uvg266/src/rate_control.c

319 lines
10 KiB
C
Raw Normal View History

2015-03-13 12:23:54 +00:00
/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "rate_control.h"
#include <math.h>
#include "encoder.h"
#include "kvazaar.h"
2015-03-13 12:23:54 +00:00
static const int SMOOTHING_WINDOW = 40;
static const double MIN_LAMBDA = 0.1;
static const double MAX_LAMBDA = 10000;
2015-03-13 12:23:54 +00:00
/**
* \brief Clip lambda value to a valid range.
*/
static double clip_lambda(double lambda) {
if (isnan(lambda)) return MAX_LAMBDA;
return CLIP(MIN_LAMBDA, MAX_LAMBDA, lambda);
}
/**
* \brief Update alpha and beta parameters.
*
* \param bits number of bits spent for coding the area
* \param pixels size of the area in pixels
* \param lambda_real lambda used for coding the area
* \param[in,out] alpha alpha parameter to update
* \param[in,out] beta beta parameter to update
*/
static void update_parameters(uint32_t bits,
uint32_t pixels,
double lambda_real,
double *alpha,
double *beta)
{
const double bpp = bits / (double)pixels;
const double lambda_comp = clip_lambda(*alpha * pow(bpp, *beta));
const double lambda_log_ratio = log(lambda_real) - log(lambda_comp);
*alpha += 0.10 * lambda_log_ratio * (*alpha);
*alpha = CLIP(0.05, 20, *alpha);
*beta += 0.05 * lambda_log_ratio * CLIP(-5.0, -1.0, log(bpp));
*beta = CLIP(-3, -0.1, *beta);
}
2015-03-13 12:23:54 +00:00
/**
* \brief Allocate bits for the current GOP.
* \param state the main encoder state
* \return target number of bits
2015-03-13 12:23:54 +00:00
*/
static double gop_allocate_bits(encoder_state_t * const state)
2015-03-13 12:23:54 +00:00
{
const encoder_control_t * const encoder = state->encoder_control;
// At this point, total_bits_coded of the current state contains the
// number of bits written encoder->owf frames before the current frame.
uint64_t bits_coded = state->frame->total_bits_coded;
int pictures_coded = MAX(0, state->frame->num - encoder->owf);
2015-03-13 12:23:54 +00:00
int gop_offset = (state->frame->gop_offset - encoder->owf) % MAX(1, encoder->cfg->gop_len);
// Only take fully coded GOPs into account.
if (encoder->cfg->gop_len > 0 && gop_offset != encoder->cfg->gop_len - 1) {
// Subtract number of bits in the partially coded GOP.
bits_coded -= state->frame->cur_gop_bits_coded;
// Subtract number of pictures in the partially coded GOP.
pictures_coded -= gop_offset + 1;
}
2015-03-13 12:23:54 +00:00
// Equation 12 from https://doi.org/10.1109/TIP.2014.2336550
double gop_target_bits =
(encoder->target_avg_bppic * (pictures_coded + SMOOTHING_WINDOW) - bits_coded)
* MAX(1, encoder->cfg->gop_len) / SMOOTHING_WINDOW;
// Allocate at least 200 bits for each GOP like HM does.
return MAX(200, gop_target_bits);
}
/**
* Estimate number of bits used for headers of the current picture.
* \param state the main encoder state
* \return number of header bits
*/
static uint64_t pic_header_bits(encoder_state_t * const state)
{
const kvz_config* cfg = state->encoder_control->cfg;
// nal type and slice header
uint64_t bits = 48 + 24;
// entry points
bits += 12 * state->encoder_control->in.height_in_lcu;
switch (cfg->hash) {
case KVZ_HASH_CHECKSUM:
bits += 168;
break;
case KVZ_HASH_MD5:
bits += 456;
break;
case KVZ_HASH_NONE:
break;
}
if (encoder_state_must_write_vps(state)) {
bits += 613;
}
if (state->frame->num == 0 && cfg->add_encoder_info) {
bits += 1392;
}
return bits;
}
/**
* Allocate bits for the current picture.
* \param state the main encoder state
* \return target number of bits, excluding headers
*/
static double pic_allocate_bits(encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
if (encoder->cfg->gop_len == 0 ||
state->frame->gop_offset == 0 ||
state->frame->num == 0)
{
// A new GOP starts at this frame.
state->frame->cur_gop_target_bits = gop_allocate_bits(state);
state->frame->cur_gop_bits_coded = 0;
} else {
state->frame->cur_gop_target_bits =
state->previous_encoder_state->frame->cur_gop_target_bits;
}
if (encoder->cfg->gop_len <= 0) {
return state->frame->cur_gop_target_bits;
}
const double pic_weight = encoder->gop_layer_weights[
encoder->cfg->gop[state->frame->gop_offset].layer - 1];
const double pic_target_bits =
state->frame->cur_gop_target_bits * pic_weight - pic_header_bits(state);
// Allocate at least 100 bits for each picture like HM does.
return MAX(100, pic_target_bits);
}
int8_t lambda_to_qp(const double lambda)
{
const int8_t qp = 4.2005 * log(lambda) + 13.7223 + 0.5;
return CLIP(0, 51, qp);
2015-03-13 12:23:54 +00:00
}
/**
* \brief Allocate bits and set lambda and QP for the current picture.
