uvg266/src/strategies/sse41/reg_sad_pow2_widths-sse41.h

215 lines
8.3 KiB
C
Raw Normal View History

#ifndef REG_SAD_POW2_WIDTHS_SSE41_H_
#define REG_SAD_POW2_WIDTHS_SSE41_H_
#include <immintrin.h>
#include "kvazaar.h"
static INLINE uint32_t reg_sad_w4(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_xmm_bytes = height & ~3;
const int32_t height_residuals = height & 3;
for (y = 0; y < height_xmm_bytes; y += 4) {
__m128i a = _mm_cvtsi32_si128(*(uint32_t *)(data1 + y * stride1));
__m128i b = _mm_cvtsi32_si128(*(uint32_t *)(data2 + y * stride2));
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 1) * stride1), 1);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 1) * stride2), 1);
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 2) * stride1), 2);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 2) * stride2), 2);
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 3) * stride1), 3);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 3) * stride2), 3);
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
if (height_residuals) {
for (; y < height; y++) {
__m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(data1 + y * stride1));
__m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(data2 + y * stride2));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w8(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
uint64_t result = 0;
int32_t y;
const int32_t height_xmm_bytes = height & ~1;
const int32_t height_parity = height & 1;
for (y = 0; y < height_xmm_bytes; y += 2) {
__m128d a_d = _mm_setzero_pd();
__m128d b_d = _mm_setzero_pd();
a_d = _mm_loadl_pd(a_d, (const double *)(data1 + (y + 0) * stride1));
b_d = _mm_loadl_pd(b_d, (const double *)(data2 + (y + 0) * stride2));
a_d = _mm_loadh_pd(a_d, (const double *)(data1 + (y + 1) * stride1));
b_d = _mm_loadh_pd(b_d, (const double *)(data2 + (y + 1) * stride2));
__m128i a = _mm_castpd_si128(a_d);
__m128i b = _mm_castpd_si128(b_d);
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
if (height_parity) {
__m64 a = *(__m64 *)(data1 + y * stride1);
__m64 b = *(__m64 *)(data2 + y * stride2);
__m64 sads = _mm_sad_pu8(a, b);
result = (uint64_t)sads;
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
result += _mm_cvtsi128_si32(sad);
return result;
}
static INLINE uint32_t reg_sad_w12(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2));
__m128i b_masked = _mm_blend_epi16(a, b, 0x3f);
__m128i curr_sads = _mm_sad_epu8 (a, b_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w16(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w24(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_doublelines = height & ~1;
const int32_t height_parity = height & 1;
for (y = 0; y < height_doublelines; y += 2) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2));
__m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1));
__m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2));
__m128d e_d = _mm_setzero_pd();
__m128d f_d = _mm_setzero_pd();
e_d = _mm_loadl_pd(e_d, (const double *)(data1 + (y + 0) * stride1 + 16));
f_d = _mm_loadl_pd(f_d, (const double *)(data2 + (y + 0) * stride2 + 16));
e_d = _mm_loadh_pd(e_d, (const double *)(data1 + (y + 1) * stride1 + 16));
f_d = _mm_loadh_pd(f_d, (const double *)(data2 + (y + 1) * stride2 + 16));
__m128i e = _mm_castpd_si128(e_d);
__m128i f = _mm_castpd_si128(f_d);
__m128i curr_sads_1 = _mm_sad_epu8(a, b);
__m128i curr_sads_2 = _mm_sad_epu8(c, d);
__m128i curr_sads_3 = _mm_sad_epu8(e, f);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_1);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_2);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_3);
}
if (height_parity) {
__m128i a = _mm_loadu_si128 ((const __m128i *) (data1 + y * stride1));
__m128i b = _mm_loadu_si128 ((const __m128i *) (data2 + y * stride2));
__m128i c = _mm_cvtsi64_si128(*(const uint64_t *)(data1 + y * stride1 + 8));
__m128i d = _mm_cvtsi64_si128(*(const uint64_t *)(data2 + y * stride2 + 8));
__m128i curr_sads_1 = _mm_sad_epu8(a, b);
__m128i curr_sads_2 = _mm_sad_epu8(c, d);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_1);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_2);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_arbitrary(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t width, const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
int32_t y, x;
__m128i sse_inc = _mm_setzero_si128();
// Bytes in block in 128-bit blocks per each scanline, and remainder
const int32_t largeblock_bytes = width & ~15;
const int32_t residual_bytes = width & 15;
const __m128i rds = _mm_set1_epi8 (residual_bytes);
const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i rdmask = _mm_cmpgt_epi8(rds, ns);
for (y = 0; y < height; ++y) {
for (x = 0; x < largeblock_bytes; x += 16) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi32(sse_inc, curr_sads);
}
if (residual_bytes) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x));
__m128i b_masked = _mm_blendv_epi8(a, b, rdmask);
__m128i curr_sads = _mm_sad_epu8(a, b_masked);
sse_inc = _mm_add_epi32(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
#endif