Refactor: search.c/.h full cleanup.

This commit is contained in:
Ari Koivula 2013-09-20 12:17:13 +03:00
parent 03ab259a9e
commit 5233c417df
2 changed files with 223 additions and 214 deletions

View file

@ -28,15 +28,18 @@
#define USE_INTRA_IN_P 0
#define RENDER_CU 1
/**
*
* \brief Search motions vectors for a block and all it's sub-blocks.
*
* pic:
* pic_data: picture color data starting from the block MV is being searched for.
* ref_data: picture color data starting from the beginning of reference pic.
* cur_cu:
* \param pic
* \param pic_data picture color data starting from the block MV is being searched for.
* \param ref_data picture color data starting from the beginning of reference pic.
* \param cur_cu
*/
void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data, CU_info *cur_cu, unsigned step, int orig_x, int orig_y, int x, int y, unsigned depth)
void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data,
CU_info *cur_cu, unsigned step,
int orig_x, int orig_y, int x, int y, unsigned depth)
{
// TODO: Inter: Handle non-square blocks.
unsigned block_width = CU_WIDTH_FROM_DEPTH(depth);
@ -45,9 +48,11 @@ void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data, CU
// TODO: Inter: Calculating error outside picture borders.
// This prevents choosing vectors that need interpolating of borders to work.
if (orig_x + x < 0 || orig_y + y < 0 || orig_x + x > pic->width - block_width || orig_y + y > pic->height - block_height) return;
if (orig_x + x < 0 || orig_y + y < 0 || orig_x + x > pic->width - block_width
|| orig_y + y > pic->height - block_height) return;
cost = sad(pic_data, &ref_data[(orig_y + y) * pic->width + (orig_x + x)], block_width, block_height, pic->width) + 1;
cost = sad(pic_data, &ref_data[(orig_y + y) * pic->width + (orig_x + x)],
block_width, block_height, pic->width) + 1;
if (cost < cur_cu->inter.cost) {
cur_cu->inter.cost = cost;
cur_cu->inter.mv[0] = x << 2;
@ -56,267 +61,270 @@ void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data, CU
step /= 2;
if (step > 0) {
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x, y - step, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x - step, y, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x + step, y, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x, y + step, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x, y - step, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x - step, y, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x + step, y, depth);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x, y + step, depth);
}
}
void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma)
/**
* \brief
*/
void search_buildReferenceBorder(picture *pic, int32_t x_ctb, int32_t y_ctb,
int16_t outwidth, int16_t *dst,
int32_t dststride, int8_t chroma)
{
int32_t leftColumn; /*!< left column iterator */
int16_t val; /*!< variable to store extrapolated value */
int32_t i; /*!< index iterator */
int16_t dcVal = 1<<(g_bitdepth-1); /*!< default predictor value */
int32_t topRow; /*!< top row iterator */
int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */
int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */
uint8_t* srcPic = (!chroma)?pic->y_data: ((chroma==1)?pic->u_data: pic->v_data); /*!< input picture pointer */
int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */
uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */
int32_t width_in_SCU = pic->width_in_lcu<<MAX_DEPTH; /*!< picture width in SCU */
int32_t left_col; // left column iterator
int16_t val; // variable to store extrapolated value
int32_t i; // index iterator
int16_t dc_val = 1 << (g_bitdepth - 1); // default predictor value
int32_t top_row; // top row iterator
int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width
int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height
uint8_t *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer
int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width
uint8_t *src_shifted = &src_pic[x_ctb * scu_width + (y_ctb * scu_width) * src_width]; // input picture pointer shifted to start from the left-top corner of the current block
int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU
/* Fill left column */
if(xCtb)
{
/* Loop SCU's */
for(leftColumn = 1; leftColumn < outwidth/SCU_width; leftColumn++)
{
/* If over the picture height or block not yet searched, stop */
if((yCtb+leftColumn)*SCU_width >= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET)
{
break;
}
}
/* Copy the pixels to output */
for(i = 0; i < leftColumn*SCU_width-1; i ++)
{
dst[(i+1)*dststride] = srcShifted[i*srcWidth-1];
}