* \param state the main encoder state
*/
void kvz_set_picture_lambda_and_qp(encoder_state_t * const state)
{
const encoder_control_t * const ctrl = state->encoder_control;
if (ctrl->cfg->target_bitrate > 0) {
// Rate control enabled
if (state->frame->num > ctrl->owf) {
// At least one frame has been written.
update_parameters(state->stats_bitstream_length * 8,
ctrl->in.pixels_per_pic,
state->frame->lambda,
&state->frame->rc_alpha,
&state->frame->rc_beta);
}
const double pic_target_bits = pic_allocate_bits(state);
const double target_bpp = pic_target_bits / ctrl->in.pixels_per_pic;
double lambda = state->frame->rc_alpha * pow(target_bpp, state->frame->rc_beta);
lambda = clip_lambda(lambda);
state->frame->lambda = lambda;
state->frame->QP = lambda_to_qp(lambda);
state->frame->cur_pic_target_bits = pic_target_bits;
} else {
// Rate control disabled
kvz_gop_config const * const gop = &ctrl->cfg->gop[state->frame->gop_offset];
const int gop_len = ctrl->cfg->gop_len;
const int period = gop_len > 0 ? gop_len : ctrl->cfg->intra_period;
state->frame->QP = ctrl->cfg->qp;
if (gop_len > 0 && state->frame->slicetype != KVZ_SLICE_I) {
state->frame->QP += gop->qp_offset;
}
double lambda = pow(2.0, (state->frame->QP - 12) / 3.0);
if (state->frame->slicetype == KVZ_SLICE_I) {
lambda *= 0.57;
// Reduce lambda for I-frames according to the number of references.
if (period == 0) {
lambda *= 0.5;
} else {
lambda *= 1.0 - CLIP(0.0, 0.5, 0.05 * (period - 1));
}
} else if (gop_len > 0) {
lambda *= gop->qp_factor;
} else {
lambda *= 0.4624;
}
// Increase lambda if not key-frame.
if (period > 0 && state->frame->poc % period != 0) {
lambda *= CLIP(2.0, 4.0, (state->frame->QP - 12) / 6.0);
}
state->frame->lambda = lambda;
}
}
/**
* \brief Allocate bits for a LCU.
* \param state the main encoder state
* \param pos location of the LCU as number of LCUs from top left
* \return number of bits allocated for the LCU
*/
static double lcu_allocate_bits(encoder_state_t * const state,
vector2d_t pos)
{
double lcu_weight;
if (state->frame->num > state->encoder_control->owf) {
lcu_weight = kvz_get_lcu_stats(state, pos.x, pos.y)->weight;
} else {
const uint32_t num_lcus = state->encoder_control->in.width_in_lcu *
state->encoder_control->in.height_in_lcu;
lcu_weight = 1.0 / num_lcus;
}
// Target number of bits for the current LCU.
const double lcu_target_bits = state->frame->cur_pic_target_bits * lcu_weight;
// Allocate at least one bit for each LCU.
return MAX(1, lcu_target_bits);
}
void kvz_set_lcu_lambda_and_qp(encoder_state_t * const state,
vector2d_t pos)
{
const encoder_control_t * const ctrl = state->encoder_control;
if (ctrl->cfg->target_bitrate > 0) {
lcu_stats_t *lcu = kvz_get_lcu_stats(state, pos.x, pos.y);
const uint32_t pixels = MIN(LCU_WIDTH, state->tile->frame->width - LCU_WIDTH * pos.x) *
MIN(LCU_WIDTH, state->tile->frame->height - LCU_WIDTH * pos.y);
if (state->frame->num > ctrl->owf) {
update_parameters(lcu->bits,
pixels,
lcu->lambda,
&lcu->rc_alpha,
&lcu->rc_beta);
} else {
lcu->rc_alpha = state->frame->rc_alpha;
lcu->rc_beta = state->frame->rc_beta;
}
const double target_bits = lcu_allocate_bits(state, pos);
const double target_bpp = target_bits / pixels;
double lambda = clip_lambda(lcu->rc_alpha * pow(target_bpp, lcu->rc_beta));
// Clip lambda according to the equations 24 and 26 in
// https://doi.org/10.1109/TIP.2014.2336550
if (state->frame->num > ctrl->owf) {
const double bpp = lcu->bits / (double)pixels;
const double lambda_comp = clip_lambda(lcu->rc_alpha * pow(bpp, lcu->rc_beta));
lambda = CLIP(lambda_comp * 0.7937005259840998,
lambda_comp * 1.2599210498948732,
lambda);
}
lambda = CLIP(state->frame->lambda * 0.6299605249474366,
state->frame->lambda * 1.5874010519681994,
lambda);
lambda = clip_lambda(lambda);
lcu->lambda = lambda;
state->lambda = lambda;
state->lambda_sqrt = sqrt(lambda);
state->qp = lambda_to_qp(lambda);
} else {
state->qp = state->frame->QP;
state->lambda = state->frame->lambda;
state->lambda_sqrt = sqrt(state->frame->lambda);
}
}