Optimize calc sao edge dir

This commit is contained in:
Ari Lemmetti 2016-03-16 19:44:28 +02:00
parent ba69992941
commit 48bfddf4ec

View file

@ -148,12 +148,18 @@ int kvz_sao_edge_ddistortion_avx2(const kvz_pixel *orig_data, const kvz_pixel *r
}
/**
* \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma.
* \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma.
* \param dir_offsets
* \param is_chroma 0 for luma, 1 for chroma. Indicates
*/
static INLINE void accum_count_eo_cat_avx2(__m256i* __restrict v_diff_accum, __m256i* __restrict v_count, __m256i* __restrict v_cat, __m256i* __restrict v_diff, int eo_cat){
__m256i v_mask = _mm256_cmpeq_epi32(*v_cat, _mm256_set1_epi32(eo_cat));
*v_diff_accum = _mm256_add_epi32(*v_diff_accum, _mm256_and_si256(*v_diff, v_mask));
*v_count = _mm256_sub_epi32(*v_count, v_mask);
}
#define ACCUM_COUNT_EO_CAT_AVX2(EO_CAT, V_CAT) \
\
accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT);
void kvz_calc_sao_edge_dir_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec_data,
int eo_class, int block_width, int block_height,
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
@ -161,22 +167,84 @@ void kvz_calc_sao_edge_dir_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec
int y, x;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
// Arrays orig_data and rec_data are quarter size for chroma.
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
__m256i v_diff_accum[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
__m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
for (y = 1; y < block_height - 1; ++y) {
for (x = 1; x < block_width - 1; ++x) {
//Calculation for 8 pixels per round
for (x = 1; x < block_width - 8; x += 8) {
const kvz_pixel *c_data = &rec_data[y * block_width + x];
kvz_pixel a = c_data[a_ofs.y * block_width + a_ofs.x];
kvz_pixel c = c_data[0];
kvz_pixel b = c_data[b_ofs.y * block_width + b_ofs.x];
int eo_cat = sao_calc_eo_cat(a, b, c);
__m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data);
__m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x]));
__m128i v_c = v_c_data;
__m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x]));
cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c;
cat_sum_cnt[1][eo_cat] += 1;
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
}
//Handle last 6 pixels separately to prevent reading over boundary
const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = load_6_pixels(c_data);
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
__m128i v_a = load_6_pixels(a_ptr);
__m128i v_c = v_c_data;
__m128i v_b = load_6_pixels(b_ptr);
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
//Set the last two elements to a non-existing category to cause
//the accumulate-count macro to discard those values.
__m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1);
v_cat = _mm256_or_si256(v_cat, v_mask);
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
__m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
}
for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) {
int accum = 0;
int count = 0;
//Full horizontal sum of accumulated values
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_diff_accum[eo_cat], 1)));
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], KVZ_PERMUTE(2, 3, 0, 1)));
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], KVZ_PERMUTE(1, 0, 1, 0)));
accum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_diff_accum[eo_cat]));
//Full horizontal sum of accumulated values
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_count[eo_cat], 1)));
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], KVZ_PERMUTE(2, 3, 0, 1)));
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], KVZ_PERMUTE(1, 0, 1, 0)));
count += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_count[eo_cat]));
cat_sum_cnt[0][eo_cat] += accum;
cat_sum_cnt[1][eo_cat] += count;
}
}