/* if the loop was not completed, extrapolate the last pixel pushed to output */
if(leftColumn != outwidth/SCU_width)
{
val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1];
for(i = (leftColumn*SCU_width); i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
}
/* If left column not available, copy from toprow or use the default predictor */
else
{
val = yCtb?srcShifted[-srcWidth]:dcVal;
for(i = 0; i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
if(yCtb)
{
/* Loop top SCU's */
for(topRow = 1; topRow < outwidth/SCU_width; topRow++)
{
if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET)
{
// Fill left column
if (x_ctb) {
// Loop SCU's
for (left_col = 1; left_col < outwidth / scu_width; left_col++) {
// If over the picture height or block not yet searched, stop
if ((y_ctb + left_col) * scu_width >= src_height
|| pic->CU[0][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) {
break;
}
}
for(i = 0; i < topRow*SCU_width-1; i ++)
{
dst[i+1] = srcShifted[i-srcWidth];
// Copy the pixels to output
for (i = 0; i < left_col * scu_width - 1; i++) {
dst[(i + 1) * dststride] = src_shifted[i * src_width - 1];
}
if(topRow != outwidth/SCU_width)
{
val = srcShifted[(topRow*SCU_width)-srcWidth-1];
for(i = (topRow*SCU_width); i < outwidth; i++)
{
// if the loop was not completed, extrapolate the last pixel pushed to output
if (left_col != outwidth / scu_width) {
val = src_shifted[(left_col * scu_width - 1) * src_width - 1];
for (i = (left_col * scu_width); i < outwidth; i++) {
dst[i * dststride] = val;
}
}
} else { // If left column not available, copy from toprow or use the default predictor
val = y_ctb ? src_shifted[-src_width] : dc_val;
for (i = 0; i < outwidth; i++) {
dst[i * dststride] = val;
}
}
if (y_ctb) {
// Loop top SCU's
for (top_row = 1; top_row < outwidth / scu_width; top_row++) {
if ((x_ctb + top_row) * scu_width >= src_width
|| pic->CU[0][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type
== CU_NOTSET) {
break;
}
}
for (i = 0; i < top_row * scu_width - 1; i++) {
dst[i + 1] = src_shifted[i - src_width];
}
if (top_row != outwidth / scu_width) {
val = src_shifted[(top_row * scu_width) - src_width - 1];
for (i = (top_row * scu_width); i < outwidth; i++) {
dst[i] = val;
}
}
}
else
{
val = xCtb?srcShifted[-1]:dcVal;
for(i = 1; i < outwidth; i++)
{
} else {
val = x_ctb ? src_shifted[-1] : dc_val;
for (i = 1; i < outwidth; i++) {
dst[i] = val;
}
}
/* Topleft corner */
dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride];
// Topleft corner
dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride];
}
void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_split_x = ((encoder->in.width) < ( (xCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1;
uint8_t border_split_y = ((encoder->in.height) < ( (yCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_lcu<<MAX_DEPTH)];
/**
* \brief
*/
void search_tree(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; // are we in any border CU
CU_info *cur_cu = &encoder->in.cur_pic->CU[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
cur_CU->intra.cost = 0xffffffff;
cur_CU->inter.cost = 0xffffffff;
cur_cu->intra.cost = 0xffffffff;
cur_cu->inter.cost = 0xffffffff;
/* Force split on border */
if(depth != MAX_DEPTH)
{
if(border)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
SET_SPLITDATA(cur_CU,1);
search_tree(encoder,xCtb,yCtb,depth+1);
if(!border_x || border_split_x)
{
search_tree(encoder,xCtb+change,yCtb,depth+1);
// Force split on border
if (depth != MAX_DEPTH) {
if (border) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
SET_SPLITDATA(cur_cu, 1);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
if (!border_x || border_split_x) {
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
}
if(!border_y || border_split_y)
{
search_tree(encoder,xCtb,yCtb+change,depth+1);
if (!border_y || border_split_y) {
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
}
if(!border || (border_split_x && border_split_y) )
{
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
if (!border || (border_split_x && border_split_y)) {
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
/* We don't need to do anything else here */
// We don't need to do anything else here
return;
}
}
/* INTER SEARCH */
if(depth >= MIN_INTER_SEARCH_DEPTH
&& depth <= MAX_INTER_SEARCH_DEPTH
// INTER SEARCH
if (depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH
&& encoder->in.cur_pic->slicetype != SLICE_I) {
/* Motion estimation on P-frame */
if(encoder->in.cur_pic->slicetype != SLICE_B)
{
// Motion estimation on P-frame
if (encoder->in.cur_pic->slicetype != SLICE_B) {
}
{
unsigned mv[2] = { 0, 0 }; // TODO: Take initial MV from adjacent blocks.
