uvg266/src/rdo.c

1855 lines
76 KiB
C
Raw Normal View History

/*****************************************************************************
2014-01-27 12:39:56 +00:00
* This file is part of Kvazaar HEVC encoder.
2014-02-21 13:00:20 +00:00
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
2014-01-27 12:39:56 +00:00
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
2014-01-27 12:39:56 +00:00
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
2014-01-27 12:39:56 +00:00
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
2014-01-27 12:39:56 +00:00
****************************************************************************/
#include "rdo.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
2019-03-18 13:35:03 +00:00
#include <pthread.h>
#include "cabac.h"
#include "context.h"
#include "encode_coding_tree.h"
#include "encoder.h"
#include "imagelist.h"
#include "inter.h"
#include "kvz_math.h"
#include "scalinglist.h"
#include "strategyselector.h"
#include "tables.h"
#include "transform.h"
#include "strategies/strategies-quant.h"
#define QUANT_SHIFT 14
#define SCAN_SET_SIZE 16
#define LOG2_SCAN_SET_SIZE 4
#define SBH_THRESHOLD 4
#define RD_SAMPLING_MAX_LAST_QP 50
static FILE *fastrd_learning_outfile[RD_SAMPLING_MAX_LAST_QP + 1] = {NULL};
static pthread_mutex_t outfile_mutex[RD_SAMPLING_MAX_LAST_QP + 1];
const uint32_t kvz_g_go_rice_range[5] = { 7, 14, 26, 46, 78 };
const uint32_t kvz_g_go_rice_prefix_len[5] = { 8, 7, 6, 5, 4 };
2021-04-19 10:11:30 +00:00
static const uint32_t g_auiGoRiceParsCoeff[32] =
2021-03-19 08:28:42 +00:00
{
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3
};
/**
* Entropy bits to estimate coded bits in RDO / RDOQ (From HM 12.0)
*/
2019-03-20 07:07:22 +00:00
/*
const uint32_t kvz_entropy_bits[128] =
{
0x08000, 0x08000, 0x076da, 0x089a0, 0x06e92, 0x09340, 0x0670a, 0x09cdf, 0x06029, 0x0a67f, 0x059dd, 0x0b01f, 0x05413, 0x0b9bf, 0x04ebf, 0x0c35f,
0x049d3, 0x0ccff, 0x04546, 0x0d69e, 0x0410d, 0x0e03e, 0x03d22, 0x0e9de, 0x0397d, 0x0f37e, 0x03619, 0x0fd1e, 0x032ee, 0x106be, 0x02ffa, 0x1105d,
0x02d37, 0x119fd, 0x02aa2, 0x1239d, 0x02836, 0x12d3d, 0x025f2, 0x136dd, 0x023d1, 0x1407c, 0x021d2, 0x14a1c, 0x01ff2, 0x153bc, 0x01e2f, 0x15d5c,
0x01c87, 0x166fc, 0x01af7, 0x1709b, 0x0197f, 0x17a3b, 0x0181d, 0x183db, 0x016d0, 0x18d7b, 0x01595, 0x1971b, 0x0146c, 0x1a0bb, 0x01354, 0x1aa5a,
0x0124c, 0x1b3fa, 0x01153, 0x1bd9a, 0x01067, 0x1c73a, 0x00f89, 0x1d0da, 0x00eb7, 0x1da79, 0x00df0, 0x1e419, 0x00d34, 0x1edb9, 0x00c82, 0x1f759,
0x00bda, 0x200f9, 0x00b3c, 0x20a99, 0x00aa5, 0x21438, 0x00a17, 0x21dd8, 0x00990, 0x22778, 0x00911, 0x23118, 0x00898, 0x23ab8, 0x00826, 0x24458,
0x007ba, 0x24df7, 0x00753, 0x25797, 0x006f2, 0x26137, 0x00696, 0x26ad7, 0x0063f, 0x27477, 0x005ed, 0x27e17, 0x0059f, 0x287b6, 0x00554, 0x29156,
0x0050e, 0x29af6, 0x004cc, 0x2a497, 0x0048d, 0x2ae35, 0x00451, 0x2b7d6, 0x00418, 0x2c176, 0x003e2, 0x2cb15, 0x003af, 0x2d4b5, 0x0037f, 0x2de55
2019-03-20 07:07:22 +00:00
};*/
// ToDo: check all usage
const uint32_t kvz_entropy_bits[2*256] = {
32584, 32953, 32584, 32953, 32217, 33325, 32217, 33325, 31854, 33700, 31854, 33700, 31493, 34079, 31493, 34079,
31135, 34460, 31135, 34460, 30779, 34844, 30779, 34844, 30426, 35232, 30426, 35232, 30076, 35622, 30076, 35622,
29729, 36016, 29729, 36016, 29383, 36414, 29383, 36414, 29041, 36814, 29041, 36814, 28701, 37218, 28701, 37218,
28363, 37626, 28363, 37626, 28028, 38037, 28028, 38037, 27695, 38452, 27695, 38452, 27364, 38870, 27364, 38870,
27036, 39292, 27036, 39292, 26710, 39718, 26710, 39718, 26386, 40148, 26386, 40148, 26065, 40581, 26065, 40581,
25745, 41019, 25745, 41019, 25428, 41461, 25428, 41461, 25113, 41907, 25113, 41907, 24800, 42357, 24800, 42357,
24489, 42812, 24489, 42812, 24180, 43271, 24180, 43271, 23873, 43734, 23873, 43734, 23568, 44202, 23568, 44202,
23265, 44675, 23265, 44675, 22964, 45153, 22964, 45153, 22664, 45635, 22664, 45635, 22367, 46122, 22367, 46122,
22072, 46615, 22072, 46615, 21778, 47112, 21778, 47112, 21486, 47615, 21486, 47615, 21196, 48124, 21196, 48124,
20908, 48638, 20908, 48638, 20621, 49157, 20621, 49157, 20337, 49682, 20337, 49682, 20053, 50214, 20053, 50214,
19772, 50751, 19772, 50751, 19492, 51294, 19492, 51294, 19214, 51844, 19214, 51844, 18938, 52400, 18938, 52400,
18663, 52963, 18663, 52963, 18390, 53532, 18390, 53532, 18118, 54109, 18118, 54109, 17848, 54693, 17848, 54693,
17579, 55283, 17579, 55283, 17312, 55882, 17312, 55882, 17047, 56488, 17047, 56488, 16782, 57102, 16782, 57102,
16520, 57724, 16520, 57724, 16259, 58354, 16259, 58354, 15999, 58993, 15999, 58993, 15741, 59641, 15741, 59641,
15484, 60297, 15484, 60297, 15228, 60963, 15228, 60963, 14974, 61639, 14974, 61639, 14721, 62324, 14721, 62324,
14470, 63019, 14470, 63019, 14220, 63725, 14220, 63725, 13971, 64441, 13971, 64441, 13723, 65168, 13723, 65168,
13477, 65907, 13477, 65907, 13232, 66657, 13232, 66657, 12988, 67420, 12988, 67420, 12746, 68195, 12746, 68195,
12505, 68983, 12505, 68983, 12265, 69784, 12265, 69784, 12026, 70599, 12026, 70599, 11788, 71428, 11788, 71428,
11552, 72273, 11552, 72273, 11317, 73132, 11317, 73132, 11083, 74008, 11083, 74008, 10850, 74900, 10850, 74900,
10618, 75809, 10618, 75809, 10388, 76736, 10388, 76736, 10158, 77681, 10158, 77681, 9930, 78646, 9930, 78646,
9702, 79631, 9702, 79631, 9476, 80637, 9476, 80637, 9251, 81665, 9251, 81665, 9027, 82715, 9027, 82715,
8804, 83790, 8804, 83790, 8582, 84889, 8582, 84889, 8361, 86015, 8361, 86015, 8141, 87168, 8141, 87168,
7923, 88350, 7923, 88350, 7705, 89562, 7705, 89562, 7488, 90806, 7488, 90806, 7272, 92084, 7272, 92084,
7057, 93397, 7057, 93397, 6843, 94748, 6843, 94748, 6630, 96138, 6630, 96138, 6418, 97571, 6418, 97571,
6207, 99048, 6207, 99048, 5997, 100574, 5997, 100574, 5788, 102150, 5788, 102150, 5580, 103780, 5580, 103780,
5372, 105468, 5372, 105468, 5166, 107220, 5166, 107220, 4960, 109038, 4960, 109038, 4756, 110929, 4756, 110929,
4552, 112899, 4552, 112899, 4349, 114955, 4349, 114955, 4147, 117104, 4147, 117104, 3946, 119356, 3946, 119356,
3746, 121720, 3746, 121720, 3546, 124209, 3546, 124209, 3347, 126836, 3347, 126836, 3150, 129617, 3150, 129617,
2953, 132573, 2953, 132573, 2756, 135726, 2756, 135726, 2561, 139104, 2561, 139104, 2367, 142742, 2367, 142742,
2173, 146684, 2173, 146684, 1980, 150985, 1980, 150985, 1788, 155716, 1788, 155716, 1596, 160974, 1596, 160974,
1406, 166891, 1406, 166891, 1216, 173656, 1216, 173656, 1027, 181553, 1027, 181553, 838, 191040, 838, 191040,
651, 202921, 651, 202921, 464, 218827, 464, 218827, 278, 242976, 278, 242976, 92, 294912, 92, 294912,
};
2014-09-10 13:06:19 +00:00
// Entropy bits scaled so that 50% probability yields 1 bit.
