Use luma pixel coordinates in encode_coding_tree

Changes functions encode_intra_coding_unit and encode_coding_tree to
take coordinate arguments in units of luma pixels instead of 8 px
blocks. This should make the code easier to understand.
This commit is contained in:
Arttu Ylä-Outinen 2017-05-23 14:59:42 +03:00
parent 525a5180ff
commit f5eef7f33c
2 changed files with 76 additions and 73 deletions

View file

@ -718,7 +718,7 @@ static INLINE uint8_t intra_mode_encryption(encoder_state_t * const state,
static void encode_intra_coding_unit(encoder_state_t * const state,
cabac_data_t * const cabac,
const cu_info_t * const cur_cu,
int x_ctb, int y_ctb, int depth)
int x, int y, int depth)
{
const videoframe_t * const frame = state->tile->frame;
uint8_t intra_pred_mode_actual[4];
@ -755,8 +755,8 @@ static void encode_intra_coding_unit(encoder_state_t * const state,
const int cu_width = LCU_WIDTH >> depth;
for (int j = 0; j < num_pred_units; ++j) {
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x_ctb << 3, j);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y_ctb << 3, j);
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
const cu_info_t *left_pu = NULL;
@ -898,7 +898,7 @@ static void encode_intra_coding_unit(encoder_state_t * const state,
}
}
encode_transform_coeff(state, x_ctb * 8, y_ctb * 8, depth, 0, 0, 0);
encode_transform_coeff(state, x, y, depth, 0, 0, 0);
}
static void encode_part_mode(encoder_state_t * const state,
@ -985,37 +985,48 @@ static void encode_part_mode(encoder_state_t * const state,
}
void kvz_encode_coding_tree(encoder_state_t * const state,
uint16_t x_ctb,
uint16_t y_ctb,
uint16_t x,
uint16_t y,
uint8_t depth)
{
cabac_data_t * const cabac = &state->cabac;
const encoder_control_t * const ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb);
const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x, y);
const cu_info_t *left_cu = NULL;
if (x > 0) {
left_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y);
}
const cu_info_t *above_cu = NULL;
if (y > 0) {
above_cu = kvz_cu_array_at_const(frame->cu_array, x, y - 1);
}
uint8_t split_flag = GET_SPLITDATA(cur_cu, depth);
uint8_t split_model = 0;
//Absolute ctb
uint16_t abs_x_ctb = x_ctb + (state->tile->lcu_offset_x * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
uint16_t abs_y_ctb = y_ctb + (state->tile->lcu_offset_y * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
// Absolute coordinates
uint16_t abs_x = x + state->tile->lcu_offset_x * LCU_WIDTH;
uint16_t abs_y = y + state->tile->lcu_offset_y * LCU_WIDTH;
// Check for slice border FIXME
uint8_t border_x = ((state->encoder_control->in.width) < (abs_x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((state->encoder_control->in.height) < (abs_y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((state->encoder_control->in.width) < ((abs_x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((state->encoder_control->in.height) < ((abs_y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
bool border_x = ctrl->in.width < abs_x + (LCU_WIDTH >> depth);
bool border_y = ctrl->in.height < abs_y + (LCU_WIDTH >> depth);
bool border_split_x = ctrl->in.width >= abs_x + (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1));
bool border_split_y = ctrl->in.height >= abs_y + (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1));
bool border = border_x || border_y; /*!< are we in any border CU */
// When not in MAX_DEPTH, insert split flag and split the blocks if needed
if (depth != MAX_DEPTH) {
// Implisit split flag when on border
if (!border) {
// Get left and top block split_flags and if they are present and true, increase model number
if (x_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb), depth) == 1) {
if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) {
split_model++;
}
if (y_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1), depth) == 1) {
if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) {
split_model++;
}
@ -1025,18 +1036,19 @@ void kvz_encode_coding_tree(encoder_state_t * const state,
if (split_flag || border) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1<<(MAX_DEPTH-1-depth);
kvz_encode_coding_tree(state, x_ctb, y_ctb, depth + 1); // x,y
int offset = LCU_WIDTH >> (depth + 1);
kvz_encode_coding_tree(state, x, y, depth + 1);
// TODO: fix when other half of the block would not be completely over the border
if (!border_x || border_split_x) {
kvz_encode_coding_tree(state, x_ctb + change, y_ctb, depth + 1);
kvz_encode_coding_tree(state, x + offset, y, depth + 1);
}
if (!border_y || border_split_y) {
kvz_encode_coding_tree(state, x_ctb, y_ctb + change, depth + 1);
kvz_encode_coding_tree(state, x, y + offset, depth + 1);
