AVX2 version of buffer variance calculation

This commit is contained in:
Pauli Oikkonen 2020-02-25 15:57:56 +02:00
parent 1bd9c6dd93
commit b00ac7d1c4

View file

@ -1069,6 +1069,82 @@ static uint32_t hor_sad_avx2(const kvz_pixel *pic_data, const kvz_pixel *ref_dat
pic_stride, ref_stride, left, right); pic_stride, ref_stride, left, right);
} }
static double pixel_var_avx2_largebuf(const kvz_pixel *buf, const uint32_t len)
{
const float len_f = (float)len;
const __m256i zero = _mm256_setzero_si256();
size_t i;
__m256i sums = zero;
for (i = 0; i < len; i += 32) {
__m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
__m256i curr_sum = _mm256_sad_epu8(curr, zero);
sums = _mm256_add_epi64(sums, curr_sum);
}
__m128i sum_lo = _mm256_castsi256_si128 (sums);
__m128i sum_hi = _mm256_extracti128_si256(sums, 1);
__m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi);
__m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sum_5 = _mm_add_epi64 (sum_3, sum_4);
int64_t sum = _mm_cvtsi128_si64(sum_5);
float mean_f = (float)sum / len_f;
__m256 mean = _mm256_set1_ps(mean_f);
__m256 accum = _mm256_setzero_ps();
for (i = 0; i < len; i += 32) {
__m128i curr0 = _mm_loadl_epi64((const __m128i *)(buf + i + 0));
__m128i curr1 = _mm_loadl_epi64((const __m128i *)(buf + i + 8));
__m128i curr2 = _mm_loadl_epi64((const __m128i *)(buf + i + 16));
__m128i curr3 = _mm_loadl_epi64((const __m128i *)(buf + i + 24));
__m256i curr0_32 = _mm256_cvtepu8_epi32(curr0);
__m256i curr1_32 = _mm256_cvtepu8_epi32(curr1);
__m256i curr2_32 = _mm256_cvtepu8_epi32(curr2);
__m256i curr3_32 = _mm256_cvtepu8_epi32(curr3);
__m256 curr0_f = _mm256_cvtepi32_ps (curr0_32);
__m256 curr1_f = _mm256_cvtepi32_ps (curr1_32);
__m256 curr2_f = _mm256_cvtepi32_ps (curr2_32);
__m256 curr3_f = _mm256_cvtepi32_ps (curr3_32);
__m256 curr0_sd = _mm256_sub_ps (curr0_f, mean);
__m256 curr1_sd = _mm256_sub_ps (curr1_f, mean);
__m256 curr2_sd = _mm256_sub_ps (curr2_f, mean);
__m256 curr3_sd = _mm256_sub_ps (curr3_f, mean);
__m256 curr0_v = _mm256_mul_ps (curr0_sd, curr0_sd);
__m256 curr1_v = _mm256_mul_ps (curr1_sd, curr1_sd);
__m256 curr2_v = _mm256_mul_ps (curr2_sd, curr2_sd);
__m256 curr3_v = _mm256_mul_ps (curr3_sd, curr3_sd);
__m256 curr01 = _mm256_add_ps (curr0_v, curr1_v);
__m256 curr23 = _mm256_add_ps (curr2_v, curr3_v);
__m256 curr = _mm256_add_ps (curr01, curr23);
accum = _mm256_add_ps (accum, curr);
}
__m256d accum_d = _mm256_castps_pd (accum);
__m256d accum2_d = _mm256_permute4x64_pd(accum_d, _MM_SHUFFLE(1, 0, 3, 2));
__m256 accum2 = _mm256_castpd_ps (accum2_d);
__m256 accum3 = _mm256_add_ps (accum, accum2);
__m256 accum4 = _mm256_permute_ps (accum3, _MM_SHUFFLE(1, 0, 3, 2));
__m256 accum5 = _mm256_add_ps (accum3, accum4);
__m256 accum6 = _mm256_permute_ps (accum5, _MM_SHUFFLE(2, 3, 0, 1));
__m256 accum7 = _mm256_add_ps (accum5, accum6);
float var_sum = _mm256_cvtss_f32 (accum7);
return var_sum / len_f;
}
static double pixel_var_avx2(const kvz_pixel *buf, const uint32_t len)
{
assert(sizeof(*buf) == 1);
assert((len & 31) == 0);
return pixel_var_avx2_largebuf(buf, len);
}
#endif //COMPILE_INTEL_AVX2 #endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth) int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth)
@ -1107,6 +1183,8 @@ int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth)
success &= kvz_strategyselector_register(opaque, "ver_sad", "avx2", 40, &ver_sad_avx2); success &= kvz_strategyselector_register(opaque, "ver_sad", "avx2", 40, &ver_sad_avx2);
success &= kvz_strategyselector_register(opaque, "hor_sad", "avx2", 40, &hor_sad_avx2); success &= kvz_strategyselector_register(opaque, "hor_sad", "avx2", 40, &hor_sad_avx2);
success &= kvz_strategyselector_register(opaque, "pixel_var", "avx2", 40, &pixel_var_avx2);
} }
#endif #endif
return success; return success;