[cclm] Fix search and parameter generation for CCLM

This commit is contained in:
Joose Sainio 2021-11-19 11:54:51 +02:00
parent d9875a3d92
commit f030158703
7 changed files with 170 additions and 60 deletions

View file

@ -122,7 +122,7 @@ static int encoder_state_config_tile_init(encoder_state_t * const state,
const int width, const int height, const int width_in_lcu, const int height_in_lcu) {
const encoder_control_t * const encoder = state->encoder_control;
state->tile->frame = kvz_videoframe_alloc(width, height, state->encoder_control->chroma_format, encoder->cfg.alf_type);
state->tile->frame = kvz_videoframe_alloc(width, height, state->encoder_control->chroma_format, encoder->cfg.alf_type, encoder->cfg.cclm);
state->tile->frame->rec = NULL;

View file

@ -259,7 +259,7 @@ enum lm_mode
static void get_cclm_parameters(
encoder_state_t const* const state,
int8_t width, int8_t height, int8_t mode,
int x0, int y0,
int x0, int y0, int avai_above_right_units, int avai_left_below_units,
kvz_intra_ref* luma_src, kvz_intra_references*chroma_ref,
int16_t *a, int16_t*b, int16_t*shift) {
@ -287,8 +287,8 @@ static void get_cclm_parameters(
//int total_units = total_left_units + total_above_units + 1;
//int above_right_units = total_above_units - tu_width_in_units;
//int left_below_units = total_left_units - tu_height_in_units;
int avai_above_right_units = 0; // TODO these are non zero only with non-square CUs
int avai_left_below_units = 0;
//int avai_above_right_units = 0; // TODO these are non zero only with non-square CUs
//int avai_left_below_units = 0;
int avai_above_units = CLIP(0, tu_height_in_units, y0/base_unit_size);
int avai_left_units = CLIP(0, tu_width_in_units, x0 / base_unit_size);
@ -465,7 +465,7 @@ void kvz_predict_cclm(
const int16_t y0,
const int16_t stride,
const int8_t mode,
kvz_pixel const * y_rec,
lcu_t* const lcu,
kvz_intra_references* chroma_ref,
kvz_pixel* dst,
cclm_parameters_t* cclm_params
@ -480,61 +480,92 @@ void kvz_predict_cclm(
int x_scu = SUB_SCU(x0);
int y_scu = SUB_SCU(y0);
y_rec += x_scu + y_scu * LCU_WIDTH;
int available_above_right = 0;
int available_left_below = 0;
kvz_pixel *y_rec = lcu->rec.y + x_scu + y_scu * LCU_WIDTH;
// Essentially what this does is that it uses 6-tap filtering to downsample
// the luma intra references down to match the resolution of the chroma channel.
// The luma reference is only needed when we are not on the edge of the picture.
// Because the reference pixels that are needed on the edge of the ctu this code
// is kinda messy but what can you do
if (y0) {
for (; available_above_right < width / 2; available_above_right++) {
int x_extension = x_scu + width * 2 + 4 * available_above_right;
cu_info_t* pu = LCU_GET_CU_AT_PX(lcu, x_extension, y_scu - 4);
if (pu->type == CU_NOTSET || x_extension > LCU_WIDTH) break;
}
if(y_scu == 0) {
if(!state->encoder_control->cfg.wpp) available_above_right = MIN(width / 2, (state->tile->frame->width - x0 - width * 2) / 4);
for (int x = 0; x < width * (available_above_right ? 4 : 2); x += 2) {
bool left_padding = x0 || x;
sampled_luma_ref.top[x / 2] = (state->tile->frame->rec->y[x0 + x + (y0 - 1) * stride] * 2 +
state->tile->frame->rec->y[x0 + x + 1 + (y0 - 1) * stride] +
state->tile->frame->rec->y[x0 + x - left_padding + (y0 - 1) * stride] +
2) >> 2;
}
}
else {
for (int x = 0; x < width * (available_above_right ? 4 : 2); x += 2) {
bool left_padding = x0 || x;
int s = 4;
s += y_scu ? y_rec[x - LCU_WIDTH * 2] * 2 : state->tile->frame->rec->y[x0 + x + (y0 - 2) * stride] * 2;
s += y_scu ? y_rec[x - LCU_WIDTH * 2 + 1] : state->tile->frame->rec->y[x0 + x + 1 + (y0 - 2) * stride];
