Merge branch 'sad-avx2'

This commit is contained in:
Pauli Oikkonen 2019-01-10 17:48:09 +02:00
commit bed93fb7f5
2 changed files with 105 additions and 49 deletions

View file

@ -34,6 +34,77 @@
#include "strategyselector.h"
#include "strategies/generic/picture-generic.h"
/**
* \brief Calculate Sum of Absolute Differences (SAD)
*
* Calculate Sum of Absolute Differences (SAD) between two rectangular regions
* located in arbitrary points in the picture.
*
* \param data1 Starting point of the first picture.
* \param data2 Starting point of the second picture.
* \param width Width of the region for which SAD is calculated.
* \param height Height of the region for which SAD is calculated.
* \param stride Width of the pixel array.
*
* \returns Sum of Absolute Differences
*/
uint32_t kvz_reg_sad_avx2(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int width, const int height, const unsigned stride1, const unsigned stride2)
{
int32_t y, x;
// Bytes in block in 256-bit blocks per each scanline, and remainder
const int largeblock_bytes = width & ~31;
const int residual_bytes_1 = width & 31;
const int residual_xmms = residual_bytes_1 >> 4;
const int residual_bytes = residual_bytes_1 & 15;
const __m128i rds = _mm_set1_epi8(residual_bytes);
const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i rdmask = _mm_cmpgt_epi8(rds, ns);
__m256i avx_inc = _mm256_setzero_si256();
__m128i sse_inc = _mm_setzero_si128();
for (y = 0; y < height; ++y) {
for (x = 0; x < largeblock_bytes; x += 32) {
__m256i a = _mm256_loadu_si256((const __m256i *)(data1 + (y * stride1 + x)));
__m256i b = _mm256_loadu_si256((const __m256i *)(data2 + (y * stride2 + x)));
__m256i curr_sads = _mm256_sad_epu8(a, b);
avx_inc = _mm256_add_epi64(avx_inc, curr_sads);
}
if (residual_xmms) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y * stride1 + x)));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y * stride2 + x)));
__m128i curr_sads = _mm_sad_epu8 (a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
x += 16;
}
if (residual_bytes) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y * stride1 + x)));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y * stride2 + x)));
__m128i b_masked = _mm_blendv_epi8(a, b, rdmask);
__m128i curr_sads = _mm_sad_epu8(a, b_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m256i avx_inc_2 = _mm256_permute4x64_epi64(avx_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m256i avx_inc_3 = _mm256_add_epi64 (avx_inc, avx_inc_2);
__m256i avx_inc_4 = _mm256_shuffle_epi32 (avx_inc_3, _MM_SHUFFLE(1, 0, 3, 2));
__m256i avx_inc_5 = _mm256_add_epi64 (avx_inc_3, avx_inc_4);
__m128i avx_inc_128 = _mm256_castsi256_si128 (avx_inc_5);
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sse_sads = _mm_add_epi64 (sse_inc, sse_inc_2);
__m128i sads = _mm_add_epi64 (sse_sads, avx_inc_128);
// 32 bits should always be enough for even the largest blocks with a SAD of
// 255 in each pixel, even though the SAD results themselves are 64 bits
return _mm_cvtsi128_si32(sads);
}
/**
* \brief Calculate SAD for 8x8 bytes in continuous memory.
@ -1230,6 +1301,11 @@ int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth)
// simplest code to look at for anyone interested in doing more
// optimizations, so it's worth it to keep this maintained.
if (bitdepth == 8){
// It currently appears that this is actually slower than the SSE4.1
// version.. Go figure
success &= kvz_strategyselector_register(opaque, "reg_sad", "avx2", 19, &kvz_reg_sad_avx2);
success &= kvz_strategyselector_register(opaque, "sad_8x8", "avx2", 40, &sad_8bit_8x8_avx2);
success &= kvz_strategyselector_register(opaque, "sad_16x16", "avx2", 40, &sad_8bit_16x16_avx2);
success &= kvz_strategyselector_register(opaque, "sad_32x32", "avx2", 40, &sad_8bit_32x32_avx2);

View file

@ -28,63 +28,43 @@
#include "strategyselector.h"
unsigned kvz_reg_sad_sse41(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int width, const int height, const unsigned stride1, const unsigned stride2)
uint32_t kvz_reg_sad_sse41(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t width, const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
int y, x;
unsigned sad = 0;
__m128i sse_inc = _mm_setzero_si128 ();
long long int sse_inc_array[2];
int32_t y, x;
__m128i sse_inc = _mm_setzero_si128();
// Bytes in block in 128-bit blocks per each scanline, and remainder
const int32_t largeblock_bytes = width & ~15;
const int32_t residual_bytes = width & 15;
const __m128i rds = _mm_set1_epi8 (residual_bytes);
const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i rdmask = _mm_cmpgt_epi8(rds, ns);
for (y = 0; y < height; ++y) {
for (x = 0; x <= width-16; x+=16) {
const __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]);
const __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]);
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a,b));
for (x = 0; x < largeblock_bytes; x += 16) {
__m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]);
__m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]);
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi32(sse_inc, curr_sads);
}
{
const __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]);
const __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]);
switch (((width - (width%2)) - x)/2) {
case 0:
break;
case 1:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x01)));
break;
case 2:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x03)));
break;
case 3:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x07)));
break;
case 4:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x0f)));
break;
case 5:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x1f)));
break;
case 6:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x3f)));
break;
case 7:
sse_inc = _mm_add_epi32(sse_inc, _mm_sad_epu8(a, _mm_blend_epi16(a, b, 0x7f)));
break;
default:
//Should not happen
assert(0);
}
x = (width - (width%2));
}
if (residual_bytes) {
__m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]);
__m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]);
for (; x < width; ++x) {
sad += abs(data1[y * stride1 + x] - data2[y * stride2 + x]);
__m128i b_masked = _mm_blendv_epi8(a, b, rdmask);
__m128i curr_sads = _mm_sad_epu8(a, b_masked);
sse_inc = _mm_add_epi32(sse_inc, curr_sads);
}
}
_mm_storeu_si128((__m128i*) sse_inc_array, sse_inc);
sad += sse_inc_array[0] + sse_inc_array[1];
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return sad;
return _mm_cvtsi128_si32(sad);
}
#endif //COMPILE_INTEL_SSE41