calc_sao_edge_dir_avx2 updated

This commit is contained in:
Reima Hyvönen 2018-08-23 16:21:55 +03:00 committed by Pauli Oikkonen
parent b1febc02a5
commit a232a12160

View file

@ -158,6 +158,16 @@ static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
v_accum = _mm256_add_epi32(v_accum, v_temp_sum); v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
} }
/*
Make 14 pixel load here
static INLINE __m128i load_14_pixels(const kvz_pixel* data) {
__m128i temp;
temp = _mm_loadl_epi64((__m128i*)data);
_mm_insert_epi32((int32_t*)&)
*
}*/
// After x> (block_width-16) handle 8 pixels and after that the last 6 pixels // After x> (block_width-16) handle 8 pixels and after that the last 6 pixels
@ -274,7 +284,7 @@ static void calc_sao_edge_dir_generic(const kvz_pixel *orig_data,
} }
}*/ }*/
static void calc_sao_edge_dir_avx2_test(const kvz_pixel *orig_data, static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
const kvz_pixel *rec_data, const kvz_pixel *rec_data,
int eo_class, int eo_class,
int block_width, int block_width,
@ -284,179 +294,125 @@ static void calc_sao_edge_dir_avx2_test(const kvz_pixel *orig_data,
int y, x; int y, x;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
__m256i v_diff_accum[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
__m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
// Arrays orig_data and rec_data are quarter size for chroma. // Arrays orig_data and rec_data are quarter size for chroma.
// Don't sample the edge pixels because this function doesn't have access to // Don't sample the edge pixels because this function doesn't have access to
// their neighbours. // their neighbours.
__m256i v_table[NUM_SAO_EDGE_CATEGORIES] = { { 0 } }; __m128i temp_cat;
__m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
__m256i increase = _mm256_set1_epi32(1);
for (y = 1; y < block_height - 1; ++y) { for (y = 1; y < block_height - 1; ++y) {
for (x = 1; x < block_width - 8; x+=8) { for (x = 1; x < block_width - 16; x+=16) {
const kvz_pixel *c_data = &rec_data[y * block_width + x]; const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = _mm_loadl_epi64((__m128i*)c_data); __m128i v_c_data = _mm_loadu_si128((__m128i*)c_data);
__m128i v_a = _mm_loadu_si128((__m128i*)(&c_data[a_ofs.y * block_width + a_ofs.x]));
__m128i v_a = _mm_loadl_epi64((__m128i*)(&c_data[a_ofs.y * block_width + a_ofs.x]));
__m128i v_c = v_c_data; __m128i v_c = v_c_data;
__m128i v_b = _mm_loadl_epi64((__m128i*)(&c_data[b_ofs.y * block_width + b_ofs.x])); __m128i v_b = _mm_loadu_si128((__m128i*)(&c_data[b_ofs.y * block_width + b_ofs.x]));
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); temp_cat = sao_calc_eo_cat_avx2_256(&v_a, &v_b, &v_c);
__m256i cat_lower = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 0)));
__m256i cat_upper = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(_mm_extract_epi64(temp_cat, 1)));
__m256i v_data = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x]))); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
v_data = _mm256_sub_epi32(v_data, _mm256_cvtepu8_epi32(v_c)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
__m256i compare_mask = _mm256_cmpeq_epi32(v_cat, _mm256_set1_epi32(SAO_EO_CAT0)); //Accumulate differences and occurrences for each category
v_table[SAO_EO_CAT0] = _mm256_add_epi32(v_table[SAO_EO_CAT0], _mm256_and_si256(v_data, compare_mask)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, cat_lower);
v_count[SAO_EO_CAT0] = _mm256_add_epi32(v_table[SAO_EO_CAT0], _mm256_and_si256(increase, compare_mask)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, cat_lower);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, cat_lower);
compare_mask = _mm256_cmpeq_epi32(v_cat, _mm256_set1_epi32(SAO_EO_CAT1));
v_table[SAO_EO_CAT1] = _mm256_add_epi32(v_table[SAO_EO_CAT1], _mm256_and_si256(v_data, compare_mask));
v_count[SAO_EO_CAT1] = _mm256_add_epi32(v_table[SAO_EO_CAT1], _mm256_and_si256(increase, compare_mask));
compare_mask = _mm256_cmpeq_epi32(v_cat, _mm256_set1_epi32(SAO_EO_CAT2)); v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x+8])));
v_table[SAO_EO_CAT2] = _mm256_add_epi32(v_table[SAO_EO_CAT2], _mm256_and_si256(v_data, compare_mask)); int64_t*c_pointer = (int64_t*)&v_c;
v_count[SAO_EO_CAT2] = _mm256_add_epi32(v_table[SAO_EO_CAT2], _mm256_and_si256(increase, compare_mask)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(c_pointer[1])));
compare_mask = _mm256_cmpeq_epi32(v_cat, _mm256_set1_epi32(SAO_EO_CAT3)); //Accumulate differences and occurrences for each category
v_table[SAO_EO_CAT3] = _mm256_add_epi32(v_table[SAO_EO_CAT3], _mm256_and_si256(v_data, compare_mask)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, cat_upper);
v_count[SAO_EO_CAT3] = _mm256_add_epi32(v_table[SAO_EO_CAT3], _mm256_and_si256(increase, compare_mask)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, cat_upper);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, cat_upper);
compare_mask = _mm256_cmpeq_epi32(v_cat, _mm256_set1_epi32(SAO_EO_CAT4)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, cat_upper);
v_table[SAO_EO_CAT4] = _mm256_add_epi32(v_table[SAO_EO_CAT4], _mm256_and_si256(v_data, compare_mask)); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, cat_upper);
