Implement tailored 16x16 forward DCT

This commit is contained in:
Pauli Oikkonen 2019-06-06 12:23:41 +03:00
parent 30ce461d98
commit 292af62256

View file

@ -399,6 +399,130 @@ static void matrix_idct_8x8_avx2(int8_t bitdepth, const int16_t *input, int16_t
*/ */
} }
static void matmul_16x16_a_bt_t(const int16_t *a, const int16_t *b_t, int16_t *output, const int8_t shift)
{
const int32_t add = 1 << (shift - 1);
const __m256i debias = _mm256_set1_epi32(add);
for (int32_t x = 0; x < 16; x++) {
__m256i bt_c = _mm256_loadu_si256((const __m256i *)b_t + x);
__m256i results_32[2];
// First Row Offset
for (int32_t fro = 0; fro < 2; fro++) {
// Read first rows 0, 1, 2, 3, 8, 9, 10, 11, and then next 4
__m256i a_r0 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 0);
__m256i a_r1 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 1);
__m256i a_r2 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 2);
__m256i a_r3 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 3);
__m256i a_r8 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 8);
__m256i a_r9 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 9);
__m256i a_r10 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 10);
__m256i a_r11 = _mm256_loadu_si256((const __m256i *)a + fro * 4 + 11);
__m256i p0 = _mm256_madd_epi16(bt_c, a_r0);
__m256i p1 = _mm256_madd_epi16(bt_c, a_r1);
__m256i p2 = _mm256_madd_epi16(bt_c, a_r2);
__m256i p3 = _mm256_madd_epi16(bt_c, a_r3);
__m256i p8 = _mm256_madd_epi16(bt_c, a_r8);
__m256i p9 = _mm256_madd_epi16(bt_c, a_r9);
__m256i p10 = _mm256_madd_epi16(bt_c, a_r10);
__m256i p11 = _mm256_madd_epi16(bt_c, a_r11);
// Combine low lanes from P0 and P8, high lanes from them, and the same
// with P1:P9 and so on
__m256i p0l = _mm256_permute2x128_si256(p0, p8, 0x20);
__m256i p0h = _mm256_permute2x128_si256(p0, p8, 0x31);
__m256i p1l = _mm256_permute2x128_si256(p1, p9, 0x20);
__m256i p1h = _mm256_permute2x128_si256(p1, p9, 0x31);
__m256i p2l = _mm256_permute2x128_si256(p2, p10, 0x20);
__m256i p2h = _mm256_permute2x128_si256(p2, p10, 0x31);
__m256i p3l = _mm256_permute2x128_si256(p3, p11, 0x20);
__m256i p3h = _mm256_permute2x128_si256(p3, p11, 0x31);
__m256i s0 = _mm256_add_epi32(p0l, p0h);
__m256i s1 = _mm256_add_epi32(p1l, p1h);
__m256i s2 = _mm256_add_epi32(p2l, p2h);
__m256i s3 = _mm256_add_epi32(p3l, p3h);
__m256i s4 = _mm256_unpacklo_epi64(s0, s1);
__m256i s5 = _mm256_unpackhi_epi64(s0, s1);
__m256i s6 = _mm256_unpacklo_epi64(s2, s3);
__m256i s7 = _mm256_unpackhi_epi64(s2, s3);
__m256i s8 = _mm256_add_epi32(s4, s5);
__m256i s9 = _mm256_add_epi32(s6, s7);
__m256i res = _mm256_hadd_epi32(s8, s9);
results_32[fro] = truncate(res, debias, shift);
}
__m256i final_col = _mm256_packs_epi32(results_32[0], results_32[1]);
_mm256_storeu_si256((__m256i *)output + x, final_col);
}
}
static void matmul_16x16_a_bt(const int16_t *a, const int16_t *b_t, int16_t *output, const int8_t shift)
{
const int32_t add = 1 << (shift - 1);
const __m256i debias = _mm256_set1_epi32(add);
for (int32_t y = 0; y < 16; y++) {
__m256i a_r = _mm256_loadu_si256((const __m256i *)a + y);
__m256i results_32[2];
for (int32_t fco = 0; fco < 2; fco++) {
// Read first cols 0, 1, 2, 3, 8, 9, 10, 11, and then next 4
__m256i bt_c0 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 0);
__m256i bt_c1 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 1);
__m256i bt_c2 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 2);
__m256i bt_c3 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 3);
__m256i bt_c8 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 8);
__m256i bt_c9 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 9);
__m256i bt_c10 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 10);
__m256i bt_c11 = _mm256_loadu_si256((const __m256i *)b_t + fco * 4 + 11);
__m256i p0 = _mm256_madd_epi16(a_r, bt_c0);
__m256i p1 = _mm256_madd_epi16(a_r, bt_c1);
__m256i p2 = _mm256_madd_epi16(a_r, bt_c2);
__m256i p3 = _mm256_madd_epi16(a_r, bt_c3);
__m256i p8 = _mm256_madd_epi16(a_r, bt_c8);
__m256i p9 = _mm256_madd_epi16(a_r, bt_c9);
__m256i p10 = _mm256_madd_epi16(a_r, bt_c10);
__m256i p11 = _mm256_madd_epi16(a_r, bt_c11);
// Combine low lanes from P0 and P8, high lanes from them, and the same
