uvg266/tests/intra_sad_tests.c

205 lines
5.1 KiB
C
Raw Normal View History

2014-06-16 15:01:55 +00:00
#include "greatest/greatest.h"
#include "src/image.h"
#include "src/strategyselector.h"
2014-07-28 09:29:33 +00:00
#include <math.h>
2014-06-16 15:01:55 +00:00
//////////////////////////////////////////////////////////////////////////
// MACROS
2014-07-28 09:29:33 +00:00
#define NUM_TESTS 2
2014-06-16 15:01:55 +00:00
#define LCU_MAX_LOG_W 6
#define LCU_MIN_LOG_W 2
//////////////////////////////////////////////////////////////////////////
// GLOBALS
static strategy_list strategies;
pixel * bufs[NUM_TESTS][6][2];
static struct {
int log_width; // for selecting dim from bufs
cost_pixel_nxn_func * tested_func;
} test_env;
//////////////////////////////////////////////////////////////////////////
// SETUP, TEARDOWN AND HELPER FUNCTIONS
static void init_strategies()
{
strategies.allocated = 0;
strategies.count = 0;
strategies.strategies = NULL;
// Init strategyselector because it sets hardware flags.
strategyselector_init();
// Collect all strategies.
if (!strategy_register_picture(&strategies)) {
fprintf(stderr, "strategy_register_picture failed!\n");
return;
}
}
2014-07-28 09:29:33 +00:00
static void init_gradient(int x_px, int y_px, int width, int slope, pixel *buf)
{
for (int y = 0; y < width; ++y) {
for (int x = 0; x < width; ++x) {
int diff_x = x_px - x;
int diff_y = y_px - y;
int val = sqrt(diff_x * diff_x + diff_y * diff_y) + 0.5 + slope;
buf[y * width + x] = CLIP(0, 255, val);
}
}
}
2014-06-16 15:01:55 +00:00
static void setup_tests()
{
init_strategies();
for (int test = 0; test < NUM_TESTS; ++test) {
for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) {
bufs[test][w][0] = 0;
bufs[test][w][1] = 0;
}
for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) {
unsigned size = 1 << (w * 2);
bufs[test][w][0] = malloc(size * sizeof(pixel) + SIMD_ALIGNMENT);
bufs[test][w][0] = ALIGNED_POINTER(bufs[test][w][0], SIMD_ALIGNMENT);
bufs[test][w][1] = malloc(size * sizeof(pixel) + SIMD_ALIGNMENT);
bufs[test][w][1] = ALIGNED_POINTER(bufs[test][w][1], SIMD_ALIGNMENT);
2014-06-16 15:01:55 +00:00
}
}
int test = 0;
for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) {
unsigned size = 1 << (w * 2);
memset(bufs[test][w][0], 0, size);
memset(bufs[test][w][1], 255, size);
}
2014-07-28 09:29:33 +00:00
test = 1;
for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) {
unsigned width = 1 << w;
unsigned size = 1 << (w * 2);
init_gradient(3, 1, width, 1, bufs[test][w][0]);
//init_gradient(width / 2, 0, width, 1, bufs[test][w][1]);
memset(bufs[test][w][1], 128, size);
}
2014-06-16 15:01:55 +00:00
}
static void tear_down_tests()
{
for (int test = 0; test < NUM_TESTS; ++test) {
for (int log_width = 2; log_width <= 6; ++log_width) {
//free(bufs[test][log_width][0]);
//free(bufs[test][log_width][1]);
2014-06-16 15:01:55 +00:00
}
}
}
static unsigned test_calc_sad(const pixel * buf1, const pixel * buf2, int dim)
{
unsigned result = 0;
for (int i = 0; i < dim * dim; ++i) {
result += abs(buf1[i] - buf2[i]);
}
return result;
}
//////////////////////////////////////////////////////////////////////////
// TESTS
/**
* Test that the maximum SAD value for a given buffer size doesn't overflow.
*/
TEST test_black_and_white(void)
{
const int test = 0;
const int width = 1 << test_env.log_width;
pixel * buf1 = bufs[test][test_env.log_width][0];
pixel * buf2 = bufs[test][test_env.log_width][1];
unsigned result1 = test_env.tested_func(buf1, buf2);
unsigned result2 = test_env.tested_func(buf2, buf1);
// Order of parameters must not matter.
ASSERT_EQ(result1, result2);
// Result matches trivial implementation.
ASSERT_EQ(result1, 255 * width * width);
PASS();
}
2014-07-28 09:29:33 +00:00
/**
* Test that the maximum SAD value for a given buffer size doesn't overflow.
*/
TEST test_gradient(void)
{
const int test = 1;
const int width = 1 << test_env.log_width;
pixel * buf1 = bufs[test][test_env.log_width][0];
pixel * buf2 = bufs[test][test_env.log_width][1];
unsigned result = test_calc_sad(buf1, buf2, width);
unsigned result1 = test_env.tested_func(buf1, buf2);
unsigned result2 = test_env.tested_func(buf2, buf1);
// Order of parameters must not matter.
ASSERT_EQ(result1, result2);
// Result matches trivial implementation.
ASSERT_EQ(result1, result);
PASS();
}
2014-06-16 15:01:55 +00:00
//////////////////////////////////////////////////////////////////////////
// TEST FIXTURES
SUITE(intra_sad_tests)
{
//SET_SETUP(sad_setup);
//SET_TEARDOWN(sad_teardown);
setup_tests();
// Loop through all strategies picking out the intra sad ones and run
// selectec strategies though all tests.
for (unsigned i = 0; i < strategies.count; ++i) {
const char * type = strategies.strategies[i].type;
if (strcmp(type, "sad_8bit_4x4") == 0) {
test_env.log_width = 2;
} else if (strcmp(type, "sad_8bit_8x8") == 0) {
test_env.log_width = 3;
} else if (strcmp(type, "sad_8bit_16x16") == 0) {
test_env.log_width = 4;
} else if (strcmp(type, "sad_8bit_32x32") == 0) {
test_env.log_width = 5;
} else if (strcmp(type, "sad_8bit_64x64") == 0) {
test_env.log_width = 6;
} else {
continue;
}
test_env.tested_func = strategies.strategies[i].fptr;
// Tests
RUN_TEST(test_black_and_white);
2014-07-28 09:29:33 +00:00
RUN_TEST(test_gradient);
2014-06-16 15:01:55 +00:00
}
tear_down_tests();
}