picture *cur_pic = encoder->in.cur_pic;
picture *ref_pic = encoder->ref->pics[0];
int x = xCtb * CU_MIN_SIZE_PIXELS;
int y = yCtb * CU_MIN_SIZE_PIXELS;
int x = x_ctb * CU_MIN_SIZE_PIXELS;
int y = y_ctb * CU_MIN_SIZE_PIXELS;
uint8_t *cur_data = &cur_pic->y_data[(y * cur_pic->width) + x];
search_motion_vector(cur_pic, cur_data, ref_pic->y_data, cur_CU, 8, x, y, 0, 0, depth);
search_motion_vector(cur_pic, cur_data, ref_pic->y_data, cur_cu, 8, x, y,
0, 0, depth);
}
cur_CU->type = CU_INTER;
cur_CU->inter.mv_dir = 1;
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
cur_cu->type = CU_INTER;
cur_cu->inter.mv_dir = 1;
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
}
/* INTRA SEARCH */
if (depth >= MIN_INTRA_SEARCH_DEPTH
&& depth <= MAX_INTRA_SEARCH_DEPTH
// INTRA SEARCH
if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH
&& (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) {
int x = 0,y = 0;
uint8_t *base = &encoder->in.cur_pic->y_data[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width];
uint32_t width = LCU_WIDTH>>depth;
int x = 0, y = 0;
uint8_t *base = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
uint32_t width = LCU_WIDTH >> depth;
/* INTRAPREDICTION */
int16_t pred[LCU_WIDTH*LCU_WIDTH+1];
int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)];
int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1];
// INTRAPREDICTION
int16_t pred[LCU_WIDTH * LCU_WIDTH + 1];
int16_t rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
int16_t *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
//int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t));
//int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t));
/* Build reconstructed block to use in prediction with extrapolated borders */
search_buildReferenceBorder(encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0);
cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic->y_data,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost);
// Build reconstructed block to use in prediction with extrapolated borders
search_buildReferenceBorder(encoder->in.cur_pic, x_ctb, y_ctb,
(LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0);
cur_cu->intra.mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data,
encoder->in.width, recShift, (LCU_WIDTH >> (depth)) * 2 + 8,
x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
width, pred, width, &cur_cu->intra.cost);
//free(pred);
//free(rec);
}
/* Split and search to max_depth */
if(depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
search_tree(encoder,xCtb,yCtb,depth+1);
search_tree(encoder,xCtb+change,yCtb,depth+1);
search_tree(encoder,xCtb,yCtb+change,depth+1);
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
// Split and search to max_depth
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
}
uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
/**
* \brief
*/
uint32_t search_best_mode(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_lcu<<MAX_DEPTH)];
uint32_t bestIntraCost = cur_CU->intra.cost;
uint32_t bestInterCost = cur_CU->inter.cost;
uint32_t bestCost = 0;
CU_info *cur_cu = &encoder->in.cur_pic->CU[depth][x_ctb
+ y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
uint32_t best_intra_cost = cur_cu->intra.cost;
uint32_t best_inter_cost = cur_cu->inter.cost;
uint32_t best_cost = 0;
uint32_t cost = 0;
uint32_t lambdaCost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation
/* Split and search to max_depth */
// Split and search to max_depth
if (depth != MAX_INTRA_SEARCH_DEPTH) {
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
cost = search_best_mode(encoder,xCtb,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1);
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
cost = search_best_mode(encoder, x_ctb, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1);
/* We split if the cost is better (0 cost -> not checked) */
if(cost != 0 && (bestIntraCost != 0 && cost+lambdaCost < bestIntraCost) &&
(bestInterCost != 0 && cost+lambdaCost < bestInterCost && encoder->in.cur_pic->slicetype != SLICE_I))
// We split if the cost is better (0 cost -> not checked)