s += y_scu && !(x0 && !x && !x_scu) ? y_rec[x - LCU_WIDTH * 2 - left_padding] : state->tile->frame->rec->y[x0 + x - left_padding + (y0 - 2) * stride];
s += y_scu ? y_rec[x - LCU_WIDTH] * 2 : state->tile->frame->rec->y[x0 + x + (y0 - 1) * stride] * 2;
s += y_scu ? y_rec[x - LCU_WIDTH + 1] : state->tile->frame->rec->y[x0 + x + 1 + (y0 - 1) * stride];
s += y_scu && !(x0 && !x && !x_scu) ? y_rec[x - LCU_WIDTH - left_padding] : state->tile->frame->rec->y[x0 + x - left_padding + (y0 - 1) * stride];
sampled_luma_ref.top[x / 2] = s >> 3;
}
}
}
if(x0) {
for(int y = 0; y < height * 2; y+=2) {
for (; available_left_below < height / 2; available_left_below++) {
int y_extension = y_scu + height * 2 + 4 * available_left_below;
cu_info_t* pu = LCU_GET_CU_AT_PX(lcu, x_scu - 4, y_extension);
if (pu->type == CU_NOTSET || y_extension > LCU_WIDTH) break;
if(x_scu == 32 && y_scu == 0 && pu->depth == 0) break;
}
for(int y = 0; y < height * (available_left_below ? 4 : 2); y+=2) {
int s = 4;
s += x_scu ? y_rec[y * LCU_WIDTH - 1] * 2 : state->tile->frame->rec->y[x0 - 1 + (y0 + y) * stride] * 2;
s += x_scu ? y_rec[y * LCU_WIDTH - 2] : state->tile->frame->rec->y[x0 - 2 + (y0 + y) * stride];
s += x_scu ? y_rec[(y + 1) * LCU_WIDTH - 1] * 2 : state->tile->frame->rec->y[x0 - 1 + (y0 + y + 1) * stride] * 2;
s += x_scu ? y_rec[(y + 1) * LCU_WIDTH - 2] : state->tile->frame->rec->y[x0 - 2 + (y0 + y + 1) * stride];
s += y_rec[y * LCU_WIDTH];
s += y_rec[(y + 1) * LCU_WIDTH];
s += x_scu ? y_rec[y * LCU_WIDTH - 2] * 2 : state->tile->frame->rec->y[x0 - 2 + (y0 + y) * stride] * 2;
s += x_scu ? y_rec[y * LCU_WIDTH - 1] : state->tile->frame->rec->y[x0 - 1 + (y0 + y) * stride];
s += x_scu ? y_rec[y * LCU_WIDTH - 3] : state->tile->frame->rec->y[x0 - 3 + (y0 + y) * stride];
s += x_scu ? y_rec[(y + 1) * LCU_WIDTH - 2] * 2 : state->tile->frame->rec->y[x0 - 2 + (y0 + y + 1) * stride] * 2;
s += x_scu ? y_rec[(y + 1) * LCU_WIDTH - 1] : state->tile->frame->rec->y[x0 - 1 + (y0 + y + 1) * stride];
s += x_scu ? y_rec[(y + 1) * LCU_WIDTH - 3] : state->tile->frame->rec->y[x0 - 3 + (y0 + y + 1) * stride];
sampled_luma_ref.left[y/2] = s >> 3;
}
}
if(y0) {
for(int x = 0; x < width*2; x += 2) {
bool left_padding = x0 || x;
int s = 4;
s += y_scu ? y_rec[x - LCU_WIDTH * 2] * 2 : state->tile->frame->rec->y[x0 + x +(y0 - 2) * stride] * 2;
s += y_scu ? y_rec[x - LCU_WIDTH] * 2 : state->tile->frame->rec->y[x0 + x +(y0 - 1) * stride] * 2;
s += y_scu ? y_rec[x - LCU_WIDTH * 2 - left_padding] : state->tile->frame->rec->y[x0 + x - left_padding + (y0 - 2) * stride];
s += y_scu ? y_rec[x - LCU_WIDTH - left_padding] : state->tile->frame->rec->y[x0 + x - left_padding + (y0 - 1) * stride];
s += y_scu ? y_rec[x - LCU_WIDTH * 2 + 1] : state->tile->frame->rec->y[x0 + x + 1 + (y0 - 2) * stride];
s += y_scu ? y_rec[x - LCU_WIDTH + 1] : state->tile->frame->rec->y[x0 + x + 1 + (y0 - 1) * stride];
sampled_luma_ref.top[x / 2] = s >> 3;
}
}
// Downsample the reconstructed luma sample so that they can be mapped into the chroma
// to generate the chroma prediction
for (int y = 0; y < height * 2; y+=2) {
for (int x = 0; x < width * 2; x+=2) {
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int s = 4;
s += y_rec[2 * x] * 2;
s += y_rec[2 * x + 1];
// If we are at the edge of the CTU read the pixel from the frame reconstruct buffer,
// *except* when we are also at the edge of the frame, in which case we want to duplicate
// the edge pixel
s += !x_scu && !x && x0 ? state->tile->frame->rec->y[x0 - 1 + y0 * stride] : y_rec[2 * x - ((x + x0) > 0)];
s += !x_scu && !x && x0 ? state->tile->frame->rec->y[x0 - 1 + (y0 + y*2) * stride] : y_rec[2 * x - ((x + x0) > 0)];
s += y_rec[2 * x + LCU_WIDTH] * 2;
