reconst optimation doesn't work yet

This commit is contained in:
Reima Hyvönen 2018-08-31 16:59:49 +03:00 committed by Pauli Oikkonen
parent d29f834a69
commit 5fbc65d823

View file

@ -35,9 +35,12 @@
// Might be useful to check that if (when) this file // Might be useful to check that if (when) this file
// is difficult to understand. // is difficult to understand.
static INLINE __m128i load_6_pixels(const kvz_pixel* data) static INLINE __m128i load_14_pixels(const kvz_pixel* data)
{ {
return _mm_insert_epi16(_mm_cvtsi32_si128(*(int32_t*)&(data[0])), *(int16_t*)&(data[4]), 2); __m128i temp = _mm_loadl_epi64((__m128i*)&data[0]);
temp = _mm_insert_epi32(temp, *(int32_t*)&data[8], 2);
temp = _mm_insert_epi16(temp, *(int16_t*)&data[12], 6);
return temp;
} }
static INLINE __m256i load_5_offsets(const int* offsets) static INLINE __m256i load_5_offsets(const int* offsets)
@ -60,7 +63,7 @@ static __m128i sao_calc_eo_cat_avx2_256(__m128i* a, __m128i* b, __m128i* c)
v_eo_idx = _mm256_add_epi16(v_eo_idx, temp_b); v_eo_idx = _mm256_add_epi16(v_eo_idx, temp_b);
v_eo_idx = _mm256_packus_epi16(v_eo_idx, v_eo_idx); v_eo_idx = _mm256_packus_epi16(v_eo_idx, v_eo_idx);
v_eo_idx = _mm256_permute4x64_epi64(v_eo_idx, 0b11011000); v_eo_idx = _mm256_permute4x64_epi64(v_eo_idx, _MM_SHUFFLE(3,1,2,0));
__m128i v_cat_lookup = _mm_setr_epi8(1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); __m128i v_cat_lookup = _mm_setr_epi8(1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, _mm256_extracti128_si256(v_eo_idx, 1)); __m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, _mm256_extracti128_si256(v_eo_idx, 1));
@ -123,7 +126,7 @@ static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
__m128i temp_cat = sao_calc_eo_cat_avx2_256(&vector_a, &vector_b, &vector_c_data); __m128i temp_cat = sao_calc_eo_cat_avx2_256(&vector_a, &vector_b, &vector_c_data);
//Split temp_cat vector to higher and upper parts //Split temp_cat vector to higher and upper parts
__m256i vector_cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 0))); __m256i vector_cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*(int64_t*)&(temp_cat)));
__m256i vector_cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1))); __m256i vector_cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1)));
// Re-arrenge offsets to right order // Re-arrenge offsets to right order
@ -147,30 +150,20 @@ static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
v_accum = _mm256_add_epi32(v_accum, v_temp_sum); v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
} }
/*
Make 14 pixel load here
static INLINE __m128i load_14_pixels(const kvz_pixel* data) {
__m128i temp;
temp = _mm_loadl_epi64((__m128i*)data);
_mm_insert_epi32((int32_t*)&)
*
}*/
// After x> (block_width-16) handle 8 pixels and after that the last 6 pixels
const kvz_pixel *c_data = &rec_data[y * block_width + x]; const kvz_pixel *c_data = &rec_data[y * block_width + x];
vector_c_data = _mm_loadl_epi64((__m128i*)c_data); vector_c_data = load_14_pixels(c_data);
vector_a = _mm_loadl_epi64((__m128i*)(&c_data[a_ofs.y * block_width + a_ofs.x])); vector_a = load_14_pixels((&c_data[a_ofs.y * block_width + a_ofs.x]));
vector_b = _mm_loadl_epi64((__m128i*)(&c_data[b_ofs.y * block_width + b_ofs.x]));
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2_256(&vector_a, &vector_b, &vector_c_data)); vector_b = load_14_pixels((&c_data[b_ofs.y * block_width + b_ofs.x]));
__m128i temp_cat = sao_calc_eo_cat_avx2_256(&vector_a, &vector_b, &vector_c_data);
temp_v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat);
//Split temp_cat vector to higher and upper parts
__m256i vector_cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*(int64_t*)&(temp_cat)));
__m256i vector_cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1)));
// Re-arrenge offsets to right order
temp_v_offset = _mm256_permutevar8x32_epi32(v_offset, vector_cat_lower);
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x]))); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x])));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(vector_c_data)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(vector_c_data));
@ -180,28 +173,16 @@ static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
__m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); __m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
v_accum = _mm256_add_epi32(v_accum, v_temp_sum); v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
//Handle last 6 pixels separately to prevent reading over boundary temp_v_offset = _mm256_permutevar8x32_epi32(v_offset, vector_cat_upper);
x += 8; v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x + 8])));
c_data = &rec_data[y * block_width + x]; int64_t*c_pointer = (int64_t*)&vector_c_data;
vector_c_data = load_6_pixels(c_data); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(c_pointer[1])));
const kvz_pixel *a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
const kvz_pixel *b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
vector_a = load_6_pixels(a_ptr);
vector_b = load_6_pixels(b_ptr);
v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2_256(&vector_a, &vector_b, &vector_c_data));
temp_v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat);
const kvz_pixel *orig_ptr = &(orig_data[y * block_width + x]);
v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(vector_c_data));
v_diff_minus_offset = _mm256_sub_epi32(v_diff, temp_v_offset); v_diff_minus_offset = _mm256_sub_epi32(v_diff, temp_v_offset);
