIdxX-2)>>1)-1; i>=0; i--)
{
CABAC_BIN_EP(&cabac,(lastpos_x>>i) & 1,"LastSignificantX");
}
}
/* Last Y */
if(uiGroupIdxY > 3)
{
lastpos_y -= g_uiMinInGroup[uiGroupIdxY];
for(i = ((uiGroupIdxY-2)>>1)-1; i>=0; i--)
{
CABAC_BIN_EP(&cabac,(lastpos_y>>i) & 1,"LastSignificantY");
}
}
/* end LastSignificantXY */
}