This commit is contained in:
Jaakko Laitinen 2020-12-22 14:06:20 +02:00
parent 50e9acd3f4
commit 13e605153a

View file

@ -360,8 +360,8 @@ static INLINE int kvz_filter_deblock_large_block(kvz_pixel *line, kvz_pixel *lin
const int coeffs5[5] = { 58, 45, 32, 19, 6 };
const int coeffs3[3] = { 53, 32, 11 };
int *coeffs_P;
int *coeffs_Q;
const int *coeffs_P = NULL;
const int *coeffs_Q = NULL;
//Form P/Q arrays that contain all of the samples to make things simpler later
const kvz_pixel* lineP[8] = { line + 3, line + 2, line + 1, line + 0,
@ -462,7 +462,7 @@ static INLINE int kvz_filter_deblock_large_block(kvz_pixel *line, kvz_pixel *lin
for (size_t i = 0; i < filter_length_Q; i++)
{
int range = (tc * tc_coeff_P[i]) >> 1;
int range = (tc * tc_coeff_Q[i]) >> 1;
*dstQ[i] = CLIP(*lineQ[i] - range, *lineQ[i] + range, (ref_middle * coeffs_Q[i] + ref_Q * (64 - coeffs_Q[i]) + 32) >> 6);
}
@ -472,14 +472,14 @@ static INLINE int kvz_filter_deblock_large_block(kvz_pixel *line, kvz_pixel *lin
/**
* \brief Determine if strong or weak filtering should be used
*/
static INLINE bool use_strong_filtering(const kvz_pixel const* b0, const kvz_pixel const* b3,
const kvz_pixel const* b0L, const kvz_pixel const* b3L,
static INLINE bool use_strong_filtering(const kvz_pixel * const b0, const kvz_pixel * const b3,
const kvz_pixel * const b0L, const kvz_pixel * const b3L,
const int_fast32_t dp0, const int_fast32_t dq0,
const int_fast32_t dp3, const int_fast32_t dq3,
const int32_t tc, const int32_t beta,
const bool is_side_P_large, const bool is_side_Q_large,
const uint8_t max_filter_length_P, const uint8_t max_filter_length_Q,
const is_chroma_CTB_boundary)
const bool is_chroma_CTB_boundary)
{
int_fast32_t sp0 = is_chroma_CTB_boundary ? abs(b0[2] - b0[3]) : abs(b0[0] - b0[3]);
int_fast32_t sp3 = is_chroma_CTB_boundary ? abs(b3[2] - b3[3]) : abs(b3[0] - b3[3]);
@ -533,46 +533,47 @@ static INLINE bool use_strong_filtering(const kvz_pixel const* b0, const kvz_pix
static INLINE void get_max_filter_length(uint8_t *filt_len_P, uint8_t *filt_len_Q,
const encoder_state_t * const state, const uint32_t x, const uint32_t y,
const edge_dir dir, const bool transform_edge,
const int block_size, const int size_P_side, const int size_Q_side,
const int tu_size_P_side, const int tu_size_Q_side,
const int pu_pos, const int pu_size,
color_t comp)
{
//const int size_P_side = 0;
//const int size_Q_side = 0;
//const int tu_size_P_side = 0;
//const int tu_size_Q_side = 0;
//const int size = 0;
const int x_mul = dir == EDGE_HOR ? 0 : 1;
const int y_mul = dir == EDGE_HOR ? 1 : 0;
const int pos = (dir == EDGE_HOR ? y : x) % LCU_WIDTH;
const int pos = dir == EDGE_HOR ? y : x;
const int len = EDGE_HOR ? state->tile->frame->height : state->tile->frame->width;
//const bool transform_edge = is_tu_boundary(state, x, y, dir);
bool transform_edge_4x4[2] = { false, false };
bool transform_edge_8x8[2] = { false, false };
if (pos > 0) {
transform_edge_4x4[0] = is_tu_boundary(state, x + x_mul * 4, y + y_mul * 4, dir);
transform_edge_4x4[1] = is_tu_boundary(state, x - x_mul * 4, y - y_mul * 4, dir);
transform_edge_8x8[0] = is_tu_boundary(state, x + x_mul * 8, y + y_mul * 8, dir);
transform_edge_8x8[1] = is_tu_boundary(state, x - x_mul * 8, y - y_mul * 8, dir);
}
if (pos >= 4) transform_edge_4x4[0] = is_tu_boundary(state, x - x_mul * 4, y - y_mul * 4, dir);
if (pos >= 8) transform_edge_8x8[0] = is_tu_boundary(state, x - x_mul * 8, y - y_mul * 8, dir);
if (pos + 4 < len) transform_edge_4x4[1] = is_tu_boundary(state, x + x_mul * 4, y + y_mul * 4, dir);
if (pos + 8 < len) transform_edge_8x8[1] = is_tu_boundary(state, x + x_mul * 8, y + y_mul * 8, dir);
if (comp == COLOR_Y) {
if (size_P_side <= 4 && size_Q_side <= 4){
if (tu_size_P_side <= 4 && tu_size_Q_side <= 4){
*filt_len_P = 1;
*filt_len_Q = 1;
}
else {
*filt_len_P = size_P_side >= 32 ? 7 : 3;
*filt_len_Q = size_Q_side >= 32 ? 7 : 3;
*filt_len_P = tu_size_P_side >= 32 ? 7 : 3;
*filt_len_Q = tu_size_Q_side >= 32 ? 7 : 3;
}
if (transform_edge) {
*filt_len_Q = MIN(*filt_len_Q, 5);
if (pos > 0) {
if (pu_pos > 0) {
*filt_len_P = MIN(*filt_len_P, 5);
}
}
else if (pos > 0 && (transform_edge_4x4[0] || (pos + 4) >= block_size || transform_edge_4x4[1])) { //adjacent to transform edge (4x4 grid)