const float kvz_f_entropy_bits[256*2] =
2014-09-10 13:06:19 +00:00
{
0.994384765625, 1.005645751953125, 0.994384765625, 1.005645751953125, 0.983184814453125, 1.016998291015625, 0.983184814453125, 1.016998291015625, 0.97210693359375, 1.0284423828125, 0.97210693359375, 1.0284423828125, 0.961090087890625, 1.040008544921875, 0.961090087890625, 1.040008544921875,
0.950164794921875, 1.0516357421875, 0.950164794921875, 1.0516357421875, 0.939300537109375, 1.0633544921875, 0.939300537109375, 1.0633544921875, 0.92852783203125, 1.0751953125, 0.92852783203125, 1.0751953125, 0.9178466796875, 1.08709716796875, 0.9178466796875, 1.08709716796875,
0.907257080078125, 1.09912109375, 0.907257080078125, 1.09912109375, 0.896697998046875, 1.11126708984375, 0.896697998046875, 1.11126708984375, 0.886260986328125, 1.12347412109375, 0.886260986328125, 1.12347412109375, 0.875885009765625, 1.13580322265625, 0.875885009765625, 1.13580322265625,
0.865570068359375, 1.14825439453125, 0.865570068359375, 1.14825439453125, 0.8553466796875, 1.160797119140625, 0.8553466796875, 1.160797119140625, 0.845184326171875, 1.1734619140625, 0.845184326171875, 1.1734619140625, 0.8350830078125, 1.18621826171875, 0.8350830078125, 1.18621826171875,
0.8250732421875, 1.1990966796875, 0.8250732421875, 1.1990966796875, 0.81512451171875, 1.21209716796875, 0.81512451171875, 1.21209716796875, 0.80523681640625, 1.2252197265625, 0.80523681640625, 1.2252197265625, 0.795440673828125, 1.238433837890625, 0.795440673828125, 1.238433837890625,
0.785675048828125, 1.251800537109375, 0.785675048828125, 1.251800537109375, 0.7760009765625, 1.265289306640625, 0.7760009765625, 1.265289306640625, 0.766387939453125, 1.278900146484375, 0.766387939453125, 1.278900146484375, 0.7568359375, 1.292633056640625, 0.7568359375, 1.292633056640625,
0.747344970703125, 1.3065185546875, 0.747344970703125, 1.3065185546875, 0.7379150390625, 1.320526123046875, 0.7379150390625, 1.320526123046875, 0.728546142578125, 1.33465576171875, 0.728546142578125, 1.33465576171875, 0.71923828125, 1.34893798828125, 0.71923828125, 1.34893798828125,
0.709991455078125, 1.363372802734375, 0.709991455078125, 1.363372802734375, 0.7008056640625, 1.377960205078125, 0.7008056640625, 1.377960205078125, 0.691650390625, 1.392669677734375, 0.691650390625, 1.392669677734375, 0.682586669921875, 1.40753173828125, 0.682586669921875, 1.40753173828125,
0.673583984375, 1.422576904296875, 0.673583984375, 1.422576904296875, 0.66461181640625, 1.437744140625, 0.66461181640625, 1.437744140625, 0.65570068359375, 1.453094482421875, 0.65570068359375, 1.453094482421875, 0.6468505859375, 1.4686279296875, 0.6468505859375, 1.4686279296875,
0.6380615234375, 1.48431396484375, 0.6380615234375, 1.48431396484375, 0.629302978515625, 1.500152587890625, 0.629302978515625, 1.500152587890625, 0.620635986328125, 1.51617431640625, 0.620635986328125, 1.51617431640625, 0.611968994140625, 1.53240966796875, 0.611968994140625, 1.53240966796875,
0.6033935546875, 1.548797607421875, 0.6033935546875, 1.548797607421875, 0.5948486328125, 1.56536865234375, 0.5948486328125, 1.56536865234375, 0.58636474609375, 1.5821533203125, 0.58636474609375, 1.5821533203125, 0.57794189453125, 1.59912109375, 0.57794189453125, 1.59912109375,
0.569549560546875, 1.616302490234375, 0.569549560546875, 1.616302490234375, 0.56121826171875, 1.6336669921875, 0.56121826171875, 1.6336669921875, 0.55291748046875, 1.651275634765625, 0.55291748046875, 1.651275634765625, 0.544677734375, 1.669097900390625, 0.544677734375, 1.669097900390625,
0.536468505859375, 1.687103271484375, 0.536468505859375, 1.687103271484375, 0.5283203125, 1.70538330078125, 0.5283203125, 1.70538330078125, 0.520233154296875, 1.723876953125, 0.520233154296875, 1.723876953125, 0.51214599609375, 1.74261474609375, 0.51214599609375, 1.74261474609375,
0.504150390625, 1.7615966796875, 0.504150390625, 1.7615966796875, 0.496185302734375, 1.78082275390625, 0.496185302734375, 1.78082275390625, 0.488250732421875, 1.800323486328125, 0.488250732421875, 1.800323486328125, 0.480377197265625, 1.820098876953125, 0.480377197265625, 1.820098876953125,
0.4725341796875, 1.840118408203125, 0.4725341796875, 1.840118408203125, 0.4647216796875, 1.860443115234375, 0.4647216796875, 1.860443115234375, 0.45697021484375, 1.881072998046875, 0.45697021484375, 1.881072998046875, 0.449249267578125, 1.9019775390625, 0.449249267578125, 1.9019775390625,
0.44158935546875, 1.923187255859375, 0.44158935546875, 1.923187255859375, 0.4339599609375, 1.944732666015625, 0.4339599609375, 1.944732666015625, 0.426361083984375, 1.966583251953125, 0.426361083984375, 1.966583251953125, 0.418792724609375, 1.98876953125, 0.418792724609375, 1.98876953125,
0.411285400390625, 2.011322021484375, 0.411285400390625, 2.011322021484375, 0.40380859375, 2.034210205078125, 0.40380859375, 2.034210205078125, 0.3963623046875, 2.0574951171875, 0.3963623046875, 2.0574951171875, 0.38897705078125, 2.081146240234375, 0.38897705078125, 2.081146240234375,
0.381622314453125, 2.105194091796875, 0.381622314453125, 2.105194091796875, 0.374298095703125, 2.129638671875, 0.374298095703125, 2.129638671875, 0.36700439453125, 2.154510498046875, 0.36700439453125, 2.154510498046875, 0.3597412109375, 2.1798095703125, 0.3597412109375, 2.1798095703125,
0.3525390625, 2.205596923828125, 0.3525390625, 2.205596923828125, 0.345367431640625, 2.2318115234375, 0.345367431640625, 2.2318115234375, 0.338226318359375, 2.258544921875, 0.338226318359375, 2.258544921875, 0.33111572265625, 2.2857666015625, 0.33111572265625, 2.2857666015625,
0.32403564453125, 2.313507080078125, 0.32403564453125, 2.313507080078125, 0.3170166015625, 2.341796875, 0.3170166015625, 2.341796875, 0.30999755859375, 2.370635986328125, 0.30999755859375, 2.370635986328125, 0.30303955078125, 2.40008544921875, 0.30303955078125, 2.40008544921875,
0.29608154296875, 2.430145263671875, 0.29608154296875, 2.430145263671875, 0.2891845703125, 2.460845947265625, 0.2891845703125, 2.460845947265625, 0.282318115234375, 2.492218017578125, 0.282318115234375, 2.492218017578125, 0.275482177734375, 2.524261474609375, 0.275482177734375, 2.524261474609375,
0.2686767578125, 2.55706787109375, 0.2686767578125, 2.55706787109375, 0.26190185546875, 2.590606689453125, 0.26190185546875, 2.590606689453125, 0.255157470703125, 2.624969482421875, 0.255157470703125, 2.624969482421875, 0.248443603515625, 2.66015625, 0.248443603515625, 2.66015625,
0.241790771484375, 2.69622802734375, 0.241790771484375, 2.69622802734375, 0.235137939453125, 2.73321533203125, 0.235137939453125, 2.73321533203125, 0.228515625, 2.77117919921875, 0.228515625, 2.77117919921875, 0.221923828125, 2.8101806640625, 0.221923828125, 2.8101806640625,
0.215362548828125, 2.850250244140625, 0.215362548828125, 2.850250244140625, 0.208831787109375, 2.8914794921875, 0.208831787109375, 2.8914794921875, 0.20233154296875, 2.93389892578125, 0.20233154296875, 2.93389892578125, 0.19586181640625, 2.977630615234375, 0.19586181640625, 2.977630615234375,
0.189422607421875, 3.022705078125, 0.189422607421875, 3.022705078125, 0.183013916015625, 3.06927490234375, 0.183013916015625, 3.06927490234375, 0.1766357421875, 3.11737060546875, 0.1766357421875, 3.11737060546875, 0.1702880859375, 3.1671142578125, 0.1702880859375, 3.1671142578125,
0.1639404296875, 3.2186279296875, 0.1639404296875, 3.2186279296875, 0.15765380859375, 3.2720947265625, 0.15765380859375, 3.2720947265625, 0.1513671875, 3.32757568359375, 0.1513671875, 3.32757568359375, 0.1451416015625, 3.385284423828125, 0.1451416015625, 3.385284423828125,
0.138916015625, 3.445404052734375, 0.138916015625, 3.445404052734375, 0.132720947265625, 3.508148193359375, 0.132720947265625, 3.508148193359375, 0.126556396484375, 3.57373046875, 0.126556396484375, 3.57373046875, 0.12042236328125, 3.6424560546875, 0.12042236328125, 3.6424560546875,
0.11431884765625, 3.714599609375, 0.11431884765625, 3.714599609375, 0.10821533203125, 3.790557861328125, 0.10821533203125, 3.790557861328125, 0.102142333984375, 3.8707275390625, 0.102142333984375, 3.8707275390625, 0.09613037109375, 3.955596923828125, 0.09613037109375, 3.955596923828125,
0.090118408203125, 4.045806884765625, 0.090118408203125, 4.045806884765625, 0.0841064453125, 4.14202880859375, 0.0841064453125, 4.14202880859375, 0.078155517578125, 4.2451171875, 0.078155517578125, 4.2451171875, 0.072235107421875, 4.35614013671875, 0.072235107421875, 4.35614013671875,
0.066314697265625, 4.4764404296875, 0.066314697265625, 4.4764404296875, 0.0604248046875, 4.607696533203125, 0.0604248046875, 4.607696533203125, 0.0545654296875, 4.7520751953125, 0.0545654296875, 4.7520751953125, 0.0487060546875, 4.91253662109375, 0.0487060546875, 4.91253662109375,
0.04290771484375, 5.093109130859375, 0.04290771484375, 5.093109130859375, 0.037109375, 5.299560546875, 0.037109375, 5.299560546875, 0.031341552734375, 5.540557861328125, 0.031341552734375, 5.540557861328125, 0.02557373046875, 5.830078125, 0.02557373046875, 5.830078125,
0.019866943359375, 6.192657470703125, 0.019866943359375, 6.192657470703125, 0.01416015625, 6.678070068359375, 0.01416015625, 6.678070068359375, 0.00848388671875, 7.4150390625, 0.00848388671875, 7.4150390625, 0.0028076171875, 9.0, 0.0028076171875, 9.0,
2014-09-10 13:06:19 +00:00
};
// This struct is for passing data to kvz_rdoq_sign_hiding
struct sh_rates_t {
// Bit cost of increasing rate by one.
int32_t inc[32 * 32];
// Bit cost of decreasing rate by one.
int32_t dec[32 * 32];
// Bit cost of going from zero to one.
int32_t sig_coeff_inc[32 * 32];
// Coeff minus quantized coeff.
