Refactor: inter.c/.h full cleanup

This commit is contained in:
Marko Viitanen 2013-09-19 15:08:30 +03:00
parent d6932128aa
commit 5264569f43
3 changed files with 142 additions and 129 deletions

View file

@ -18,153 +18,164 @@
#include "config.h"
/*!
\brief Set block mode (and init typedata)
\param pic picture to use
\param xCtb x CU position (smallest CU)
\param yCtb y CU position (smallest CU)
\param depth current CU depth
\param mode mode to set
\returns Void
/**
* \brief Set block info to the CU structure
* \param pic picture to use
* \param x_cu x CU position (smallest CU)
* \param y_cu y CU position (smallest CU)
* \param depth current CU depth
* \param cur_cu CU to take the settings from
* \returns Void
*/
void inter_setBlockMode(picture* pic,uint32_t x_cu, uint32_t y_cu, uint8_t depth, CU_info* cur_cu)
void inter_set_block(picture* pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth, CU_info* cur_cu)
{
uint32_t x,y,d;
/* Width in smallest CU */
int width_in_SCU = pic->width_in_lcu<<MAX_DEPTH;
int block_SCU_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
for(y = y_cu; y < y_cu+block_SCU_width; y++)
{
int CUpos = y*width_in_SCU;
for(x = x_cu; x < x_cu+block_SCU_width; x++)
{
for(d = 0; d < MAX_DEPTH+1; d++)
{
pic->CU[d][CUpos+x].depth = depth;
pic->CU[d][CUpos+x].type = CU_INTER;
pic->CU[d][CUpos+x].inter.mode = cur_cu->inter.mode;
pic->CU[d][CUpos+x].inter.mv[0] = cur_cu->inter.mv[0];
pic->CU[d][CUpos+x].inter.mv[1] = cur_cu->inter.mv[1];
pic->CU[d][CUpos+x].inter.mv_dir = cur_cu->inter.mv_dir;
// Width in smallest CU
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH;
int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
// Loop through all the block in the area of cur_cu
for (y = y_cu; y < y_cu + block_scu_width; y++) {
int cu_pos = y * width_in_scu; //!< calculate y-position once, use with every x
for (x = x_cu; x < x_cu + block_scu_width; x++) {
// reset all depths to the same MV/inter data
for(d = 0; d < MAX_DEPTH + 1; d++) {
pic->CU[d][cu_pos + x].depth = depth;
pic->CU[d][cu_pos + x].type = CU_INTER;
pic->CU[d][cu_pos + x].inter.mode = cur_cu->inter.mode;
pic->CU[d][cu_pos + x].inter.mv[0] = cur_cu->inter.mv[0];
pic->CU[d][cu_pos + x].inter.mv[1] = cur_cu->inter.mv[1];
pic->CU[d][cu_pos + x].inter.mv_dir = cur_cu->inter.mv_dir;
}
}
}
}
/*!
\brief Reconstruct inter block
\param ref picture to copy the data from
\param xpos block x position
\param ypos block y position
\param width block width
\param mv[2] motion vector
\param dst destination picture
\returns Void
/**
* \brief Reconstruct inter block
* \param ref picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param mv[2] motion vector
* \param dst destination picture
* \returns Void
*/
void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, int16_t mv[2], picture* dst)
void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, int16_t mv[2], picture *dst)
{
int x,y,coord_x,coord_y;
/* negative overflow present */
int8_t overflow_neg_x = (xpos+mv[0] < 0)?1:0;
int8_t overflow_neg_y = (ypos+mv[1] < 0)?1:0;
int32_t dst_width_c = dst->width>>1; //!< Destination picture width in chroma pixels
int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels
/* positive overflow present */
int8_t overflow_pos_x = (xpos+mv[0]+width > ref->width )?1:0;
int8_t overflow_pos_y = (ypos+mv[1]+width > ref->height)?1:0;
// negative overflow flag
int8_t overflow_neg_x = (xpos + mv[0] < 0)?1:0;
int8_t overflow_neg_y = (ypos + mv[1] < 0)?1:0;
/* TODO: Fractional pixel support */
// positive overflow flag
int8_t overflow_pos_x = (xpos + mv[0] + width > ref->width )?1:0;
int8_t overflow_pos_y = (ypos + mv[1] + width > ref->height)?1:0;
// TODO: Fractional pixel support
mv[0] = mv[0]>>2;
mv[1] = mv[1]>>2;
/* With overflow present, more checking */
// With overflow present, more checking
if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) {
/* Copy Luma with boundary checking */
for (y = ypos; y < ypos+width; y++) {
for (x = xpos; x < xpos+width; x++) {
coord_x = x;
coord_y = y;
overflow_neg_x = (x+mv[0] < 0)?1:0;
overflow_neg_y = (y+mv[1] < 0)?1:0;