s += y_rec[2 * x + 1 + LCU_WIDTH];
s += !x_scu && !x && x0 ? state->tile->frame->rec->y[x0 - 1 + (y0 + 1) * stride] : y_rec[2 * x - ((x + x0) > 0) + stride];
sampled_luma[x / 2 + y / 2 * width] = s >> 3;
s += !x_scu && !x && x0 ? state->tile->frame->rec->y[x0 - 1 + (y0 + y * 2 + 1) * stride] : y_rec[2 * x - ((x + x0) > 0) + LCU_WIDTH];
sampled_luma[x + y * width] = s >> 3;
}
y_rec += LCU_WIDTH;
y_rec += LCU_WIDTH * 2;
}
int16_t a, b, shift;
get_cclm_parameters(state, width, height, mode,x0, y0, &sampled_luma_ref, chroma_ref, &a, &b, &shift);
get_cclm_parameters(state, width, height, mode,x0, y0, available_above_right, available_left_below, &sampled_luma_ref, chroma_ref, &a, &b, &shift);
cclm_params->shift = shift;
cclm_params->a = a;
cclm_params->b = b;
@ -889,7 +920,8 @@ static void intra_recon_tb_leaf(
state->tile->frame->height,
};
int x_scu = SUB_SCU(x);
const vector2d_t lcu_px = {x_scu >> shift, SUB_SCU(y) >> shift};
int y_scu = SUB_SCU(y);
const vector2d_t lcu_px = {x_scu >> shift, y_scu >> shift };
kvz_intra_references refs;
kvz_intra_build_reference(log2width, color, &luma_px, &pic_px, lcu, &refs, cfg->wpp);
@ -901,26 +933,27 @@ static void intra_recon_tb_leaf(
kvz_intra_predict(state, &refs, log2width, intra_mode, color, pred, filter_boundary);
} else {
kvz_pixel *y_rec = lcu->rec.y;
for (int y_ = 0; y_ < width * 2; y_ += 2) {
for (int x_ = 0; x_ < width * 2; x_ += 2) {
y_rec += x_scu + y_scu * LCU_WIDTH;
for (int y_ = 0; y_ < width; y_++) {
for (int x_ = 0; x_ < width; x_++) {
int s = 4;
s += y_rec[2 * x_] * 2;
s += y_rec[2 * x_ + 1];
// If we are at the edge of the CTU read the pixel from the frame reconstruct buffer,
// *except* when we are also at the edge of the frame, in which case we want to duplicate
// the edge pixel
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + y * stride] : y_rec[2 * x_ - ((x_ + x) > 0)];
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2) * stride] : y_rec[2 * x_ - ((x_ + x) > 0)];
s += y_rec[2 * x_ + LCU_WIDTH] * 2;
s += y_rec[2 * x_ + 1 + LCU_WIDTH];
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + 1) * stride] : y_rec[2 * x_ - ((x_ + x) > 0) + stride];
pred[x_ / 2 + y_ * width / 2] = s >> 3;
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2 + 1) * stride] : y_rec[2 * x_ - ((x_ + x) > 0) + LCU_WIDTH];
pred[x_ + y_ * width] = s >> 3;
}
y_rec += LCU_WIDTH;
y_rec += LCU_WIDTH * 2;
}
if(cclm_params == NULL) {
cclm_parameters_t temp_params;
kvz_predict_cclm(
state, color, width, width, x, y, stride, intra_mode, lcu->rec.y, &refs, pred, &temp_params);
state, color, width, width, x, y, stride, intra_mode, lcu, &refs, pred, &temp_params);
}
else {
linear_transform_cclm(&cclm_params[color == COLOR_U ? 0 : 1], pred, pred, width, width);
@ -996,10 +1029,10 @@ void kvz_intra_recon_cu(
const int32_t x2 = x + offset;
const int32_t y2 = y + offset;
kvz_intra_recon_cu(state, x, y, depth + 1, mode_luma, mode_chroma, NULL, cclm_params, lcu);
kvz_intra_recon_cu(state, x2, y, depth + 1, mode_luma, mode_chroma, NULL, cclm_params, lcu);
kvz_intra_recon_cu(state, x, y2, depth + 1, mode_luma, mode_chroma, NULL, cclm_params, lcu);
kvz_intra_recon_cu(state, x2, y2, depth + 1, mode_luma, mode_chroma, NULL, cclm_params, lcu);
kvz_intra_recon_cu(state, x, y, depth + 1, mode_luma, mode_chroma, NULL, NULL, lcu);
kvz_intra_recon_cu(state, x2, y, depth + 1, mode_luma, mode_chroma, NULL, NULL, lcu);
kvz_intra_recon_cu(state, x, y2, depth + 1, mode_luma, mode_chroma, NULL, NULL, lcu);
kvz_intra_recon_cu(state, x2, y2, depth + 1, mode_luma, mode_chroma, NULL, NULL, lcu);
// Propagate coded block flags from child CUs to parent CU.
uint16_t child_cbfs[3] = {