int32_t quant_delta[32 * 32];
};
int kvz_init_rdcost_outfiles(const char *dir_path)
{
#define RD_SAMPLING_MAX_FN_LENGTH 4095
static const char *basename_tmpl = "/%02i.txt";
char fn_template[RD_SAMPLING_MAX_FN_LENGTH + 1];
char fn[RD_SAMPLING_MAX_FN_LENGTH + 1];
int rv = 0, qp;
// As long as QP is a two-digit number, template and produced string should
// be equal in length ("%i" -> "22")
assert(RD_SAMPLING_MAX_LAST_QP <= 99);
assert(strlen(fn_template) <= RD_SAMPLING_MAX_FN_LENGTH);
strncpy(fn_template, dir_path, RD_SAMPLING_MAX_FN_LENGTH);
strncat(fn_template, basename_tmpl, RD_SAMPLING_MAX_FN_LENGTH - strlen(dir_path));
for (qp = 0; qp <= RD_SAMPLING_MAX_LAST_QP; qp++) {
pthread_mutex_t *curr = outfile_mutex + qp;
if (pthread_mutex_init(curr, NULL) != 0) {
fprintf(stderr, "Failed to create mutex\n");
rv = -1;
qp--;
goto out_destroy_mutexes;
}
}
for (qp = 0; qp <= RD_SAMPLING_MAX_LAST_QP; qp++) {
FILE *curr;
snprintf(fn, RD_SAMPLING_MAX_FN_LENGTH, fn_template, qp);
fn[RD_SAMPLING_MAX_FN_LENGTH] = 0;
curr = fopen(fn, "w");
if (curr == NULL) {
fprintf(stderr, "Failed to open %s: %s\n", fn, strerror(errno));
rv = -1;
qp--;
goto out_close_files;
}
fastrd_learning_outfile[qp] = curr;
}
goto out;
out_close_files:
for (; qp >= 0; qp--) {
fclose(fastrd_learning_outfile[qp]);
fastrd_learning_outfile[qp] = NULL;
}
goto out;
out_destroy_mutexes:
for (; qp >= 0; qp--) {
pthread_mutex_destroy(outfile_mutex + qp);
}
goto out;
out:
return rv;
#undef RD_SAMPLING_MAX_FN_LENGTH
}
2017-07-26 14:42:45 +00:00
/**
* \brief Calculate actual (or really close to actual) bitcost for coding
* coefficients.
*
2014-04-04 10:09:02 +00:00
* \param coeff coefficient array
* \param width coeff block width
* \param type data type (0 == luma)
2017-07-26 14:42:45 +00:00
*
2014-04-04 10:09:02 +00:00
* \returns bits needed to code input coefficients
*/
static INLINE uint32_t get_coeff_cabac_cost(
2017-07-26 14:42:45 +00:00
const encoder_state_t * const state,
const coeff_t *coeff,
int32_t width,
int32_t type,
int8_t scan_mode,
int8_t tr_skip)
{
// Make sure there are coeffs present
bool found = false;
for (int i = 0; i < width*width; i++) {
if (coeff[i] != 0) {
found = 1;
break;
}
}
if (!found) return 0;
// Take a copy of the CABAC so that we don't overwrite the contexts when
// counting the bits.
cabac_data_t cabac_copy;
memcpy(&cabac_copy, &state->cabac, sizeof(cabac_copy));
2014-04-04 13:04:44 +00:00
2014-04-04 10:09:02 +00:00
// Clear bytes and bits and set mode to "count"
cabac_copy.only_count = 1;
cabac_copy.num_buffered_bytes = 0;
cabac_copy.bits_left = 23;
// Execute the coding function.
// It is safe to drop the const modifier since state won't be modified
// when cabac.only_count is set.
if(!tr_skip) {
kvz_encode_coeff_nxn((encoder_state_t*) state,
&cabac_copy,
coeff,
width,
type,
scan_mode,
NULL,
false);
}
else {
kvz_encode_ts_residual(state,
&cabac_copy,
coeff,
width,
type,
scan_mode);
}
return (23 - cabac_copy.bits_left) + (cabac_copy.num_buffered_bytes << 3);
}
static INLINE void save_ccc(int qp, const coeff_t *coeff, int32_t size, uint32_t ccc)
2019-03-18 13:35:03 +00:00
{
pthread_mutex_t *mtx = outfile_mutex + qp;
2019-03-18 13:35:03 +00:00
assert(sizeof(coeff_t) == sizeof(int16_t));
assert(qp <= RD_SAMPLING_MAX_LAST_QP);
2019-03-18 13:35:03 +00:00
pthread_mutex_lock(mtx);
2019-03-18 13:35:03 +00:00
fwrite(&size, sizeof(size), 1, fastrd_learning_outfile[qp]);
fwrite(&ccc, sizeof(ccc), 1, fastrd_learning_outfile[qp]);
fwrite( coeff, sizeof(coeff_t), size, fastrd_learning_outfile[qp]);
2019-03-18 13:35:03 +00:00
pthread_mutex_unlock(mtx);
2019-03-18 13:35:03 +00:00
}
static INLINE void save_accuracy(int qp, uint32_t ccc, uint32_t fast_cost)
{
pthread_mutex_t *mtx = outfile_mutex + qp;
assert(qp <= RD_SAMPLING_MAX_LAST_QP);
pthread_mutex_lock(mtx);
fprintf(fastrd_learning_outfile[qp], "%u %u\n", fast_cost, ccc);
pthread_mutex_unlock(mtx);
}
/**
* \brief Estimate bitcost for coding coefficients.
*
* \param coeff coefficient array
* \param width coeff block width
* \param type data type (0 == luma)
*
* \returns number of bits needed to code coefficients
*/
uint32_t kvz_get_coeff_cost(const encoder_state_t * const state,
const coeff_t *coeff,
int32_t width,
int32_t type,
int8_t scan_mode,
int8_t tr_skip)
{
uint8_t save_cccs = state->encoder_control->cfg.fastrd_sampling_on;
uint8_t check_accuracy = state->encoder_control->cfg.fastrd_accuracy_check_on;
if (state->qp < state->encoder_control->cfg.fast_residual_cost_limit &&
state->qp < MAX_FAST_COEFF_COST_QP && !tr_skip) {
// TODO: do we need to assert(0) out of the fast-estimation branch if we
// are to save block costs, or should we just warn about it somewhere
// earlier (configuration validation I guess)?
2019-03-18 13:35:03 +00:00
if (save_cccs) {
assert(0 && "Fast RD sampling does not work with fast-residual-cost");
return UINT32_MAX; // Hush little compiler don't you cry, not really gonna return anything after assert(0)
2019-03-18 13:35:03 +00:00
} else {
uint64_t weights = kvz_fast_coeff_get_weights(state);
uint32_t fast_cost = kvz_fast_coeff_cost(coeff, width, weights);
if (check_accuracy) {
uint32_t ccc = get_coeff_cabac_cost(state, coeff, width, type, scan_mode, tr_skip);
save_accuracy(state->qp, ccc, fast_cost);
}
return fast_cost;
2019-03-18 13:35:03 +00:00
}
} else {
uint32_t ccc = get_coeff_cabac_cost(state, coeff, width, type, scan_mode, tr_skip);
2019-03-18 13:35:03 +00:00
if (save_cccs) {
save_ccc(state->qp, coeff, width * width, ccc);
2019-03-18 13:35:03 +00:00
}
return ccc;
}
}
#define COEF_REMAIN_BIN_REDUCTION 5
/** Calculates the cost for specific absolute transform level
* \param abs_level scaled quantized level
* \param ctx_num_one current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC)
* \param ctx_num_abs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC)
* \param abs_go_rice Rice parameter for coeff_abs_level_minus3
* \returns cost of given absolute transform level
* From HM 12.0
*/
INLINE int32_t kvz_get_ic_rate(encoder_state_t * const state,
uint32_t abs_level,
uint16_t ctx_num_gt1,
uint16_t ctx_num_gt2,
uint16_t ctx_num_par,
uint16_t abs_go_rice,
uint32_t reg_bins,
2021-03-30 07:19:35 +00:00
int8_t type,
int use_limited_prefix_length)
{
cabac_data_t * const cabac = &state->cabac;
int32_t rate = 1 << CTX_FRAC_BITS; // cost of sign bit
uint32_t base_level = 4;
cabac_ctx_t *base_par_ctx = (type == 0) ? &(cabac->ctx.cu_parity_flag_model_luma[0]) : &(cabac->ctx.cu_parity_flag_model_chroma[0]);
cabac_ctx_t *base_gt1_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[0][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[0][0]);
cabac_ctx_t* base_gt2_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[1][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[1][0]);
uint16_t go_rice_zero = 1 << abs_go_rice;
2021-03-30 07:19:35 +00:00
int maxLog2TrDynamicRange = 15;
if (reg_bins < 4)
{
uint32_t symbol = (abs_level == 0 ? go_rice_zero : abs_level <= go_rice_zero ? abs_level - 1 : abs_level);
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << abs_go_rice))
{
length = symbol >> abs_go_rice;
rate += (length + 1 + abs_go_rice) << CTX_FRAC_BITS;
2021-03-30 07:19:35 +00:00
} else if(use_limited_prefix_length) {
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> abs_go_rice) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - abs_go_rice) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + abs_go_rice) << CTX_FRAC_BITS;
}
else {
length = abs_go_rice;
symbol = symbol - (threshold << abs_go_rice);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - abs_go_rice + length) << CTX_FRAC_BITS;
}
return rate;
}
if ( abs_level >= base_level ) {
int32_t symbol = abs_level - base_level;
int32_t length;
if (symbol < (COEF_REMAIN_BIN_REDUCTION << abs_go_rice)) {
length = symbol>>abs_go_rice;
rate += (length + 1 + abs_go_rice) << CTX_FRAC_BITS;
2021-03-30 07:19:35 +00:00
}
else if (use_limited_prefix_length) {
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> abs_go_rice) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - abs_go_rice) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + abs_go_rice) << CTX_FRAC_BITS;
}
else {
length = abs_go_rice;
symbol = symbol - ( COEF_REMAIN_BIN_REDUCTION << abs_go_rice);
while (symbol >= (1<<length)) {
symbol -= (1<<(length++));
}
rate += (COEF_REMAIN_BIN_REDUCTION+length+1-abs_go_rice+length) << CTX_FRAC_BITS;
}
rate += CTX_ENTROPY_BITS(&base_par_ctx[ctx_num_par], (abs_level - 2) & 1);
rate += CTX_ENTROPY_BITS(&base_gt1_ctx[ctx_num_gt1], 1);
rate += CTX_ENTROPY_BITS(&base_gt2_ctx[ctx_num_gt2], 1);
}
else if (abs_level == 1)
{
rate += CTX_ENTROPY_BITS(&base_gt1_ctx[ctx_num_gt1], 0);
}
else if (abs_level == 2)
{
rate += CTX_ENTROPY_BITS(&base_par_ctx[ctx_num_par], 0);
rate += CTX_ENTROPY_BITS(&base_gt1_ctx[ctx_num_gt1], 1);
rate += CTX_ENTROPY_BITS(&base_gt2_ctx[ctx_num_gt2], 0);
}
else if (abs_level == 3)
{
rate += CTX_ENTROPY_BITS(&base_par_ctx[ctx_num_par], 1);
rate += CTX_ENTROPY_BITS(&base_gt1_ctx[ctx_num_gt1], 1);
rate += CTX_ENTROPY_BITS(&base_gt2_ctx[ctx_num_gt2], 0);
}
else
{
rate = 0;
}
return rate;
}
/** Get the best level in RD sense
* \param coded_cost reference to coded cost
* \param coded_cost0 reference to cost when coefficient is 0
* \param coded_cost_sig reference to cost of significant coefficient
* \param level_double reference to unscaled quantized level
* \param max_abs_level scaled quantized level
* \param ctx_num_sig current ctxInc for coeff_abs_significant_flag
* \param ctx_num_one current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC)
* \param ctx_num_abs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC)
* \param abs_go_rice current Rice parameter for coeff_abs_level_minus3
* \param q_bits quantization step size
* \param temp correction factor
* \param last indicates if the coefficient is the last significant
* \returns best quantized transform level for given scan position
* This method calculates the best quantized transform level for a given scan position.