else if (pu_pos > 0 && (transform_edge_4x4[0] || (pu_pos + 4) >= pu_size || transform_edge_4x4[1])) { //adjacent to transform edge (4x4 grid)
*filt_len_P = 1;
*filt_len_Q = 1;
}
else if (pos > 0 && (transform_edge_8x8[0] || (pos + 8) >= block_size || transform_edge_8x8[1])) { //adjacent to transform edge (8x8 grid)
else if (pu_pos > 0 && (pu_pos == 8 || transform_edge_8x8[0] || (pu_pos + 8) >= pu_size || transform_edge_8x8[1])) { //adjacent to transform edge (8x8 grid)
*filt_len_P = 2;
*filt_len_Q = 2;
}
@ -582,8 +583,8 @@ static INLINE void get_max_filter_length(uint8_t *filt_len_P, uint8_t *filt_len_
}
}
else {
*filt_len_P = (size_P_side >= 8 && size_Q_side >= 8) ? 3 : 1;
*filt_len_Q = (size_P_side >= 8 && size_Q_side >= 8) ? 3 : 1;
*filt_len_P = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1;
*filt_len_Q = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1;
}
}
@ -661,14 +662,16 @@ static void filter_deblock_edge_luma(encoder_state_t * const state,
// CUs on both sides of the edge
cu_info_t *cu_p;
cu_info_t *cu_q;
int32_t y_coord = y;
int32_t x_coord = x;
{
if (dir == EDGE_VER) {
int32_t y_coord = y + 4 * block_idx;
y_coord = y + 4 * block_idx;
cu_p = kvz_cu_array_at(frame->cu_array, x - 1, y_coord);
cu_q = kvz_cu_array_at(frame->cu_array, x, y_coord);
} else {
int32_t x_coord = x + 4 * block_idx;
x_coord = x + 4 * block_idx;
cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y - 1);
cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y );
}
@ -767,8 +770,20 @@ static void filter_deblock_edge_luma(encoder_state_t * const state,
bool is_side_Q_large = false;
uint8_t max_filter_length_P = 0;
uint8_t max_filter_length_Q = 0;
get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state, x, y, dir, tu_boundary,
LCU_WIDTH >> cu_p->tr_depth, LCU_WIDTH >> cu_q->tr_depth, length, COLOR_Y);
const int cu_size = LCU_WIDTH >> cu_q->depth;
const int pu_part_idx = (y + PU_GET_H(cu_q->part_size, cu_size, 0) <= y_coord ?
1 + (kvz_part_mode_num_parts[cu_q->part_size] >> 2) : 0)
+ (x + PU_GET_W(cu_q->part_size, cu_size, 0) <= x_coord ? 1 : 0);
const int pu_size = dir == EDGE_HOR ? PU_GET_H(cu_q->part_size, cu_size, pu_part_idx)
: PU_GET_W(cu_q->part_size, cu_size, pu_part_idx);
const int pu_pos = dir == EDGE_HOR ? y_coord - PU_GET_Y(cu_q->part_size, cu_size, 0, pu_part_idx)
: x_coord - PU_GET_X(cu_q->part_size, cu_size, 0, pu_part_idx);
get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state,
,
,
dir, tu_boundary,
LCU_WIDTH >> cu_p->tr_depth, LCU_WIDTH >> cu_q->tr_depth,
pu_pos, pu_size, COLOR_Y);
if (max_filter_length_P > 3) {
is_side_P_large = dir == EDGE_HOR && y % LCU_WIDTH == 0 ? false : true;
@ -861,10 +876,6 @@ static void filter_deblock_edge_luma(encoder_state_t * const state,
}
}
}
else {
is_side_P_large = false;
is_side_Q_large = false;
}
}
}
@ -875,8 +886,7 @@ static void filter_deblock_edge_luma(encoder_state_t * const state,
// Strong filtering flag checking.
sw = use_strong_filtering(b[0], b[3], NULL, NULL,
dp0, dq0, dp3, dq3, tc, beta,
is_side_P_large, is_side_Q_large,
max_filter_length_P, max_filter_length_Q, false);
false, false, 7, 7, false);
}
// Read lines 1 and 2. Weak filtering doesn't use the outermost pixels
@ -1015,7 +1025,7 @@ static void filter_deblock_edge_chroma(encoder_state_t * const state,
// +-- edge_src
// v
// line0 p3 p2 p1 p0 q0 q1 q2 q3
kvz_pixel *edge_src = &src[blk_idx * 4 * step];
kvz_pixel *edge_src = &src[component][blk_idx * 4 * step];
const uint8_t sub_sampling_shift = 0; //TODO: figure out the correct value
const uint8_t sss = sub_sampling_shift == 1 ? 1 : 3;
// Gather the lines of pixels required for the filter on/off decision.
@ -1215,12 +1225,10 @@ static void filter_deblock_lcu_rightmost(encoder_state_t * const state,
*/
//TODO: Things to check/fix for VVC:
// - Strength calculation to include average Luma level (Luma Adaptive Deblocing Filter LADF) (optional)
// - Stronger Luma and chroma filters (i.e. large block filtering)
// - Deblocking strength for CIIP and IBC modes (CIIP/IBC not currently used)
// - Handle new prediction modes (i.e. PLT) (PLT not currently used)
// - Luma deblocking on a 4x4 grid
// - Deblocking filter for subblock boundaries
// - Account for small blocks (in chroma) and max filter lengths
// - Allow loop filtering across slice/tile boundaries?
void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px)
{