// Copy Luma with boundary checking
for (y = ypos; y < ypos + width; y++) {
for (x = xpos; x < xpos + width; x++) {
coord_x = x + mv[0];
coord_y = y + mv[1];
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (coord_y < 0)?1:0;
overflow_pos_x = (x+mv[0] >= ref->width )?1:0;
overflow_pos_y = (y+mv[1] >= ref->height)?1:0;
overflow_pos_x = (coord_x >= ref->width )?1:0;
overflow_pos_y = (coord_y >= ref->height)?1:0;
// On x-overflow set coord_x accordingly
if (overflow_neg_x) {
coord_x = 0;
} else if (overflow_pos_x) {
coord_x = ref->width - 1;
}
// On y-overflow set coord_y accordingly
if (overflow_neg_y) {
coord_y = 0;
} else if (overflow_pos_y) {
coord_y = ref->height - 1;
}
// set destination to (corrected) pixel value from the reference
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y*ref->width + coord_x];
}
}
// Copy Chroma with boundary checking
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
coord_x = x + (mv[0]>>1);
coord_y = y + (mv[1]>>1);
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width>>1 )?1:0;
overflow_pos_y = (coord_y >= ref->height>>1)?1:0;
// On x-overflow set coord_x accordingly
if(overflow_neg_x) {
coord_x = -mv[0];
coord_x = 0;
} else if(overflow_pos_x) {
coord_x = ref->width-1-mv[0];
coord_x = (ref->width>>1) - 1;
}
// On y-overflow set coord_y accordingly
if(overflow_neg_y) {
coord_y = -mv[1];
coord_y = 0;
} else if(overflow_pos_y) {
coord_y = ref->height-1-mv[1];
coord_y = (ref->height>>1) - 1;
}
dst->y_recdata[y*dst->width+x] = ref->y_recdata[(coord_y+mv[1])*ref->width+(coord_x+mv[0])];
// set destinations to (corrected) pixel value from the reference
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y*ref_width_c + coord_x];
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y*ref_width_c + coord_x];
}
}
} else { //If no overflow, we can copy without checking boundaries
// Copy Luma
for (y = ypos; y < ypos + width; y++) {
coord_y = (y + mv[1]) * ref->width; // pre-calculate
for (x = xpos; x < xpos + width; x++) {
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y + x + mv[0]];
}
}
/* Copy Chroma with boundary checking */
for (y = ypos>>1; y < (ypos+width)>>1; y++) {
for (x = xpos>>1; x < (xpos+width)>>1; x++) {
coord_x = x;
coord_y = y;
overflow_neg_x = (x+(mv[0]>>1) < 0)?1:0;
overflow_neg_y = (y+(mv[1]>>1) < 0)?1:0;
overflow_pos_x = (x+(mv[0]>>1) >= ref->width>>1 )?1:0;
overflow_pos_y = (y+(mv[1]>>1) >= ref->height>>1)?1:0;
if(overflow_neg_x) {
coord_x = -(mv[0]>>1);
} else if(overflow_pos_x) {
coord_x = ((ref->width-mv[0])>>1)-1;
}
if(overflow_neg_y) {
coord_y = -(mv[1]>>1);
} else if(overflow_pos_y) {
coord_y = ((ref->height-mv[1])>>1)-1;
}
dst->u_recdata[y*(dst->width>>1)+x] = ref->u_recdata[(coord_y+(mv[1]>>1))*(ref->width>>1)+(coord_x+(mv[0]>>1))];
dst->v_recdata[y*(dst->width>>1)+x] = ref->v_recdata[(coord_y+(mv[1]>>1))*(ref->width>>1)+(coord_x+(mv[0]>>1))];
}
}
} else {
/* Copy Luma */
for (y = ypos; y < ypos+width; y++) {
for (x = xpos; x < xpos+width; x++) {
dst->y_recdata[y*dst->width+x] = ref->y_recdata[(y+mv[1])*ref->width+x+mv[0]];
}
}
/* Copy Chroma */
for (y = ypos>>1; y < (ypos+width)>>1; y++) {
for (x = xpos>>1; x < (xpos+width)>>1; x++) {
dst->u_recdata[y*(dst->width>>1)+x] = ref->u_recdata[(y+(mv[1]>>1))*(ref->width>>1)+x+(mv[0]>>1)];
dst->v_recdata[y*(dst->width>>1)+x] = ref->v_recdata[(y+(mv[1]>>1))*(ref->width>>1)+x+(mv[0]>>1)];
// Copy Chroma
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
coord_y = (y + (mv[1]>>1)) * ref_width_c; // pre-calculate
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y + x + (mv[0]>>1)];
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y + x + (mv[0]>>1)];
}
}
}
}
/*!
\brief Get MV prediction for current block
\param encoder encoder control struct to use
\param xCtb block x position in SCU
\param yCtb block y position in SCU
\param depth current block depth
\param mv_pred[2][2] 2x motion vector prediction
\returns Void
*/
void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_t depth, int16_t mv_cand[2][2])
/**
* \brief Get MV prediction for current block