* From HM 12.0
*/
INLINE uint32_t kvz_get_coded_level( encoder_state_t * const state, double *coded_cost, double *coded_cost0, double *coded_cost_sig,
int32_t level_double, uint32_t max_abs_level,
uint16_t ctx_num_sig, uint16_t ctx_num_gt1, uint16_t ctx_num_gt2, uint16_t ctx_num_par,
uint16_t abs_go_rice,
uint32_t reg_bins,
int32_t q_bits,double temp, int8_t last, int8_t type)
{
cabac_data_t * const cabac = &state->cabac;
double cur_cost_sig = 0;
uint32_t best_abs_level = 0;
int32_t abs_level;
int32_t min_abs_level;
cabac_ctx_t* base_sig_model = type?(cabac->ctx.cu_sig_model_chroma[0]):(cabac->ctx.cu_sig_model_luma[0]);
const double lambda = type ? state->c_lambda : state->lambda;
if( !last && max_abs_level < 3 ) {
*coded_cost_sig = lambda * CTX_ENTROPY_BITS(&base_sig_model[ctx_num_sig], 0);
*coded_cost = *coded_cost0 + *coded_cost_sig;
if (max_abs_level == 0) return best_abs_level;
} else {
*coded_cost = MAX_DOUBLE;
}
if( !last ) {
cur_cost_sig = lambda * CTX_ENTROPY_BITS(&base_sig_model[ctx_num_sig], 1);
}
min_abs_level = ( max_abs_level > 1 ? max_abs_level - 1 : 1 );
for (abs_level = max_abs_level; abs_level >= min_abs_level ; abs_level-- ) {
double err = (double)(level_double - ( abs_level * (1 << q_bits) ) );
double cur_cost = err * err * temp + lambda *
kvz_get_ic_rate( state, abs_level, ctx_num_gt1, ctx_num_gt2, ctx_num_par,
2021-03-30 07:19:35 +00:00
abs_go_rice, reg_bins, type, true);
cur_cost += cur_cost_sig;
if( cur_cost < *coded_cost ) {
best_abs_level = abs_level;
*coded_cost = cur_cost;
*coded_cost_sig = cur_cost_sig;
}
}
return best_abs_level;
}
/** Calculates the cost of signaling the last significant coefficient in the block
* \param pos_x X coordinate of the last significant coefficient
* \param pos_y Y coordinate of the last significant coefficient
* \returns cost of last significant coefficient
* \param uiWidth width of the transform unit (TU)
*
* From HM 12.0
*/
static double get_rate_last(double lambda,
2014-02-21 13:21:14 +00:00
const uint32_t pos_x, const uint32_t pos_y,
int32_t* last_x_bits, int32_t* last_y_bits)
{
uint32_t ctx_x = g_group_idx[pos_x];
uint32_t ctx_y = g_group_idx[pos_y];
double uiCost = last_x_bits[ ctx_x ] + last_y_bits[ ctx_y ];
if( ctx_x > 3 ) {
uiCost += CTX_FRAC_ONE_BIT * ((ctx_x - 2) >> 1);
}
if( ctx_y > 3 ) {
uiCost += CTX_FRAC_ONE_BIT * ((ctx_y - 2) >> 1);
}
return lambda * uiCost;
}
static void calc_last_bits(encoder_state_t * const state, int32_t width, int32_t height, int8_t type,
2014-02-21 13:21:14 +00:00
int32_t* last_x_bits, int32_t* last_y_bits)
2014-02-21 13:00:20 +00:00
{
cabac_data_t * const cabac = &state->cabac;
int32_t bits_x = 0, bits_y = 0;
int32_t blk_size_offset_x, blk_size_offset_y, shiftX, shiftY;
int32_t ctx;
2014-02-21 13:00:20 +00:00
cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma);
cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma);
2021-03-29 06:05:05 +00:00
static const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 };
blk_size_offset_x = type ? 0: prefix_ctx[kvz_math_floor_log2(width)];
blk_size_offset_y = type ? 0: prefix_ctx[kvz_math_floor_log2(height)];
shiftX = type ? CLIP(0, 2, width>>3) :((kvz_math_floor_log2(width) +1)>>2);
shiftY = type ? CLIP(0, 2, height>>3) :((kvz_math_floor_log2(height) +1)>>2);
for (ctx = 0; ctx < g_group_idx[ width - 1 ]; ctx++) {
int32_t ctx_offset = blk_size_offset_x + (ctx >>shiftX);
last_x_bits[ ctx ] = bits_x + CTX_ENTROPY_BITS(&base_ctx_x[ ctx_offset ],0);
bits_x += CTX_ENTROPY_BITS(&base_ctx_x[ ctx_offset ],1);
}
last_x_bits[ctx] = bits_x;
for (ctx = 0; ctx < g_group_idx[ height - 1 ]; ctx++) {
int32_t ctx_offset = blk_size_offset_y + (ctx >>shiftY);
last_y_bits[ ctx ] = bits_y + CTX_ENTROPY_BITS(&base_ctx_y[ ctx_offset ],0);
bits_y += CTX_ENTROPY_BITS(&base_ctx_y[ ctx_offset ],1);
}
last_y_bits[ctx] = bits_y;
}
/**
* \brief Select which coefficient to change for sign hiding, and change it.
*
* When sign hiding is enabled, the last sign bit of the last coefficient is
* calculated from the parity of the other coefficients. If the parity is not
* correct, one coefficient has to be changed by one. This function uses
* tables generated during RDOQ to select the best coefficient to change.
*/
void kvz_rdoq_sign_hiding(
const encoder_state_t *const state,
const int32_t qp_scaled,
const uint32_t *const scan2raster,
const struct sh_rates_t *const sh_rates,
const int32_t last_pos,
const coeff_t *const coeffs,
coeff_t *const quant_coeffs,
const int8_t type)
{
const encoder_control_t * const ctrl = state->encoder_control;
const double lambda = type ? state->c_lambda : state->lambda;
int inv_quant = kvz_g_inv_quant_scales[qp_scaled % 6];
// This somehow scales quant_delta into fractional bits. Instead of the bits
// being multiplied by lambda, the residual is divided by it, or something
// like that.
const int64_t rd_factor = (inv_quant * inv_quant * (1 << (2 * (qp_scaled / 6)))
/ lambda / 16 / (1 << (2 * (ctrl->bitdepth - 8))) + 0.5);
const int last_cg = (last_pos - 1) >> LOG2_SCAN_SET_SIZE;
for (int32_t cg_scan = last_cg; cg_scan >= 0; cg_scan--) {
const int32_t cg_coeff_scan = cg_scan << LOG2_SCAN_SET_SIZE;
// Find positions of first and last non-zero coefficients in the CG.
int32_t last_nz_scan = -1;
for (int32_t coeff_i = SCAN_SET_SIZE - 1; coeff_i >= 0; --coeff_i) {
if (quant_coeffs[scan2raster[coeff_i + cg_coeff_scan]]) {
last_nz_scan = coeff_i;
break;
}
}
int32_t first_nz_scan = SCAN_SET_SIZE;
for (int32_t coeff_i = 0; coeff_i <= last_nz_scan; coeff_i++) {
if (quant_coeffs[scan2raster[coeff_i + cg_coeff_scan]]) {
first_nz_scan = coeff_i;
break;
}
}
if (last_nz_scan - first_nz_scan < SBH_THRESHOLD) {
continue;
}
const int32_t signbit = quant_coeffs[scan2raster[cg_coeff_scan + first_nz_scan]] <= 0;
unsigned abs_coeff_sum = 0;
for (int32_t coeff_scan = first_nz_scan; coeff_scan <= last_nz_scan; coeff_scan++) {
abs_coeff_sum += quant_coeffs[scan2raster[coeff_scan + cg_coeff_scan]];
}
if (signbit == (abs_coeff_sum & 0x1)) {
// Sign already matches with the parity, no need to modify coefficients.
continue;
}
// Otherwise, search for the best coeff to change by one and change it.
struct {
int64_t cost;
int pos;
int change;
} current, best = { MAX_INT64, 0, 0 };
const int last_coeff_scan = (cg_scan == last_cg ? last_nz_scan : SCAN_SET_SIZE - 1);
for (int coeff_scan = last_coeff_scan; coeff_scan >= 0; --coeff_scan) {
current.pos = scan2raster[coeff_scan + cg_coeff_scan];
// Shift the calculation back into original precision to avoid
// changing the bitstream.
# define PRECISION_INC (15 - CTX_FRAC_BITS)
int64_t quant_cost_in_bits = rd_factor * sh_rates->quant_delta[current.pos];
coeff_t abs_coeff = abs(quant_coeffs[current.pos]);
if (abs_coeff != 0) {
// Choose between incrementing and decrementing a non-zero coeff.
int64_t inc_bits = sh_rates->inc[current.pos];
int64_t dec_bits = sh_rates->dec[current.pos];
if (abs_coeff == 1) {
// We save sign bit and sig_coeff goes to zero.
dec_bits -= sh_rates->sig_coeff_inc[current.pos];
}
if (cg_scan == last_cg && last_nz_scan == coeff_scan && abs_coeff == 1) {
// Changing the last non-zero bit in the last cg to zero.