v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
v_accum = _mm256_add_epi32(v_accum, v_temp_sum); v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
} }
//Full horizontal sum //Full horizontal sum
@ -243,6 +224,24 @@ static INLINE void accum_count_eo_cat_avx2(__m256i* __restrict v_diff_accum,
accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT); accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT);
static INLINE void accum_count_eo_cat_avx2_256(__m256i* __restrict v_diff_accum,
__m256i* __restrict v_count,
__m256i* __restrict v_cat,
__m256i* __restrict v_diff,
int eo_cat)
{
__m256i v_mask = _mm256_cmpeq_epi32(*v_cat, _mm256_set1_epi32(eo_cat));
*v_diff_accum = _mm256_add_epi32(*v_diff_accum, _mm256_and_si256(*v_diff, v_mask));
*v_count = _mm256_sub_epi32(*v_count, v_mask);
}
#define ACCUM_COUNT_EO_CAT_AVX2_256(EO_CAT, V_CAT) \
\
accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT);
/* /*
static void calc_sao_edge_dir_generic(const kvz_pixel *orig_data, static void calc_sao_edge_dir_generic(const kvz_pixel *orig_data,
const kvz_pixel *rec_data, const kvz_pixel *rec_data,
@ -331,51 +330,36 @@ static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
const kvz_pixel *c_data = &rec_data[y * block_width + x]; const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data); __m128i v_c_data = load_14_pixels(c_data);
__m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x])); __m128i v_a = load_14_pixels(&c_data[a_ofs.y * block_width + a_ofs.x]);
__m128i v_c = v_c_data; __m128i v_c = v_c_data;
__m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x])); __m128i v_b = load_14_pixels(&c_data[b_ofs.y * block_width + b_ofs.x]);
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); temp_cat = sao_calc_eo_cat_avx2_256(&v_a, &v_b, &v_c);
__m256i cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 0)));
__m256i cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1)));
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x]))); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category //Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, cat_lower);
x += 8;
//Handle last 6 pixels separately to prevent reading over boundary v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x + 8])));
c_data = &rec_data[y * block_width + x]; int64_t*c_pointer = (int64_t*)&v_c;
v_c_data = load_6_pixels(c_data); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(c_pointer[1])));
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
v_a = load_6_pixels(a_ptr);
v_c = v_c_data;
v_b = load_6_pixels(b_ptr);
v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
//Set the last two elements to a non-existing category to cause
//the accumulate-count macro to discard those values.
__m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1);
v_cat = _mm256_or_si256(v_cat, v_mask);
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category //Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, cat_upper);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, cat_upper);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, cat_upper);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, cat_upper);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, cat_upper);
} }
for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) { for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) {
@ -402,6 +386,65 @@ static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
} }
static int sao_calc_eo_cat(kvz_pixel a, kvz_pixel b, kvz_pixel c)
{
// Mapping relationships between a, b and c to eo_idx.
static const int sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 };
int eo_idx = 2 + SIGN3((int)c - (int)a) + SIGN3((int)c - (int)b);
return sao_eo_idx_to_eo_category[eo_idx];
}
static void sao_reconstruct_color_avx(const encoder_control_t * const encoder,
const kvz_pixel *rec_data,
kvz_pixel *new_rec_data,
const sao_info_t *sao,
int stride,
int new_stride,
int block_width,
int block_height,
color_t color_i)
{
// Arrays orig_data and rec_data are quarter size for chroma.
int offset_v = color_i == COLOR_V ? 5 : 0;
if (sao->type == SAO_TYPE_BAND) {
int offsets[1 << KVZ_BIT_DEPTH];
kvz_calc_sao_offset_array(encoder, sao, offsets, color_i);
for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; ++x) {
new_rec_data[y * new_stride + x] = offsets[rec_data[y * stride + x]];
}
}
}
else {
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; ++x) {
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
const kvz_pixel *c_data = &rec_data[y * stride + x];
kvz_pixel *new_data = &new_rec_data[y * new_stride + x];
kvz_pixel a = c_data[a_ofs.y * stride + a_ofs.x];
kvz_pixel c = c_data[0];
kvz_pixel b = c_data[b_ofs.y * stride + b_ofs.x];
int eo_cat = sao_calc_eo_cat(a, b, c);
printf("%d", eo_cat);
new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]);
}
}
}
}
/*
Does't work
*/
static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder, static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder,
const kvz_pixel *rec_data, kvz_pixel *new_rec_data, const kvz_pixel *rec_data, kvz_pixel *new_rec_data,
const sao_info_t *sao, const sao_info_t *sao,
@ -423,34 +466,67 @@ static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder,
} else { } else {
// Don't sample the edge pixels because this function doesn't have access to // Don't sample the edge pixels because this function doesn't have access to
// their neighbours. // their neighbours.