// with P1:P9 and so on
__m256i p0l = _mm256_permute2x128_si256(p0, p8, 0x20);
__m256i p0h = _mm256_permute2x128_si256(p0, p8, 0x31);
__m256i p1l = _mm256_permute2x128_si256(p1, p9, 0x20);
__m256i p1h = _mm256_permute2x128_si256(p1, p9, 0x31);
__m256i p2l = _mm256_permute2x128_si256(p2, p10, 0x20);
__m256i p2h = _mm256_permute2x128_si256(p2, p10, 0x31);
__m256i p3l = _mm256_permute2x128_si256(p3, p11, 0x20);
__m256i p3h = _mm256_permute2x128_si256(p3, p11, 0x31);
__m256i s0 = _mm256_add_epi32(p0l, p0h);
__m256i s1 = _mm256_add_epi32(p1l, p1h);
__m256i s2 = _mm256_add_epi32(p2l, p2h);
__m256i s3 = _mm256_add_epi32(p3l, p3h);
__m256i s4 = _mm256_unpacklo_epi64(s0, s1);
__m256i s5 = _mm256_unpackhi_epi64(s0, s1);
__m256i s6 = _mm256_unpacklo_epi64(s2, s3);
__m256i s7 = _mm256_unpackhi_epi64(s2, s3);
__m256i s8 = _mm256_add_epi32(s4, s5);
__m256i s9 = _mm256_add_epi32(s6, s7);
__m256i res = _mm256_hadd_epi32(s8, s9);
results_32[fco] = truncate(res, debias, shift);
}
__m256i final_col = _mm256_packs_epi32(results_32[0], results_32[1]);
_mm256_storeu_si256((__m256i *)output + y, final_col);
}
}
// 16x16 matrix multiplication with value clipping. // 16x16 matrix multiplication with value clipping.
// Parameters: Two 16x16 matrices containing 16-bit values in consecutive addresses, // Parameters: Two 16x16 matrices containing 16-bit values in consecutive addresses,
// destination for the result and the shift value for clipping. // destination for the result and the shift value for clipping.
@ -462,6 +586,31 @@ static void mul_clip_matrix_16x16_avx2(const int16_t *left, const int16_t *right
} }
} }
static void matrix_dct_16x16_avx2(int8_t bitdepth, const int16_t *input, int16_t *output)
{
int32_t shift_1st = kvz_g_convert_to_bit[16] + 1 + (bitdepth - 8);
int32_t shift_2nd = kvz_g_convert_to_bit[16] + 8;
const int16_t *dct = &kvz_g_dct_16[0][0];
/*
* Multiply input by the tranpose of DCT matrix into tmpres, and DCT matrix
* by tmpres - this is then our output matrix
*
* It's easier to implement an AVX2 matrix multiplication if you can multiply
* the left term with the transpose of the right term. Here things are stored
* row-wise, not column-wise, so we can effectively read DCT_T column-wise
* into YMM registers by reading DCT row-wise. Also because of this, the
* first multiplication is hacked to produce the transpose of the result
* instead, since it will be used in similar fashion as the right operand
* in the second multiplication.
*/
int16_t tmpres[16 * 16];
matmul_16x16_a_bt_t(input, dct, tmpres, shift_1st);
matmul_16x16_a_bt (dct, tmpres, output, shift_2nd);
}
// 32x32 matrix multiplication with value clipping. // 32x32 matrix multiplication with value clipping.
// Parameters: Two 32x32 matrices containing 16-bit values in consecutive addresses, // Parameters: Two 32x32 matrices containing 16-bit values in consecutive addresses,
// destination for the result and the shift value for clipping. // destination for the result and the shift value for clipping.
@ -589,9 +738,9 @@ static void matrix_i ## type ## _## n ## x ## n ## _avx2(int8_t bitdepth, const
// ITRANSFORM(dct, 4); // ITRANSFORM(dct, 4);
// TRANSFORM(dct, 8); // TRANSFORM(dct, 8);
// ITRANSFORM(dct, 8); // ITRANSFORM(dct, 8);
// TRANSFORM(dct, 16);
// Generate all the transform functions // Generate all the transform functions
TRANSFORM(dct, 16);
TRANSFORM(dct, 32); TRANSFORM(dct, 32);
ITRANSFORM(dct, 16); ITRANSFORM(dct, 16);