// This might save a lot of bits if the next bits are already
// zeros, or just a coupple fractional bits if they are not.
// TODO: Check if calculating the real savings makes sense.
dec_bits -= 4 * CTX_FRAC_ONE_BIT;
}
inc_bits = -quant_cost_in_bits + inc_bits * (1 << PRECISION_INC);
dec_bits = quant_cost_in_bits + dec_bits * (1 << PRECISION_INC);
if (inc_bits < dec_bits) {
current.change = 1;
current.cost = inc_bits;
} else {
current.change = -1;
current.cost = dec_bits;
if (coeff_scan == first_nz_scan && abs_coeff == 1) {
// Don't turn first non-zero coeff into zero.
// Seems kind of arbitrary. It's probably because it could lead to
// breaking SBH_THRESHOLD.
current.cost = MAX_INT64;
}
}
} else {
// Try incrementing a zero coeff.
// Add sign bit, other bits and sig_coeff goes to one.
int bits = CTX_FRAC_ONE_BIT + sh_rates->inc[current.pos] + sh_rates->sig_coeff_inc[current.pos];
current.cost = -llabs(quant_cost_in_bits) + bits;
current.change = 1;
if (coeff_scan < first_nz_scan) {
if (((coeffs[current.pos] >= 0) ? 0 : 1) != signbit) {
current.cost = MAX_INT64;
}
}
}
if (current.cost < best.cost) {
best = current;
}
}
if (quant_coeffs[best.pos] == 32767 || quant_coeffs[best.pos] == -32768) {
best.change = -1;
}
if (coeffs[best.pos] >= 0) {
quant_coeffs[best.pos] += best.change;
} else {
quant_coeffs[best.pos] -= best.change;
}
}
}
2021-04-19 10:11:30 +00:00
static unsigned templateAbsSum(const coeff_t* coeff, int baseLevel, uint32_t posX, uint32_t posY, uint32_t width, uint32_t height)
2021-03-19 08:28:42 +00:00
{
const coeff_t* pData = coeff + posX + posY * width;
coeff_t sum = 0;
if (posX < width - 1)
{
sum += abs(pData[1]);
if (posX < width - 2)
{
sum += abs(pData[2]);
}
if (posY < height - 1)
{
sum += abs(pData[width + 1]);
}
}
if (posY < height - 1)
{
sum += abs(pData[width]);
if (posY < height - 2)
{
sum += abs(pData[width << 1]);
}
}
return MAX(MIN(sum - 5 * baseLevel, 31), 0);
}
static INLINE int x_get_ic_rate_ts(const uint32_t abs_level,
const cabac_ctx_t* frac_bits_par,
const cabac_ctx_t* frac_bits_sign,
const cabac_ctx_t* frac_bits_gt1,
const cabac_ctx_t* frac_bits_gtx_ctx,
int* num_ctx_bins,
const uint8_t sign,
const uint16_t rice_par,
const bool use_limited_prefix_length,
const int max_log2_tr_dynamic_range,
int rem_reg_bins)
{
if (rem_reg_bins < 4) // Full by-pass coding
{
int rate = abs_level ? (CTX_FRAC_ONE_BIT) : 0; // 1 bit to signal sign of non-zero
uint32_t symbol = abs_level;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << rice_par))
{
length = symbol >> rice_par;
rate += (length + 1 + rice_par) << CTX_FRAC_BITS;
}
else if (use_limited_prefix_length)
{
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS;
}
else
{
length = rice_par;
symbol = symbol - (threshold << rice_par);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS;
}
return rate;
}
else if (rem_reg_bins >= 4 && rem_reg_bins < 8) // First pass context coding and all by-pass coding ( Sign flag is not counted here)
{
int rate = CTX_ENTROPY_BITS(frac_bits_sign, sign); // frac_bits_sign.intBits[sign]; // sign bits
if (abs_level)
(*num_ctx_bins)++;
if (abs_level > 1)
{
rate += CTX_ENTROPY_BITS(frac_bits_gt1, 1); // frac_bits_gt1.intBits[1];
rate += CTX_ENTROPY_BITS(frac_bits_par, (abs_level - 2) & 1); // frac_bits_par.intBits[(abs_level - 2) & 1];
(*num_ctx_bins) += 2;
int cutoffVal = 2;
if (abs_level >= cutoffVal)
{
uint32_t symbol = (abs_level - cutoffVal) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << rice_par))
{
length = symbol >> rice_par;
rate += (length + 1 + rice_par) << CTX_FRAC_BITS;
}
else if (use_limited_prefix_length)
{
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS;
}
else
{
length = rice_par;
symbol = symbol - (threshold << rice_par);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS;
}
}
}
else if (abs_level == 1)
{
rate += CTX_ENTROPY_BITS(frac_bits_gt1, 0); // frac_bits_gt1.intBits[0];
num_ctx_bins++;
}
else
{
rate = 0;
}
return rate;
}
int rate = CTX_ENTROPY_BITS(frac_bits_sign, sign);
if (abs_level)
num_ctx_bins++;
if (abs_level > 1)
{
rate += CTX_ENTROPY_BITS(frac_bits_gt1, 1); // frac_bits_gt1.intBits[1];
rate += CTX_ENTROPY_BITS(frac_bits_sign, (abs_level - 2) & 1); // frac_bits_par.intBits[(abs_level - 2) & 1];
num_ctx_bins += 2;
int cutoffVal = 2;
const int numGtBins = 4;
for (int i = 0; i < numGtBins; i++)
{
if (abs_level >= cutoffVal)
{
const uint16_t ctxGtX = cutoffVal >> 1;
// const BinFracBits* fracBitsGtX = fracBitsAccess.getFracBitsArray(ctxGtX);
unsigned gtX = (abs_level >= (cutoffVal + 2));
rate += CTX_ENTROPY_BITS(&frac_bits_gtx_ctx[ctxGtX], gtX);// fracBitsGtX.intBits[gtX];
num_ctx_bins++;
}
cutoffVal += 2;
}
if (abs_level >= cutoffVal)
{
uint32_t symbol = (abs_level - cutoffVal) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << rice_par))
{
length = symbol >> rice_par;
rate += (length + 1 + rice_par) << CTX_FRAC_BITS;
}
else if (use_limited_prefix_length)
{
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS;
}
else
{
length = rice_par;
symbol = symbol - (threshold << rice_par);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS;
}
}
}
else if (abs_level == 1)
{
rate += CTX_ENTROPY_BITS(frac_bits_gt1, 0); // frac_bits_gt1.intBits[0];
num_ctx_bins++;
}
else
{
rate = 0;
}
return rate;
}
static inline uint32_t get_coded_level_ts_pred(double* coded_cost,
double* coded_cost0,
double* coded_cost_sig,
int level_double,
int q_bits,
double error_scale,
uint32_t* coeff_levels,
double* coeff_level_error,
const cabac_ctx_t* frac_bits_sig,
const cabac_ctx_t* frac_bits_par,
const cabac_ctx_t* frac_bits_sign,
const cabac_ctx_t* frac_bits_gt1,
const cabac_ctx_t* frac_bits_gtx_ctx,
const uint8_t sign,
int right_pixel,
int below_pixel,
uint16_t rice_par,
bool is_last,
bool use_limited_prefix_length,
const int max_log2_tr_dynamic_range,
int* num_used_ctx_bins,
int rem_reg_bins,
int tested_levels,
double lambda
)
{
double curr_cost_sig = 0;
uint32_t best_abs_level = 0;
*num_used_ctx_bins = 0;
int num_best_ctx_bin = 0;
int bdpcm = 0;
if (!is_last && coeff_levels[0] < 3)
{
if (rem_reg_bins >= 4)
*coded_cost_sig = lambda * CTX_ENTROPY_BITS(frac_bits_sig, 0);
else
*coded_cost_sig = lambda * (1 << CTX_FRAC_BITS);
*coded_cost = *coded_cost0 + *coded_cost_sig;
if (rem_reg_bins >= 4)
(*num_used_ctx_bins)++;
if (coeff_levels[0] == 0)
{
return best_abs_level;
}
}
else
{
*coded_cost = MAX_DOUBLE;
}
if (!is_last)
{
if (rem_reg_bins >= 4)
curr_cost_sig = lambda * CTX_ENTROPY_BITS(frac_bits_sig, 1);
else
curr_cost_sig = lambda * (1 << CTX_FRAC_BITS);
if (coeff_levels[0] >= 3 && rem_reg_bins >= 4)
(*num_used_ctx_bins)++;
}
for (int errorInd = 1; errorInd <= tested_levels; errorInd++)
{
int absLevel = coeff_levels[errorInd - 1];
double dErr = 0.0;
dErr = (double)(level_double - ((absLevel) << q_bits));
coeff_level_error[errorInd] = dErr * dErr * error_scale;
int modAbsLevel = absLevel;
if (rem_reg_bins >= 4)
{
modAbsLevel = kvz_derive_mod_coeff(right_pixel, below_pixel, absLevel, bdpcm);
}
int numCtxBins = 0;
double dCurrCost = coeff_level_error[errorInd] + lambda *
x_get_ic_rate_ts(modAbsLevel, frac_bits_par, frac_bits_sign, frac_bits_gt1, frac_bits_gtx_ctx,
&numCtxBins, sign, rice_par, use_limited_prefix_length, max_log2_tr_dynamic_range, rem_reg_bins);
if (rem_reg_bins >= 4)
dCurrCost += curr_cost_sig; // if cctx.numCtxBins < 4, xGetICRateTS return rate including sign cost. dont need to add any more
if (dCurrCost < *coded_cost)
{
best_abs_level = absLevel;
*coded_cost = dCurrCost;
*coded_cost_sig = curr_cost_sig;
num_best_ctx_bin = numCtxBins;
}
}
*num_used_ctx_bins += num_best_ctx_bin;
return best_abs_level;
}
int kvz_ts_rdoq(encoder_state_t* const state, coeff_t* src_coeff, coeff_t* dest_coeff, int32_t width,
int32_t height, int8_t type, int8_t scan_mode) {
const encoder_control_t* const encoder = state->encoder_control;
const cabac_data_t* cabac = &state->cabac;
const bool extended_precision = false;
const int max_log2_tr_dynamic_range = 15;
uint32_t log2_tr_width = kvz_math_floor_log2(height);
uint32_t log2_tr_height = kvz_math_floor_log2(width);
const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2;
//TODO: Scaling list
double block_uncoded_cost = 0;
uint32_t cg_num = width * height >> 4;
const int32_t shift = 4 >> 1;
const uint32_t num_blk_side = width >> shift;
int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6, encoder->qp_map[0]);
qp_scaled = MAX(qp_scaled, 4 + 6 * MIN_QP_PRIME_TS);
int32_t max_num_coeff = width * height;
// TODO: Scaling list
double cost_coeff[32 * 32];
double cost_sig[32 * 32];
double cost_coeff0[32 * 32];
double cost_coeffgroup_sig[64];
uint32_t sig_coeffgroup_flag[64];
switch (cg_num) {
case 1: FILL_ARRAY(sig_coeffgroup_flag, 0, 1); FILL_ARRAY(cost_coeffgroup_sig, 0, 1); break;
case 4: FILL_ARRAY(sig_coeffgroup_flag, 0, 4); FILL_ARRAY(cost_coeffgroup_sig, 0, 4); break;
case 16: FILL_ARRAY(sig_coeffgroup_flag, 0, 16); FILL_ARRAY(cost_coeffgroup_sig, 0, 16); break;
case 64: FILL_ARRAY(sig_coeffgroup_flag, 0, 64); FILL_ARRAY(cost_coeffgroup_sig, 0, 64); break;
default: assert(0 && "There should be 1, 4, 16 or 64 coefficient groups");
}
int bdpcm = 0;
const bool needs_sqrt2_scale = false; // from VTM: should always be false - transform-skipped blocks don't require sqrt(2) compensation.