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
for (int y = 0; y < block_height; ++y) { for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; x+=8) { for (int x = 0; x < block_width; x+=16) {
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
const kvz_pixel *c_data = &rec_data[y * stride + x]; const kvz_pixel *c_data = &rec_data[y * stride + x];
kvz_pixel *new_data = &new_rec_data[y * new_stride + x]; kvz_pixel *new_data = &new_rec_data[y * new_stride + x];
const kvz_pixel* a_ptr = &c_data[a_ofs.y * stride + a_ofs.x]; const kvz_pixel* a_ptr = &c_data[a_ofs.y * stride + a_ofs.x];
const kvz_pixel* c_ptr = &c_data[0]; const kvz_pixel* c_ptr = &c_data[0];
const kvz_pixel* b_ptr = &c_data[b_ofs.y * stride + b_ofs.x]; const kvz_pixel* b_ptr = &c_data[b_ofs.y * stride + b_ofs.x];
/*
__m128i v_a = _mm_loadl_epi64((__m128i*)a_ptr); __m128i v_a = _mm_loadl_epi64((__m128i*)a_ptr);
__m128i v_b = _mm_loadl_epi64((__m128i*)b_ptr); __m128i v_b = _mm_loadl_epi64((__m128i*)b_ptr);
__m128i v_c = _mm_loadl_epi64((__m128i*)c_ptr); __m128i v_c = _mm_loadl_epi64((__m128i*)c_ptr);*/
__m128i v_a = _mm_loadu_si128((__m128i*)a_ptr);
__m128i v_b = _mm_loadu_si128((__m128i*)b_ptr);
__m128i v_c = _mm_loadu_si128((__m128i*)c_ptr);
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c) ); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c) );
__m128i temp_cat = sao_calc_eo_cat_avx2_256(&v_a, &v_b, &v_c);
int8_t* test = (int8_t*)&temp_cat;
for (int i = 0; i < 16; i++) {
printf("%d", test[i]);
}
__m256i cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 0)));
__m256i cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1)));
__m256i v_offset_v = load_5_offsets(sao->offsets + offset_v); __m256i v_offset_v = load_5_offsets(sao->offsets + offset_v);
__m256i v_new_data = _mm256_permutevar8x32_epi32(v_offset_v, v_cat); __m256i v_new_data = _mm256_permutevar8x32_epi32(v_offset_v, cat_lower);
v_new_data = _mm256_add_epi32(v_new_data, _mm256_cvtepu8_epi32(v_c)); v_new_data = _mm256_add_epi32(v_new_data, _mm256_cvtepu8_epi32(v_c));
__m256i v_new_data_2 = _mm256_permutevar8x32_epi32(v_offset_v, cat_upper);
v_new_data_2 = _mm256_permutevar8x32_epi32(v_offset_v, cat_upper);
v_new_data_2 = _mm256_add_epi32(v_new_data, _mm256_cvtepu8_epi32(v_c));
__m256i v_new_data_256 = _mm256_packus_epi32(v_new_data, v_new_data_2);
v_new_data_256 = _mm256_packus_epi16(v_new_data_256, v_new_data_256);
__m128i v_new_data_128 = _mm256_castsi256_si128(v_new_data_256);
v_new_data_128 = _mm_shuffle_epi32(v_new_data_128, _MM_SHUFFLE(3,1,2,0));
/*
__m128i v_new_data_128 = _mm_packus_epi32(_mm256_castsi256_si128(v_new_data), _mm256_extracti128_si256(v_new_data, 1)); __m128i v_new_data_128 = _mm_packus_epi32(_mm256_castsi256_si128(v_new_data), _mm256_extracti128_si256(v_new_data, 1));
v_new_data_128 = _mm_packus_epi16(v_new_data_128, v_new_data_128); v_new_data_128 = _mm_packus_epi16(v_new_data_128, v_new_data_128);*/
if ((block_width - x) >= 8) { if ((block_width - x) >= 8) {
_mm_storel_epi64((__m128i*)new_data, v_new_data_128); _mm_storeu_si128((__m128i*)new_data, v_new_data_128);
} else { } else {
kvz_pixel arr[8]; kvz_pixel arr[8];
_mm_storel_epi64((__m128i*)arr, v_new_data_128); _mm_storeu_si128((__m128i*)arr, v_new_data_128);
for (int i = 0; i < block_width - x; ++i) new_data[i] = arr[i]; for (int i = 0; i < block_width - x; ++i) new_data[i] = arr[i];
} }