View file

@ -137,7 +137,7 @@ void kvz_predict_cclm(
const int16_t y0,
const int16_t stride,
const int8_t mode,
kvz_pixel const* y_rec,
lcu_t* const lcu,
kvz_intra_references* chroma_ref,
kvz_pixel* dst,
cclm_parameters_t* cclm_params

View file

@ -241,6 +241,33 @@ static double cu_zero_coeff_cost(const encoder_state_t *state, lcu_t *work_tree,
}
static void downsample_cclm_rec(encoder_state_t *state, int x, int y, int width, int height, kvz_pixel *y_rec) {
if (!state->encoder_control->cfg.cclm) return;
int x_scu = SUB_SCU(x);
int y_scu = SUB_SCU(y);
y_rec += x_scu + y_scu * LCU_WIDTH;
int stride = state->tile->frame->source->stride;
for (int y_ = 0; y_ < height && y_ * 2 + y < state->encoder_control->cfg.height; y_++) {
for (int x_ = 0; x_ < width; x_++) {
int s = 4;
s += y_rec[2 * x_] * 2;
s += y_rec[2 * x_ + 1];
// If we are at the edge of the CTU read the pixel from the frame reconstruct buffer,
// *except* when we are also at the edge of the frame, in which case we want to duplicate
// the edge pixel
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2) * stride] : y_rec[2 * x_ - ((x_ + x) > 0)];
s += y_rec[2 * x_ + LCU_WIDTH] * 2;
s += y_rec[2 * x_ + 1 + LCU_WIDTH];
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2 + 1) * stride] : y_rec[2 * x_ - ((x_ + x) > 0) + LCU_WIDTH];
int index = x / 2 + x_ + (y / 2 + y_ )* stride / 2;
state->tile->frame->cclm_luma_rec[index] = s >> 3;
}
y_rec += LCU_WIDTH * 2;
}
}
/**
* Calculate RD cost for a Coding Unit.
* \return Cost of block
@ -711,6 +738,10 @@ static double search_cu(encoder_state_t * const state, int x, int y, int depth,
cur_cu->intra.mode, -1, // skip chroma
NULL, NULL, lcu);
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y
);
// TODO: This heavily relies to square CUs
if ((depth != 4 || (x % 8 && y % 8)) && state->encoder_control->chroma_format != KVZ_CSP_400) {
// There is almost no benefit to doing the chroma mode search for
@ -863,7 +894,7 @@ static double search_cu(encoder_state_t * const state, int x, int y, int depth,
// gets used, at least in the most obvious cases, while avoiding any
// searching.
if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH
&& x + cu_width <= frame->width && y + cu_width <= frame->height)
&& x + cu_width <= frame->width && y + cu_width <= frame->height && 0)
{
cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local);
@ -913,6 +944,9 @@ static double search_cu(encoder_state_t * const state, int x, int y, int depth,
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
work_tree_copy_down(x_local, y_local, depth, work_tree);
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y
);
if (state->frame->slicetype != KVZ_SLICE_I) {
// Reset HMVP to the beginning of this CU level search and add this CU as the mvp
@ -925,6 +959,9 @@ static double search_cu(encoder_state_t * const state, int x, int y, int depth,
// Need to copy modes down since the lower level of the work tree is used
// when searching SMP and AMP blocks.
work_tree_copy_down(x_local, y_local, depth, work_tree);
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y
);
if (state->frame->slicetype != KVZ_SLICE_I) {
// Reset HMVP to the beginning of this CU level search and add this CU as the mvp

