diff --git a/src/strategies/avx2/picture-avx2.c b/src/strategies/avx2/picture-avx2.c index 9a0745c6..4da3741b 100644 --- a/src/strategies/avx2/picture-avx2.c +++ b/src/strategies/avx2/picture-avx2.c @@ -28,20 +28,66 @@ # include -static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2) +/** +* \brief Calculate SAD for 8x8 bytes in continuous memory. +*/ +static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b) { - __m256i sum; - { - // Get SADs for 8x8 pixels and add the results hierarchically into sum0. - const __m256i *const a = (const __m256i *)buf1; - const __m256i *const b = (const __m256i *)buf2; + __m256i sum0, sum1; + sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); + sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); - __m256i sum0, sum1; - sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); - sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); - sum = _mm256_add_epi32(sum0, sum1); - } + return _mm256_add_epi32(sum0, sum1); +} + +/** +* \brief Calculate SAD for 16x16 bytes in continuous memory. +*/ +static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b) +{ + const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); + + // Calculate in 4 chunks of 16x4. + __m256i sum0, sum1, sum2, sum3; + sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8); + sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8); + sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8); + sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8); + + sum0 = _mm256_add_epi32(sum0, sum1); + sum2 = _mm256_add_epi32(sum2, sum3); + + return _mm256_add_epi32(sum0, sum2); +} + + +/** +* \brief Calculate SAD for 32x32 bytes in continuous memory. +*/ +static INLINE __m256i inline_8bit_sad_32x32_avx2(const __m256i *const a, const __m256i *const b) +{ + const unsigned size_of_16x16 = 16 * 16 / sizeof(__m256i); + + // Calculate in 4 chunks of 32x8. + __m256i sum0, sum1, sum2, sum3; + sum0 = inline_8bit_sad_16x16_avx2(a + 0 * size_of_16x16, b + 0 * size_of_16x16); + sum1 = inline_8bit_sad_16x16_avx2(a + 1 * size_of_16x16, b + 1 * size_of_16x16); + sum2 = inline_8bit_sad_16x16_avx2(a + 2 * size_of_16x16, b + 2 * size_of_16x16); + sum3 = inline_8bit_sad_16x16_avx2(a + 3 * size_of_16x16, b + 3 * size_of_16x16); + + sum0 = _mm256_add_epi32(sum0, sum1); + sum2 = _mm256_add_epi32(sum2, sum3); + + return _mm256_add_epi32(sum0, sum2); +} + + +/** +* \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t. +*/ +static INLINE uint32_t m256i_horizontal_sum(const __m256i sum) +{ // Add the high 128 bits to low 128 bits. __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); // Add the high 64 bits to low 64 bits. @@ -51,87 +97,42 @@ static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2) } +static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2) +{ + const __m256i *const a = (const __m256i *)buf1; + const __m256i *const b = (const __m256i *)buf2; + __m256i sum = inline_8bit_sad_8x8_avx2(a, b); + + return m256i_horizontal_sum(sum); +} + + static unsigned sad_8bit_16x16_avx2(const pixel *buf1, const pixel *buf2) { - __m256i sum; - { - // Get SADs for 16x16 pixels and add the results hierarchically into sum. - const __m256i *const a = (const __m256i *)buf1; - const __m256i *const b = (const __m256i *)buf2; + const __m256i *const a = (const __m256i *)buf1; + const __m256i *const b = (const __m256i *)buf2; + __m256i sum = inline_8bit_sad_16x16_avx2(a, b); - __m256i sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7; - sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); - sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); - sum2 = _mm256_sad_epu8(_mm256_load_si256(a + 2), _mm256_load_si256(b + 2)); - sum3 = _mm256_sad_epu8(_mm256_load_si256(a + 3), _mm256_load_si256(b + 3)); - sum4 = _mm256_sad_epu8(_mm256_load_si256(a + 4), _mm256_load_si256(b + 4)); - sum5 = _mm256_sad_epu8(_mm256_load_si256(a + 5), _mm256_load_si256(b + 5)); - sum6 = _mm256_sad_epu8(_mm256_load_si256(a + 6), _mm256_load_si256(b + 6)); - sum7 = _mm256_sad_epu8(_mm256_load_si256(a + 7), _mm256_load_si256(b + 7)); - - sum0 = _mm256_add_epi32(sum0, sum1); - sum2 = _mm256_add_epi32(sum2, sum3); - sum4 = _mm256_add_epi32(sum4, sum5); - sum6 = _mm256_add_epi32(sum6, sum7); - - sum0 = _mm256_add_epi32(sum0, sum2); - sum4 = _mm256_add_epi32(sum4, sum6); - - sum = _mm256_add_epi32(sum0, sum4); - } - - // Add the high 128 bits to low 128 bits. - __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); - // Add the high 64 bits to low 64 bits. - uint32_t result[4]; - _mm_storeu_si128((__m128i*)result, mm128_result); - return result[0] + result[2]; + return m256i_horizontal_sum(sum); } static unsigned sad_8bit_32x32_avx2(const pixel *buf1, const pixel *buf2) { - // Do 32x32 in 4 blocks. - __m256i sum = _mm256_setzero_si256(); - for (int i = 0; i < 32; i += 8) { - // Get SADs for 32x8 pixels and add the results hierarchically into sum. - const __m256i *const a = (const __m256i *)buf1 + i; - const __m256i *const b = (const __m256i *)buf2 + i; + const __m256i *const a = (const __m256i *)buf1; + const __m256i *const b = (const __m256i *)buf2; - __m256i sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7; - sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); - sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); - sum2 = _mm256_sad_epu8(_mm256_load_si256(a + 2), _mm256_load_si256(b + 2)); - sum3 = _mm256_sad_epu8(_mm256_load_si256(a + 3), _mm256_load_si256(b + 3)); - sum4 = _mm256_sad_epu8(_mm256_load_si256(a + 4), _mm256_load_si256(b + 4)); - sum5 = _mm256_sad_epu8(_mm256_load_si256(a + 5), _mm256_load_si256(b + 5)); - sum6 = _mm256_sad_epu8(_mm256_load_si256(a + 6), _mm256_load_si256(b + 6)); - sum7 = _mm256_sad_epu8(_mm256_load_si256(a + 7), _mm256_load_si256(b + 7)); + __m256i sum = inline_8bit_sad_32x32_avx2(a, b); - sum0 = _mm256_add_epi32(sum0, sum1); - sum2 = _mm256_add_epi32(sum2, sum3); - sum4 = _mm256_add_epi32(sum4, sum5); - sum6 = _mm256_add_epi32(sum6, sum7); - - sum0 = _mm256_add_epi32(sum0, sum2); - sum4 = _mm256_add_epi32(sum4, sum6); - - sum = _mm256_add_epi32(sum, sum0); - sum = _mm256_add_epi32(sum, sum4); - } - - // Add the high 128 bits to low 128 bits. - __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); - // Add the high 64 bits to low 64 bits. - uint32_t result[4]; - _mm_storeu_si128((__m128i*)result, mm128_result); - return result[0] + result[2]; + return m256i_horizontal_sum(sum); } + #endif //COMPILE_INTEL_AVX2 -int strategy_register_picture_avx2(void* opaque) { +int strategy_register_picture_avx2(void* opaque) +{ bool success = true; #if COMPILE_INTEL_AVX2 success &= strategyselector_register(opaque, "sad_8bit_8x8", "avx2", 40, &sad_8bit_8x8_avx2);