v_count[SAO_EO_CAT4] = _mm256_add_epi32(v_table[SAO_EO_CAT4], _mm256_and_si256(increase, compare_mask));
} }
const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data);
__m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x]));
__m128i v_c = v_c_data;
__m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x]));
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
// Vikat 6 pikseliä käsittelyyn tänne __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
x += 8;
//Handle last 6 pixels separately to prevent reading over boundary
c_data = &rec_data[y * block_width + x];
v_c_data = load_6_pixels(c_data);
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
v_a = load_6_pixels(a_ptr);
v_c = v_c_data;
v_b = load_6_pixels(b_ptr);
v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
//Set the last two elements to a non-existing category to cause
//the accumulate-count macro to discard those values.
__m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1);
v_cat = _mm256_or_si256(v_cat, v_mask);
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
} }
// Tästä eteenpäin pitäisi tehdä loitsuja for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) {
//cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c; int accum = 0;
//cat_sum_cnt[1][eo_cat] += 1; int count = 0;
//Full horizontal sum of accumulated values
v_diff_accum[eo_cat] = _mm256_hadd_epi32(v_diff_accum[eo_cat], v_diff_accum[eo_cat]);
v_diff_accum[eo_cat] = _mm256_hadd_epi32(v_diff_accum[eo_cat], v_diff_accum[eo_cat]);
accum += _mm256_extract_epi32(v_diff_accum[eo_cat], 0) + _mm256_extract_epi32(v_diff_accum[eo_cat], 4);
//Full horizontal sum of accumulated values
v_count[eo_cat] = _mm256_hadd_epi32(v_count[eo_cat], v_count[eo_cat]);
v_count[eo_cat] = _mm256_hadd_epi32(v_count[eo_cat], v_count[eo_cat]);
count += _mm256_extract_epi32(v_count[eo_cat], 0) + _mm256_extract_epi32(v_count[eo_cat], 4);
cat_sum_cnt[0][eo_cat] += accum;
cat_sum_cnt[1][eo_cat] += count;
}
} }
static __m128i sao_calc_eo_cat_avx2_test(__m128i* a, __m128i* b, __m128i* c)
{
__m128i v_eo_idx = _mm_set1_epi16(2);
__m128i v_a = _mm_cvtepu8_epi16(*a);
__m128i v_c = _mm_cvtepu8_epi16(*c);
__m128i v_b = _mm_cvtepu8_epi16(*b);
__m128i temp_a = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_a));
__m128i temp_b = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_b));
v_eo_idx = _mm_add_epi16(v_eo_idx, temp_a);
v_eo_idx = _mm_add_epi16(v_eo_idx, temp_b);
v_eo_idx = _mm_packus_epi16(v_eo_idx, v_eo_idx);
__m128i v_cat_lookup = _mm_setr_epi8(1, 2, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, v_eo_idx);
return v_cat;
}
static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
const kvz_pixel *rec_data,
int eo_class,
int block_width,
int block_height,
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
{
int y, x;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
__m256i v_diff_accum[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
__m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
for (y = 1; y < block_height - 1; ++y) {
//Calculation for 8 pixels per round
for (x = 1; x < block_width - 8; x += 8) {
const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data);
__m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x]));
__m128i v_c = v_c_data;
__m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x]));
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2_test(&v_a, &v_b, &v_c));
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
}
//Handle last 6 pixels separately to prevent reading over boundary
const kvz_pixel *c_data = &rec_data[y * block_width + x];
__m128i v_c_data = load_6_pixels(c_data);
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
__m128i v_a = load_6_pixels(a_ptr);
__m128i v_c = v_c_data;
__m128i v_b = load_6_pixels(b_ptr);
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
//Set the last two elements to a non-existing category to cause
//the accumulate-count macro to discard those values.
__m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1);
v_cat = _mm256_or_si256(v_cat, v_mask);
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
__m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
//Accumulate differences and occurrences for each category
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
}
for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) {
int accum = 0;
int count = 0;
//Full horizontal sum of accumulated values
v_diff_accum[eo_cat] = _mm256_hadd_epi32(v_diff_accum[eo_cat], v_diff_accum[eo_cat]);
v_diff_accum[eo_cat] = _mm256_hadd_epi32(v_diff_accum[eo_cat], v_diff_accum[eo_cat]);
accum += _mm256_extract_epi32(v_diff_accum[eo_cat], 0) + _mm256_extract_epi32(v_diff_accum[eo_cat], 4);
//Full horizontal sum of accumulated values
v_count[eo_cat] = _mm256_hadd_epi32(v_count[eo_cat], v_count[eo_cat]);
v_count[eo_cat] = _mm256_hadd_epi32(v_count[eo_cat], v_count[eo_cat]);
count += _mm256_extract_epi32(v_count[eo_cat], 0) + _mm256_extract_epi32(v_count[eo_cat], 4);
cat_sum_cnt[0][eo_cat] += accum;
cat_sum_cnt[1][eo_cat] += count;
}
}
static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder, static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder,
const kvz_pixel *rec_data, kvz_pixel *new_rec_data, const kvz_pixel *rec_data, kvz_pixel *new_rec_data,
const sao_info_t *sao, const sao_info_t *sao,