View file

@ -488,7 +488,7 @@ static void search_intra_chroma_rough(encoder_state_t * const state,
assert(state->encoder_control->cfg.cclm);
kvz_predict_cclm(
state,
COLOR_U, width, width, x_px, y_px, state->tile->frame->source->stride, modes[i], lcu->rec.y, refs_u, pred, &cclm_params);
COLOR_U, width, width, x_px, y_px, state->tile->frame->source->stride, modes[i], lcu, refs_u, pred, &cclm_params);
}
kvz_pixels_blit(orig_v, orig_block, width, width, origstride, width);
@ -498,6 +498,12 @@ static void search_intra_chroma_rough(encoder_state_t * const state,
//costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
costs[i] += satd_func(pred, orig_block);
}
for (int i = 5; i < 8; i++) {
assert(state->encoder_control->cfg.cclm);
kvz_predict_cclm(
state,
COLOR_V, width, width, x_px, y_px, state->tile->frame->source->stride, modes[i], lcu, refs_u, pred, &cclm_params);
}
kvz_sort_modes(modes, costs, 5);
}
@ -836,17 +842,22 @@ int8_t kvz_search_intra_chroma_rdo(encoder_state_t * const state,
kvz_intra_references refs[2];
const vector2d_t luma_px = { x_px, y_px };
const vector2d_t luma_px = { x_px & ~7, y_px & ~7 };
const vector2d_t pic_px = {
state->tile->frame->width,
state->tile->frame->height,
};
kvz_intra_build_reference(MAX(LOG2_LCU_WIDTH - depth - 1, 2), COLOR_U, &luma_px, &pic_px, lcu, &refs[0], state->encoder_control->cfg.wpp);
kvz_intra_build_reference(MAX(LOG2_LCU_WIDTH - depth - 1, 2), COLOR_V, &luma_px, &pic_px, lcu, &refs[1], state->encoder_control->cfg.wpp);
cclm_parameters_t cclm_params[2] = {0};
if (reconstruct_chroma) {
int c_width = MAX(32 >> (depth), 4);
kvz_intra_build_reference(MAX(LOG2_LCU_WIDTH - depth - 1, 2), COLOR_U, &luma_px, &pic_px, lcu, &refs[0], state->encoder_control->cfg.wpp);
kvz_intra_build_reference(MAX(LOG2_LCU_WIDTH - depth - 1, 2), COLOR_V, &luma_px, &pic_px, lcu, &refs[1], state->encoder_control->cfg.wpp);
cclm_parameters_t cclm_params[2] = { 0 };
const vector2d_t lcu_px = { SUB_SCU(x_px), SUB_SCU(y_px) };
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y);
@ -864,7 +875,7 @@ int8_t kvz_search_intra_chroma_rdo(encoder_state_t * const state,
for (int8_t chroma_mode_i = 0; chroma_mode_i < num_modes; ++chroma_mode_i) {
chroma.mode = modes[chroma_mode_i];
if (chroma.mode == -1) continue;
if(chroma.mode < 67) {
if(chroma.mode < 67 || depth == 0) {
kvz_intra_recon_cu(state,
x_px, y_px,
depth,
@ -872,18 +883,38 @@ int8_t kvz_search_intra_chroma_rdo(encoder_state_t * const state,
NULL, NULL, lcu);
}
else {
kvz_predict_cclm(
state, COLOR_U, 32 >> (depth), 32 >> (depth), x_px, y_px, state->tile->frame->source->stride, chroma.mode, lcu->rec.y, &refs[0], NULL, &cclm_params[0]);
state, COLOR_U,
c_width, c_width,
x_px & ~7, y_px & ~7,
state->tile->frame->source->stride,
chroma.mode,
lcu,
&refs[0], NULL,
&cclm_params[0]);
chroma.cclm[0] = cclm_params[0];
kvz_predict_cclm(
state, COLOR_V, 32 >> (depth), 32 >> (depth), x_px, y_px, state->tile->frame->source->stride, chroma.mode, lcu->rec.y, &refs[1], NULL, &cclm_params[1]);
state, COLOR_V,
c_width, c_width,
x_px & ~7, y_px & ~7,
state->tile->frame->source->stride,
chroma.mode,
lcu,
&refs[1], NULL,
&cclm_params[1]);
chroma.cclm[1] = cclm_params[1];
kvz_intra_recon_cu(state,
kvz_intra_recon_cu(
state,
x_px, y_px,
depth,
-1, chroma.mode, // skip luma
NULL, cclm_params, lcu);
NULL, cclm_params, lcu
);
}
chroma.cost = kvz_cu_rd_cost_chroma(state, lcu_px.x, lcu_px.y, depth, tr_cu, lcu);