const int q_bits = QUANT_SHIFT + qp_scaled / 6 + (needs_sqrt2_scale ? -1 : 0); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int32_t quant_coeff = kvz_g_quant_scales[qp_scaled % 6];
const double error_scale = 1.0 / quant_coeff / quant_coeff;
double lambda = type == 0 ? state->lambda : state->c_lambda;
const coeff_t entropy_coding_maximum = (1 << max_log2_tr_dynamic_range) - 1;
const uint32_t* scan = kvz_g_sig_last_scan[scan_mode][log2_block_size - 1];
const uint32_t* scan_cg = g_sig_last_scan_cg[log2_block_size - 1][scan_mode];
uint32_t coeff_levels[3];
double coeff_level_error[4];
uint32_t log2_cg_size = log2_tr_height + log2_tr_width;
const int sbSizeM1 = (1 << log2_cg_size) - 1;
double base_cost = 0;
uint32_t go_rice_par = 0;
int scan_pos;
struct {
double coded_level_and_dist;
double uncoded_dist;
double sig_cost;
double sig_cost_0;
int32_t nnz_before_pos0;
int32_t num_sbb_ctx_bins;
} rd_stats;
bool any_sig_cg = false;
int rem_reg_bins = (width * height * 7) >> 2;
for (int sbId = 0; sbId < cg_num; sbId++)
{
uint32_t cg_blkpos = scan_cg[sbId];
int no_coeff_coded = 0;
base_cost = 0.0;
FILL(rd_stats, 0);
rd_stats.num_sbb_ctx_bins = 0;
for (int scan_pos_in_sb = 0; scan_pos_in_sb <= sbSizeM1; scan_pos_in_sb++)
{
scan_pos = sbId << log2_cg_size + scan_pos_in_sb;
int last_pos_coded = sbSizeM1;
uint32_t blkpos = scan[scan_pos];
uint32_t pos_y = blkpos >> log2_block_size;
uint32_t pos_x = blkpos - (pos_y << log2_block_size);
//===== quantization =====
// set coeff
const int64_t tmp_level = (int64_t)(abs(src_coeff[blkpos])) * quant_coeff;
const int level_double = MIN(tmp_level, MAX_INT64 - (1ll << ((long long)q_bits - 1ll)));
uint32_t roundAbsLevel = MIN((uint32_t)(entropy_coding_maximum), (uint32_t)((level_double + ((1) << (q_bits - 1))) >> q_bits));
uint32_t min_abs_level = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
uint32_t down_abs_level = MIN((uint32_t)(entropy_coding_maximum), (uint32_t)(level_double >> q_bits));
uint32_t up_abs_level = MIN((uint32_t)(entropy_coding_maximum), down_abs_level + 1);
int tested_levels = 0;
coeff_levels[tested_levels++] = roundAbsLevel;
if (min_abs_level != roundAbsLevel)
coeff_levels[tested_levels++] = min_abs_level;
int right_pixel, below_pixel, pred_pixel;
right_pixel = pos_x > 0 ? src_coeff[pos_x + pos_y * width - 1] : 0;
below_pixel = pos_y > 0 ? src_coeff[pos_x + (pos_y - 1) * width] : 0;
pred_pixel = kvz_derive_mod_coeff(right_pixel, below_pixel, up_abs_level, 0);
if (up_abs_level != roundAbsLevel && up_abs_level != min_abs_level && pred_pixel == 1)
coeff_levels[tested_levels++] = up_abs_level;
double err = (double)(level_double);
coeff_level_error[0] = err * err * error_scale;
cost_coeff0[scan_pos] = coeff_level_error[0];
block_uncoded_cost += cost_coeff0[scan_pos];
dest_coeff[blkpos] = coeff_levels[0];
//===== coefficient level estimation =====
unsigned ctx_id_sig = kvz_context_get_sig_ctx_idx_abs_ts(dest_coeff, pos_x, pos_y, width);
uint32_t c_level;
const cabac_ctx_t* frac_bits_par = &cabac->ctx.transform_skip_par;
go_rice_par = 1;
unsigned ctx_id_sign = kvz_sign_ctx_id_abs_ts(dest_coeff, pos_x, pos_y, width, 0);
const cabac_ctx_t* frac_bits_sign = &cabac->ctx.transform_skip_res_sign[ctx_id_sign];
const uint8_t sign = src_coeff[blkpos] < 0 ? 1 : 0;
unsigned gt1_ctx_id = kvz_lrg1_ctx_id_abs_ts(dest_coeff, pos_x, pos_y, width, 0);
const cabac_ctx_t* frac_bits_gt1 = &cabac->ctx.transform_skip_gt1[gt1_ctx_id];
const cabac_ctx_t* frac_bits_sig = &cabac->ctx.transform_skip_sig[ctx_id_sig];
bool is_last = false; //
if (scan_pos_in_sb == last_pos_coded && no_coeff_coded == 0)
{
is_last = true;
}
int num_used_ctx_bins = 0;
c_level = get_coded_level_ts_pred(&cost_coeff[scan_pos], &cost_coeff0[scan_pos], &cost_sig[scan_pos], level_double,
q_bits, error_scale, coeff_levels, coeff_level_error,
frac_bits_sig, frac_bits_par, frac_bits_sign, frac_bits_gt1, cabac->ctx.transform_skip_gt2,
sign, right_pixel, below_pixel, go_rice_par, is_last, extended_precision,
max_log2_tr_dynamic_range, &num_used_ctx_bins, rem_reg_bins, tested_levels, lambda);
rem_reg_bins -= num_used_ctx_bins;
rd_stats.num_sbb_ctx_bins += num_used_ctx_bins;
if (c_level > 0)
{
no_coeff_coded++;
}
coeff_t level = c_level;
dest_coeff[blkpos] = (level != 0 && src_coeff[blkpos] < 0) ? -level : level;
base_cost += cost_coeff[scan_pos];
rd_stats.sig_cost += cost_sig[scan_pos];
if (dest_coeff[blkpos])
{
sig_coeffgroup_flag[cg_blkpos] = 1;
rd_stats.coded_level_and_dist += cost_coeff[scan_pos] - cost_sig[scan_pos];
rd_stats.uncoded_dist += cost_coeff0[scan_pos];
}
} //end for (iScanPosinCG)
const cabac_ctx_t* fracBitsSigGroup = &cabac->ctx.sig_coeff_group_model[(type == 0 ? 0 : 1) * 2 + 1];
if (sig_coeffgroup_flag[cg_blkpos])
{
base_cost += lambda*CTX_ENTROPY_BITS(fracBitsSigGroup, 0) - rd_stats.sig_cost;
cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0);
rem_reg_bins += rd_stats.num_sbb_ctx_bins; // skip sub-block
}
else if (sbId != cg_num - 1 || any_sig_cg)
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double cost_zero_sb = base_cost;
base_cost += lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 1);
cost_zero_sb += lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0);
cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 1);
cost_zero_sb += rd_stats.uncoded_dist; // distortion for resetting non-zero levels to zero levels
cost_zero_sb -= rd_stats.coded_level_and_dist; // distortion and level cost for keeping all non-zero levels
cost_zero_sb -= rd_stats.sig_cost; // sig cost for all coeffs, including zero levels and non-zerl levels
if (cost_zero_sb < base_cost)
{
base_cost = cost_zero_sb;
cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0);
rem_reg_bins += rd_stats.num_sbb_ctx_bins; // skip sub-block
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
{
scan_pos = sbId << log2_cg_size + scanPosInSB;
uint32_t blkPos = scan[scan_pos];
if (dest_coeff[blkPos])
{
dest_coeff[blkPos] = 0;
cost_coeff[scan_pos] = cost_coeff0[scan_pos];
cost_sig[scan_pos] = 0;
}
}
}
else
{
any_sig_cg = true;
}
}
}
int abs_sum = 0;
//===== estimate last position =====
for (int scanPos = 0; scanPos < max_num_coeff; scanPos++)
{
int blkPos = scan[scanPos];
coeff_t level = dest_coeff[blkPos];
abs_sum += abs(level);
}
return abs_sum;
}
/** RDOQ with CABAC
* \returns void
* Rate distortion optimized quantization for entropy
* coding engines using probability models like CABAC
* From HM 12.0
*/
2021-02-12 11:24:02 +00:00
// ToDo: implement new RDOQ
void kvz_rdoq(encoder_state_t * const state, coeff_t *coef, coeff_t *dest_coeff, int32_t width,
2021-03-24 08:03:55 +00:00
int32_t height, int8_t type, int8_t scan_mode, int8_t block_type, int8_t tr_depth, uint16_t cbf)
{
const encoder_control_t * const encoder = state->encoder_control;
cabac_data_t * const cabac = &state->cabac;
uint32_t log2_tr_width = kvz_math_floor_log2( height );
uint32_t log2_tr_height = kvz_math_floor_log2( width );
int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - ((log2_tr_height + log2_tr_width) >> 1); // Represents scaling through forward transform
uint16_t go_rice_param = 0;
uint32_t reg_bins = (width * height * 28) >> 4;
const uint32_t log2_block_size = kvz_g_convert_to_bit[ width ] + 2;
2014-02-21 13:00:20 +00:00
int32_t scalinglist_type= (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6, encoder->qp_map[0]);
int32_t q_bits = QUANT_SHIFT + qp_scaled/6 + transform_shift;
2014-02-21 13:00:20 +00:00
const double lambda = type ? state->c_lambda : state->lambda;
const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_width][log2_tr_height][scalinglist_type][qp_scaled%6];
const double *err_scale = encoder->scaling_list.error_scale[log2_tr_width][log2_tr_height][scalinglist_type][qp_scaled%6];
double block_uncoded_cost = 0;
double cost_coeff [ 32 * 32 ];
double cost_sig [ 32 * 32 ];
double cost_coeff0[ 32 * 32 ];
struct sh_rates_t sh_rates;
const uint32_t log2_cg_size = kvz_g_log2_sbb_size[log2_block_size][log2_block_size][0] + kvz_g_log2_sbb_size[log2_block_size][log2_block_size][1];
const uint32_t cg_width = (MIN((uint8_t)32, width) >> (log2_cg_size / 2));
2021-04-14 11:19:31 +00:00
const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 1][scan_mode];
const uint32_t cg_size = 16;
const int32_t shift = 4 >> 1;
const uint32_t num_blk_side = width >> shift;
double cost_coeffgroup_sig[ 64 ];
uint32_t sig_coeffgroup_flag[ 64 ];
2014-02-21 13:00:20 +00:00
uint16_t ctx_set = 0;
double base_cost = 0;
int32_t temp_diag = -1;
int32_t temp_sum = -1;
2014-02-21 13:00:20 +00:00
int32_t base_level;
2014-02-21 13:00:20 +00:00
const uint32_t *scan = kvz_g_sig_last_scan[ scan_mode ][ log2_block_size - 1 ];
int32_t cg_last_scanpos = -1;
int32_t last_scanpos = -1;
2014-02-21 13:00:20 +00:00
uint32_t cg_num = width * height >> 4;
// Explicitly tell the only possible numbers of elements to be zeroed.