}
if (!border || (border_split_x && border_split_y)) {
kvz_encode_coding_tree(state, x_ctb + change, y_ctb + change, depth + 1);
kvz_encode_coding_tree(state, x + offset, y + offset, depth + 1);
}
return;
}
@ -1049,25 +1061,23 @@ void kvz_encode_coding_tree(encoder_state_t * const state,
// Encode skip flag
if (state->frame->slicetype != KVZ_SLICE_I) {
int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped;
int ui;
int16_t num_cand = MRG_MAX_NUM_CANDS;
// Get left and top skipped flags and if they are present and true, increase context number
if (x_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb))->skipped) {
// uiCtxSkip = aboveskipped + leftskipped;
int8_t ctx_skip = 0;
if (left_cu && left_cu->skipped) {
ctx_skip++;
}
if (y_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1))->skipped) {
if (above_cu && above_cu->skipped) {
ctx_skip++;
}
cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]);
CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag");
// IF SKIP
if (cur_cu->skipped) {
int16_t num_cand = MRG_MAX_NUM_CANDS;
if (num_cand > 1) {
for (ui = 0; ui < num_cand - 1; ui++) {
for (int ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
@ -1084,8 +1094,6 @@ void kvz_encode_coding_tree(encoder_state_t * const state,
}
}
// ENDIF SKIP
// Prediction mode
if (state->frame->slicetype != KVZ_SLICE_I) {
cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model);
@ -1100,8 +1108,8 @@ void kvz_encode_coding_tree(encoder_state_t * const state,
const int cu_width = LCU_WIDTH >> depth;
for (int i = 0; i < num_pu; ++i) {
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x_ctb << 3, i);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y_ctb << 3, i);
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, i);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, i);
const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i);
const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
@ -1120,57 +1128,52 @@ void kvz_encode_coding_tree(encoder_state_t * const state,
// Code (possible) coeffs to bitstream
if (cbf) {
encode_transform_coeff(state, x_ctb * 8, y_ctb * 8, depth, 0, 0, 0);
encode_transform_coeff(state, x, y, depth, 0, 0, 0);
}
}
} else if (cur_cu->type == CU_INTRA) {
encode_intra_coding_unit(state, cabac, cur_cu, x_ctb, y_ctb, depth);
encode_intra_coding_unit(state, cabac, cur_cu, x, y, depth);
}
#if ENABLE_PCM == 1
#if ENABLE_PCM
// Code IPCM block
if (cur_cu->type == CU_PCM) {
else if (cur_cu->type == CU_PCM) {
kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1
kvz_cabac_finish(cabac);
kvz_bitstream_add_rbsp_trailing_bits(cabac.stream);
// PCM sample
{
unsigned y, x;
pixel *base_y = &cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
pixel *base_u = &cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
pixel *base_v = &cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
// PCM sample
pixel *base_y = &cur_pic->y_data[x + y * encoder->in.width];
pixel *base_u = &cur_pic->u_data[x / 2 + y / 2 * encoder->in.width / 2];
pixel *base_v = &cur_pic->v_data[x / 2 + y / 2 * encoder->in.width / 2];
// Luma
for (y = 0; y < LCU_WIDTH >> depth; y++) {
for (x = 0; x < LCU_WIDTH >> depth; x++) {
kvz_bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8);
for (unsigned y_px = 0; y_px < LCU_WIDTH >> depth; y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> depth; x_px++) {
kvz_bitstream_put(cabac.stream, base_y[x_px + y_px * encoder->in.width], 8);
}
}
// Chroma
if (encoder->in.video_format != FORMAT_400) {
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
kvz_bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8);
for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) {
kvz_bitstream_put(cabac.stream, base_u[x_px + y_px * (encoder->in.width >> 1)], 8);
}
}
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
kvz_bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8);
for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) {
kvz_bitstream_put(cabac.stream, base_v[x_px + y_px * (encoder->in.width >> 1)], 8);
}
}
}
}
// end PCM sample
kvz_cabac_start(cabac);
} // end Code IPCM block
#endif /* END ENABLE_PCM */
else { /* Should not happend */
}
#endif
else {
// CU type not set. Should not happen.
assert(0);
exit(1);
}
/* end prediction unit */
/* end coding_unit */
}

View file

@ -329,7 +329,7 @@ static void encoder_state_worker_encode_lcu(void * opaque)
state->must_code_qp_delta = encoder->lcu_dqp_enabled;
//Encode coding tree
kvz_encode_coding_tree(state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0);
kvz_encode_coding_tree(state, lcu->position.x * LCU_WIDTH, lcu->position.y * LCU_WIDTH, 0);
// Coeffs are not needed anymore.
state->coeff = NULL;