if (cost != 0
&& (best_intra_cost != 0 && cost + lambdaCost < best_intra_cost)
&& (best_inter_cost != 0
&& cost + lambdaCost < best_inter_cost
&& encoder->in.cur_pic->slicetype != SLICE_I))
{
/* Set split to 1 */
picture_set_block_split(encoder->in.cur_pic,xCtb,yCtb,depth,1);
bestCost = cost+lambdaCost;
}
/* Else, check if inter cost is smaller or the same as intra */
else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I)
// Set split to 1
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1);
best_cost = cost + lambdaCost;
} else if (best_inter_cost != 0 // Else, check if inter cost is smaller or the same as intra
&& (best_inter_cost <= best_intra_cost || best_intra_cost == 0)
&& encoder->in.cur_pic->slicetype != SLICE_I)
{
/* Set split to 0 and mode to inter.mode */
picture_set_block_split(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
// Set split to 0 and mode to inter.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
best_cost = best_inter_cost;
} else { // Else, dont split and recursively set block mode
// Set split to 0 and mode to intra.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
cur_cu->intra.mode);
best_cost = best_intra_cost;
}
/* Else, dont split and recursively set block mode */
else
{
/* Set split to 0 and mode to intra.mode */
picture_set_block_split(encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_set_block_mode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
bestCost = bestIntraCost;
}
}
else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I)
} else if (best_inter_cost != 0
&& (best_inter_cost <= best_intra_cost || best_intra_cost == 0)
&& encoder->in.cur_pic->slicetype != SLICE_I)
{
/* Set split to 0 and mode to inter.mode */
picture_set_block_split(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
}
else
{
/* Set split to 0 and mode to intra.mode */
picture_set_block_split(encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_set_block_mode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
bestCost = bestIntraCost;
// Set split to 0 and mode to inter.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
best_cost = best_inter_cost;
} else {
// Set split to 0 and mode to intra.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
cur_cu->intra.mode);
best_cost = best_intra_cost;
}
return bestCost;
return best_cost;
}
void search_slice_data(encoder_control* encoder)
/**
* \brief
*/
void search_slice_data(encoder_control *encoder)
{
int16_t xCtb,yCtb;
int16_t x_lcu, y_lcu;
FILE *fp = 0, *fp2 = 0;
if (RENDER_CU && encoder->frame == 1) {
@ -324,20 +332,21 @@ void search_slice_data(encoder_control* encoder)
fp2 = open_cu_file("cu_best.html");
}
/* Loop through every LCU in the slice */
for(yCtb = 0; yCtb < encoder->in.height_in_lcu; yCtb++)
{
for(xCtb = 0; xCtb < encoder->in.width_in_lcu; xCtb++)
{
// Loop through every LCU in the slice
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
uint8_t depth = 0;
/* Recursive function for looping through all the sub-blocks */
search_tree(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) render_cu_file(encoder, depth, xCtb<<MAX_DEPTH, yCtb<<MAX_DEPTH, fp);
// Recursive function for looping through all the sub-blocks
search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) {
render_cu_file(encoder, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp);
}
/* Decide actual coding modes */
search_best_mode(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) render_cu_file(encoder, depth, xCtb<<MAX_DEPTH, yCtb<<MAX_DEPTH, fp2);
// Decide actual coding modes
search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) {
render_cu_file(encoder, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2);
}
}
}

View file

@ -17,8 +17,8 @@
#include "encoder.h"
void search_slice_data(encoder_control* encoder);
void search_tree(encoder_control* encoder,uint16_t x_cu,uint16_t y_cu, uint8_t depth);
void search_slice_data(encoder_control *encoder);
void search_tree(encoder_control *encoder,uint16_t x_cu,uint16_t y_cu, uint8_t depth);
uint32_t search_best_mode(encoder_control* encoder,uint16_t x_cu,uint16_t y_cu, uint8_t depth);
#endif