// Hope the compiler is able to utilize this information.
switch (cg_num) {
case 1: FILL_ARRAY(sig_coeffgroup_flag, 0, 1); break;
case 4: FILL_ARRAY(sig_coeffgroup_flag, 0, 4); break;
case 16: FILL_ARRAY(sig_coeffgroup_flag, 0, 16); break;
case 64: FILL_ARRAY(sig_coeffgroup_flag, 0, 64); break;
default: assert(0 && "There should be 1, 4, 16 or 64 coefficient groups");
}
2021-03-30 07:19:35 +00:00
cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.sig_coeff_group_model[type ? 2 : 0]);
cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0][0]) : &(cabac->ctx.cu_sig_model_chroma[0][0]);
cabac_ctx_t* base_gt1_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[0][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[0][0]);
2015-03-04 11:58:24 +00:00
struct {
double coded_level_and_dist;
double uncoded_dist;
double sig_cost;
double sig_cost_0;
int32_t nnz_before_pos0;
} rd_stats;
//Find last cg and last scanpos
int32_t cg_scanpos;
for (cg_scanpos = (cg_num - 1); cg_scanpos >= 0; cg_scanpos--)
{
for (int32_t scanpos_in_cg = (cg_size - 1); scanpos_in_cg >= 0; scanpos_in_cg--)
{
int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg;
uint32_t blkpos = scan[scanpos];
int32_t q = quant_coeff[blkpos];
int32_t level_double = coef[blkpos];
level_double = MIN(abs(level_double) * q, MAX_INT - (1 << (q_bits - 1)));
uint32_t max_abs_level = (level_double + (1 << (q_bits - 1))) >> q_bits;
if (max_abs_level > 0) {
last_scanpos = scanpos;
cg_last_scanpos = cg_scanpos;
sh_rates.sig_coeff_inc[blkpos] = 0;
break;
}
dest_coeff[blkpos] = 0;
}
if (last_scanpos != -1) break;
}
if (last_scanpos == -1) {
return;
}
2014-02-21 13:00:20 +00:00
for (; cg_scanpos >= 0; cg_scanpos--) cost_coeffgroup_sig[cg_scanpos] = 0;
int32_t last_x_bits[32], last_y_bits[32];
for (int32_t cg_scanpos = cg_last_scanpos; cg_scanpos >= 0; cg_scanpos--) {
uint32_t cg_blkpos = scan_cg[cg_scanpos];
uint32_t cg_pos_y = cg_blkpos / num_blk_side;
uint32_t cg_pos_x = cg_blkpos - (cg_pos_y * num_blk_side);
2014-02-21 13:00:20 +00:00
FILL(rd_stats, 0);
for (int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) {
int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg;
if (scanpos > last_scanpos) continue;
uint32_t blkpos = scan[scanpos];
int32_t q = quant_coeff[blkpos];
double temp = err_scale[blkpos];
int32_t level_double = coef[blkpos];
level_double = MIN(abs(level_double) * q , MAX_INT - (1 << (q_bits - 1)));
uint32_t max_abs_level = (level_double + (1 << (q_bits - 1))) >> q_bits;
double err = (double)level_double;
cost_coeff0[scanpos] = err * err * temp;
block_uncoded_cost += cost_coeff0[ scanpos ];
2021-03-19 08:28:42 +00:00
uint32_t pos_y = blkpos >> log2_block_size;
uint32_t pos_x = blkpos - (pos_y << log2_block_size);
//===== coefficient level estimation =====
int32_t level;
2021-06-24 10:20:02 +00:00
if (temp_diag != -1) {
ctx_set = (MIN(temp_sum, 4) + 1) + (!temp_diag ? ((type == 0) ? 15 : 5) : (type == 0) ? temp_diag < 3 ? 10 : (temp_diag < 10 ? 5 : 0) : 0);
}
else ctx_set = 0;
2021-03-19 08:28:42 +00:00
if (reg_bins < 4) {
int sumAll = templateAbsSum(coef, 0, pos_x, pos_y, width, height);
2021-03-19 08:28:42 +00:00
go_rice_param = g_auiGoRiceParsCoeff[sumAll];
}
uint16_t gt1_ctx = ctx_set;
uint16_t gt2_ctx = ctx_set;
uint16_t par_ctx = ctx_set;
if( scanpos == last_scanpos ) {
level = kvz_get_coded_level(state, &cost_coeff[ scanpos ], &cost_coeff0[ scanpos ], &cost_sig[ scanpos ],
level_double, max_abs_level, 0, gt1_ctx, gt2_ctx, par_ctx, go_rice_param,
reg_bins, q_bits, temp, 1, type );
kvz_context_get_sig_ctx_idx_abs(coef, pos_x, pos_y, width, height, type, &temp_diag, &temp_sum);
} else {
uint16_t ctx_sig = kvz_context_get_sig_ctx_idx_abs(coef, pos_x, pos_y, width, height, type, &temp_diag, &temp_sum);
level = kvz_get_coded_level(state, &cost_coeff[ scanpos ], &cost_coeff0[ scanpos ], &cost_sig[ scanpos ],
level_double, max_abs_level, ctx_sig, gt1_ctx, gt2_ctx, par_ctx, go_rice_param,
reg_bins, q_bits, temp, 0, type );
if (encoder->cfg.signhide_enable) {
int greater_than_zero = CTX_ENTROPY_BITS(&baseCtx[ctx_sig], 1);
int zero = CTX_ENTROPY_BITS(&baseCtx[ctx_sig], 0);
sh_rates.sig_coeff_inc[blkpos] = (reg_bins < 4 ? 0 : greater_than_zero - zero);
}
}
2018-10-17 06:06:35 +00:00
if (encoder->cfg.signhide_enable) {
sh_rates.quant_delta[blkpos] = (level_double - level * (1 << q_bits)) >> (q_bits - 8);
if (level > 0) {
2021-03-30 07:19:35 +00:00
int32_t rate_now = kvz_get_ic_rate(state, level, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false);
sh_rates.inc[blkpos] = kvz_get_ic_rate(state, level + 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now;
sh_rates.dec[blkpos] = kvz_get_ic_rate(state, level - 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now;
} else { // level == 0
if (reg_bins < 4) {
2021-03-30 07:19:35 +00:00
int32_t rate_now = kvz_get_ic_rate(state, level, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false);
sh_rates.inc[blkpos] = kvz_get_ic_rate(state, level + 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now;
} else {
sh_rates.inc[blkpos] = CTX_ENTROPY_BITS(&base_gt1_ctx[gt1_ctx], 0);
}
}
2018-10-17 06:06:35 +00:00
}
dest_coeff[blkpos] = (coeff_t)level;
base_cost += cost_coeff[scanpos];
2021-03-19 08:28:42 +00:00
//base_level = 4;
//if (level >= base_level) {
// if(level > 3*(1<<go_rice_param)) {
// go_rice_param = MIN(go_rice_param + 1, 4);
// }
//}
//===== context set update =====
if ((scanpos % SCAN_SET_SIZE == 0) && scanpos > 0) {
go_rice_param = 0;
//ctx_set = (scanpos == SCAN_SET_SIZE || type != 0) ? 0 : 2;
}
else if (reg_bins >= 4) {
reg_bins -= (level < 2 ? level : 3) + (scanpos != last_scanpos);
2021-03-19 08:28:42 +00:00
int sumAll = templateAbsSum(coef, 4, pos_x, pos_y, width, height);
go_rice_param = g_auiGoRiceParsCoeff[sumAll];
}
rd_stats.sig_cost += cost_sig[scanpos];
if ( scanpos_in_cg == 0 ) {
rd_stats.sig_cost_0 = cost_sig[scanpos];
}
if ( dest_coeff[blkpos] ) {
sig_coeffgroup_flag[cg_blkpos] = 1;
rd_stats.coded_level_and_dist += cost_coeff[scanpos] - cost_sig[scanpos];
rd_stats.uncoded_dist += cost_coeff0[scanpos];
if ( scanpos_in_cg != 0 ) {
rd_stats.nnz_before_pos0++;
}
}
} //end for (scanpos_in_cg)
2014-02-21 13:00:20 +00:00
if( cg_scanpos ) {
if (sig_coeffgroup_flag[cg_blkpos] == 0) {
uint32_t ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x,
cg_pos_y, cg_width);
cost_coeffgroup_sig[cg_scanpos] = lambda *CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig],0);
base_cost += cost_coeffgroup_sig[cg_scanpos] - rd_stats.sig_cost;
} else {
if (cg_scanpos < cg_last_scanpos){
double cost_zero_cg;
uint32_t ctx_sig;
if (rd_stats.nnz_before_pos0 == 0) {
base_cost -= rd_stats.sig_cost_0;
rd_stats.sig_cost -= rd_stats.sig_cost_0;
}
// rd-cost if SigCoeffGroupFlag = 0, initialization
cost_zero_cg = base_cost;
// add SigCoeffGroupFlag cost to total cost
ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x,
cg_pos_y, cg_width);
cost_coeffgroup_sig[cg_scanpos] = lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 1);
base_cost += cost_coeffgroup_sig[cg_scanpos];
cost_zero_cg += lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 0);
// try to convert the current coeff group from non-zero to all-zero
cost_zero_cg += rd_stats.uncoded_dist; // distortion for resetting non-zero levels to zero levels
cost_zero_cg -= rd_stats.coded_level_and_dist; // distortion and level cost for keeping all non-zero levels
cost_zero_cg -= rd_stats.sig_cost; // sig cost for all coeffs, including zero levels and non-zerl levels
// if we can save cost, change this block to all-zero block
if (cost_zero_cg < base_cost) {
sig_coeffgroup_flag[cg_blkpos] = 0;
base_cost = cost_zero_cg;
cost_coeffgroup_sig[cg_scanpos] = lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 0);