View file

@ -46,7 +46,7 @@
videoframe_t * kvz_videoframe_alloc(int32_t width,
int32_t height,
enum kvz_chroma_format chroma_format,
enum kvz_alf alf_type)
enum kvz_alf alf_type, bool cclm)
{
videoframe_t *frame = calloc(1, sizeof(videoframe_t));
if (!frame) return 0;
@ -59,8 +59,12 @@ videoframe_t * kvz_videoframe_alloc(int32_t width,
frame->sao_luma = MALLOC(sao_info_t, frame->width_in_lcu * frame->height_in_lcu);
if (chroma_format != KVZ_CSP_400) {
frame->sao_chroma = MALLOC(sao_info_t, frame->width_in_lcu * frame->height_in_lcu);
if (cclm) {
assert(chroma_format == KVZ_CSP_420);
frame->cclm_luma_rec = MALLOC(kvz_pixel, (((width + 7) & ~7) + FRAME_PADDING_LUMA) * (((height + 7) & ~7) + FRAME_PADDING_LUMA) / 4);
}
}
return frame;
}
@ -76,6 +80,9 @@ int kvz_videoframe_free(videoframe_t * const frame)
kvz_image_free(frame->rec_lmcs);
frame->source_lmcs_mapped = false;
}
if(frame->cclm_luma_rec) {
FREE_POINTER(frame->cclm_luma_rec);
}
kvz_image_free(frame->source);
frame->source = NULL;

View file

@ -53,6 +53,8 @@ typedef struct videoframe
kvz_picture *rec; //!< \brief Reconstructed image.
kvz_picture *rec_lmcs; //!< \brief LMCS mapped reconstructed image, if available, otherwise points to source.
kvz_pixel *cclm_luma_rec; //!< \brief buffer for the downsampled luma reconstruction for cclm
uint8_t* lmcs_avg_processed; //!< \brief For each LCU, indicates if already calculated average of border pixels is available
int32_t* lmcs_avg; //!< \brief Average of LCU border pixels
@ -78,7 +80,7 @@ typedef struct videoframe
} videoframe_t;
videoframe_t *kvz_videoframe_alloc(int32_t width, int32_t height, enum kvz_chroma_format chroma_format, enum kvz_alf alf_type);
videoframe_t *kvz_videoframe_alloc(int32_t width, int32_t height, enum kvz_chroma_format chroma_format, enum kvz_alf alf_type, bool cclm);
int kvz_videoframe_free(videoframe_t * const frame);
void kvz_videoframe_set_poc(videoframe_t * frame, int32_t poc);