* \param encoder encoder control struct to use
* \param x_cu block x position in SCU
* \param y_cu block y position in SCU
* \param depth current block depth
* \param mv_pred[2][2] 2x motion vector prediction
*/
void inter_get_mv_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[2][2])
{
uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS;
uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU
uint8_t candidates = 0;
/*
Predictor block locations
____ _______
@ -179,29 +190,31 @@ void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_
b0 = b1 = b2 = a0 = a1 = NULL;
if (xCtb != 0) {
a1 = &encoder->in.cur_pic->CU[depth][xCtb-1+(yCtb+cur_block_in_scu-1)*(encoder->in.width_in_lcu<<MAX_DEPTH)];
if(!a1->coded) a1 = NULL;
// A0 and A1 availability testing
if (x_cu != 0) {
a1 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu + cur_block_in_scu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!a1->coded) a1 = NULL;
if (yCtb+cur_block_in_scu < encoder->in.height_in_lcu<<MAX_DEPTH) {
a0 = &encoder->in.cur_pic->CU[depth][xCtb-1+(yCtb+cur_block_in_scu)*(encoder->in.width_in_lcu<<MAX_DEPTH)];
if(!a0->coded) a0 = NULL;
if (y_cu + cur_block_in_scu < encoder->in.height_in_lcu<<MAX_DEPTH) {
a0 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu + cur_block_in_scu) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!a0->coded) a0 = NULL;
}
}
if (yCtb != 0) {
b0 = &encoder->in.cur_pic->CU[depth][xCtb+cur_block_in_scu+(yCtb-1)*(encoder->in.width_in_lcu<<MAX_DEPTH)];
// B0, B1 and B2 availability testing
if (y_cu != 0) {
b0 = &encoder->in.cur_pic->CU[depth][x_cu + cur_block_in_scu + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!b0->coded) b0 = NULL;
b1 = &encoder->in.cur_pic->CU[depth][xCtb+cur_block_in_scu-1+(yCtb-1)*(encoder->in.width_in_lcu<<MAX_DEPTH)];
b1 = &encoder->in.cur_pic->CU[depth][x_cu + cur_block_in_scu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!b1->coded) b1 = NULL;
if (xCtb != 0) {
b2 = &encoder->in.cur_pic->CU[depth][xCtb-1+(yCtb-1)*(encoder->in.width_in_lcu<<MAX_DEPTH)];
if (x_cu != 0) {
b2 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if(!b2->coded) b2 = NULL;
}
}
/* Left predictors */
// Left predictors
if (a0 && a0->type == CU_INTER) {
mv_cand[candidates][0] = a0->inter.mv[0];
mv_cand[candidates][1] = a0->inter.mv[1];
@ -212,7 +225,7 @@ void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_
candidates++;
}
/* Top predictors */
// Top predictors
if (b0 && b0->type == CU_INTER) {
mv_cand[candidates][0] = b0->inter.mv[0];
mv_cand[candidates][1] = b0->inter.mv[1];
@ -227,7 +240,7 @@ void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_
candidates++;
}
/* Remove identical candidate */
// Remove identical candidate
if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
candidates = 1;
}
@ -238,10 +251,10 @@ void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_
}
#endif
// Fill with (0,0)
while (candidates < 2) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
}
}

View file

@ -18,7 +18,7 @@
#include "encoder.h"
void inter_setBlockMode(picture* pic,uint32_t x_cu, uint32_t y_cu, uint8_t depth, CU_info* cur_cu);
void inter_set_block(picture* pic,uint32_t x_cu, uint32_t y_cu, uint8_t depth, CU_info *cur_cu);
void inter_recon(picture *ref,int32_t xpos, int32_t ypos,int32_t width, int16_t mv[2], picture* dst);
void inter_get_mv_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[2][2]);

View file

@ -215,7 +215,7 @@ void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t d
cur_CU->type = CU_INTER;
cur_CU->inter.mv_dir = 1;
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
}
/* INTRA SEARCH */
@ -284,7 +284,7 @@ uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb,
{
/* Set split to 0 and mode to inter.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
}
/* Else, dont split and recursively set block mode */
@ -300,7 +300,7 @@ uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb,
{
/* Set split to 0 and mode to inter.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
inter_set_block(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
}
else