// reset coeffs to 0 in this block
for (int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) {
int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg;
uint32_t blkpos = scan[scanpos];
if (dest_coeff[blkpos]){
dest_coeff[blkpos] = 0;
cost_coeff[scanpos] = cost_coeff0[scanpos];
cost_sig[scanpos] = 0;
}
}
} // end if ( cost_all_zeros < base_cost )
}
} // end if if (sig_coeffgroup_flag[ cg_blkpos ] == 0)
} else {
sig_coeffgroup_flag[cg_blkpos] = 1;
}
} //end for (cg_scanpos)
2014-02-21 13:00:20 +00:00
//===== estimate last position =====
double best_cost = 0;
int32_t ctx_cbf = 0;
int8_t found_last = 0;
int32_t best_last_idx_p1 = 0;
if( block_type != CU_INTRA && !type ) {
best_cost = block_uncoded_cost + lambda * CTX_ENTROPY_BITS(&(cabac->ctx.cu_qt_root_cbf_model),0);
base_cost += lambda * CTX_ENTROPY_BITS(&(cabac->ctx.cu_qt_root_cbf_model),1);
2014-02-21 13:00:20 +00:00
} else {
2021-03-24 08:03:55 +00:00
cabac_ctx_t* base_cbf_model = NULL;
switch (type) {
case COLOR_Y:
base_cbf_model = cabac->ctx.qt_cbf_model_luma;
break;
case COLOR_U:
base_cbf_model = cabac->ctx.qt_cbf_model_cb;
break;
case COLOR_V:
base_cbf_model = cabac->ctx.qt_cbf_model_cr;
break;
default:
assert(0);
}
ctx_cbf = ( type != COLOR_V ? 0 : cbf_is_set(cbf, 5 - kvz_math_floor_log2(width), COLOR_U));
best_cost = block_uncoded_cost + lambda * CTX_ENTROPY_BITS(&base_cbf_model[ctx_cbf],0);
base_cost += lambda * CTX_ENTROPY_BITS(&base_cbf_model[ctx_cbf],1);
}
2014-02-21 13:00:20 +00:00
2021-03-29 06:05:05 +00:00
calc_last_bits(state, width, height, type, last_x_bits, last_y_bits);
for ( int32_t cg_scanpos = cg_last_scanpos; cg_scanpos >= 0; cg_scanpos--) {
uint32_t cg_blkpos = scan_cg[cg_scanpos];
base_cost -= cost_coeffgroup_sig[cg_scanpos];
if (sig_coeffgroup_flag[ cg_blkpos ]) {
for ( int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) {
int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg;
if (scanpos > last_scanpos) continue;
uint32_t blkpos = scan[scanpos];
2014-02-21 13:00:20 +00:00
if( dest_coeff[ blkpos ] ) {
uint32_t pos_y = blkpos >> log2_block_size;
uint32_t pos_x = blkpos - ( pos_y << log2_block_size );
2014-02-21 13:00:20 +00:00
double cost_last = get_rate_last(lambda, pos_x, pos_y, last_x_bits,last_y_bits );
double totalCost = base_cost + cost_last - cost_sig[ scanpos ];
2014-02-21 13:00:20 +00:00
if( totalCost < best_cost ) {
best_last_idx_p1 = scanpos + 1;
best_cost = totalCost;
}
if( dest_coeff[ blkpos ] > 1 ) {
found_last = 1;
break;
}
base_cost -= cost_coeff[scanpos];
base_cost += cost_coeff0[scanpos];
} else {
base_cost -= cost_sig[scanpos];
}
} //end for
if (found_last) break;
} // end if (sig_coeffgroup_flag[ cg_blkpos ])
} // end for
2014-02-21 13:00:20 +00:00
uint32_t abs_sum = 0;
for ( int32_t scanpos = 0; scanpos < best_last_idx_p1; scanpos++) {
int32_t blkPos = scan[scanpos];
int32_t level = dest_coeff[blkPos];
abs_sum += level;
dest_coeff[blkPos] = (coeff_t)(( coef[blkPos] < 0 ) ? -level : level);
}
//===== clean uncoded coefficients =====
for ( int32_t scanpos = best_last_idx_p1; scanpos <= last_scanpos; scanpos++) {
dest_coeff[scan[scanpos]] = 0;
}
2014-02-21 13:00:20 +00:00
if (encoder->cfg.signhide_enable && abs_sum >= 2) {
kvz_rdoq_sign_hiding(state, qp_scaled, scan, &sh_rates, best_last_idx_p1, coef, dest_coeff, type);
}
}
2021-02-12 11:24:02 +00:00
/**
* Calculate cost of actual motion vectors using CABAC coding
*/
uint32_t kvz_get_mvd_coding_cost_cabac(const encoder_state_t *state,
const cabac_data_t* cabac,
const int32_t mvd_hor,
const int32_t mvd_ver)
{
cabac_data_t cabac_copy = *cabac;
cabac_copy.only_count = 1;
// It is safe to drop const here because cabac->only_count is set.
kvz_encode_mvd((encoder_state_t*) state, &cabac_copy, mvd_hor, mvd_ver);
uint32_t bitcost =
((23 - cabac_copy.bits_left) + (cabac_copy.num_buffered_bytes << 3)) -
((23 - cabac->bits_left) + (cabac->num_buffered_bytes << 3));
return bitcost;
}
/** MVD cost calculation with CABAC
* \returns int
* Calculates Motion Vector cost and related costs using CABAC coding
*/
uint32_t kvz_calc_mvd_cost_cabac(const encoder_state_t * state,
int x,
int y,
int mv_shift,
int16_t mv_cand[2][2],
inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS],
int16_t num_cand,
int32_t ref_idx,
uint32_t *bitcost)
{
cabac_data_t state_cabac_copy;
cabac_data_t* cabac;
uint32_t merge_idx;
vector2d_t mvd = { 0, 0 };
int8_t merged = 0;
int8_t cur_mv_cand = 0;
x *= 1 << mv_shift;
y *= 1 << mv_shift;
// Check every candidate to find a match
for (merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) {
if (merge_cand[merge_idx].dir == 3) continue;
if (merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][0] == x &&
merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][1] == y &&
state->frame->ref_LX[merge_cand[merge_idx].dir - 1][
merge_cand[merge_idx].ref[merge_cand[merge_idx].dir - 1]
] == ref_idx)
{
merged = 1;
break;
}
}
// Store cabac state and contexts
memcpy(&state_cabac_copy, &state->cabac, sizeof(cabac_data_t));
// Clear bytes and bits and set mode to "count"
state_cabac_copy.only_count = 1;
state_cabac_copy.num_buffered_bytes = 0;
state_cabac_copy.bits_left = 23;
cabac = &state_cabac_copy;
if (!merged) {
vector2d_t mvd1 = {
x - mv_cand[0][0],
y - mv_cand[0][1],
};
vector2d_t mvd2 = {
x - mv_cand[1][0],
y - mv_cand[1][1],
};
uint32_t cand1_cost = kvz_get_mvd_coding_cost_cabac(state, cabac, mvd1.x, mvd1.y);
uint32_t cand2_cost = kvz_get_mvd_coding_cost_cabac(state, cabac, mvd2.x, mvd2.y);
// Select candidate 1 if it has lower cost
if (cand2_cost < cand1_cost) {
cur_mv_cand = 1;
mvd = mvd2;
} else {
mvd = mvd1;
}
}
cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model);
CABAC_BIN(cabac, merged, "MergeFlag");
num_cand = state->encoder_control->cfg.max_merge;
if (merged) {
if (num_cand > 1) {
int32_t ui;
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac, symbol, "MergeIndex");
}
if (symbol == 0) break;
}
}
} else {
uint32_t ref_list_idx;
uint32_t j;
int ref_list[2] = { 0, 0 };
for (j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
ref_list[0]++;
} else {
ref_list[1]++;
}
}
//ToDo: bidir mv support
for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) {
if (/*cur_cu->inter.mv_dir*/ 1 & (1 << ref_list_idx)) {
if (ref_list[ref_list_idx] > 1) {
// parseRefFrmIdx
int32_t ref_frame = ref_idx;
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]);
CABAC_BIN(cabac, (ref_frame != 0), "ref_idx_lX");
if (ref_frame > 0) {
int32_t i;
int32_t ref_num = ref_list[ref_list_idx] - 2;
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[1]);
ref_frame--;
for (i = 0; i < ref_num; ++i) {
const uint32_t symbol = (i == ref_frame) ? 0 : 1;
if (i == 0) {
CABAC_BIN(cabac, symbol, "ref_idx_lX");
} else {
CABAC_BIN_EP(cabac, symbol, "ref_idx_lX");
}
if (symbol == 0) break;
}
}
}
// ToDo: Bidir vector support
if (!(state->frame->ref_list == REF_PIC_LIST_1 && /*cur_cu->inter.mv_dir == 3*/ 0)) {
// It is safe to drop const here because cabac->only_count is set.
kvz_encode_mvd((encoder_state_t*) state, cabac, mvd.x, mvd.y);
}
// Signal which candidate MV to use
kvz_cabac_write_unary_max_symbol(
cabac,
&cabac->ctx.mvp_idx_model,
cur_mv_cand,
1,
AMVP_MAX_NUM_CANDS - 1);
}
}
}
*bitcost = (23 - state_cabac_copy.bits_left) + (state_cabac_copy.num_buffered_bytes << 3);
// Store bitcost before restoring cabac
return *bitcost * (uint32_t)(state->lambda_sqrt + 0.5);
}
void kvz_close_rdcost_outfiles(void)
{
int i;
for (i = 0; i < RD_SAMPLING_MAX_LAST_QP; i++) {
FILE *curr = fastrd_learning_outfile[i];
pthread_mutex_t *curr_mtx = outfile_mutex + i;
if (curr != NULL) {
fclose(curr);
}
if (curr_mtx != NULL) {
pthread_mutex_destroy(curr_mtx);
}
}
}