Move coefficient generation functions from encoder.c to transform.c.

- These functions probably should have been there to begin with.
This commit is contained in:
Ari Koivula 2014-05-12 11:35:40 +03:00
parent a3478ecd20
commit fb763f7940
4 changed files with 410 additions and 403 deletions

View file

@ -2812,64 +2812,6 @@ void encode_coding_tree(encoder_state * const encoder_state,
/* end coding_unit */
}
static void transform_chroma(encoder_state * const encoder_state, cu_info *cur_cu,
int depth, const pixel *base_u, pixel *pred_u,
coefficient *coeff_u, int8_t scan_idx_chroma,
coefficient *pre_quant_coeff, coefficient *block)
{
const encoder_control * const encoder = encoder_state->encoder_control;
int base_stride = LCU_WIDTH;
int pred_stride = LCU_WIDTH;
int8_t width_c = LCU_WIDTH >> (depth + 1);
int i = 0;
unsigned ac_sum = 0;
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) -
pred_u[x + y * (pred_stride >> 1)];
i++;
}
}
transform2d(encoder, block, pre_quant_coeff, width_c, 65535);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type);
}
}
static void reconstruct_chroma(const encoder_state * const encoder_state, cu_info *cur_cu,
int depth, coefficient *coeff_u,
pixel *recbase_u, pixel *pred_u, int color_type,
coefficient *pre_quant_coeff, coefficient *block)
{
int8_t width_c = LCU_WIDTH >> (depth + 1);
int i, y, x;
dequant(encoder_state, coeff_u, pre_quant_coeff, width_c, width_c, (int8_t)color_type, cur_cu->type);
itransform2d(encoder_state->encoder_control, block, pre_quant_coeff, width_c, 65535);
i = 0;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
int16_t val = block[i++] + pred_u[x + y * LCU_WIDTH_C];
//TODO: support 10+bits
recbase_u[x + y * LCU_WIDTH_C] = (uint8_t)CLIP(0, 255, val);
}
}
}
coeff_scan_order_t get_scan_order(int8_t cu_type, int intra_mode, int depth)
{
@ -2888,350 +2830,6 @@ coeff_scan_order_t get_scan_order(int8_t cu_type, int intra_mode, int depth)
}
int quantize_residual_chroma(encoder_state * const encoder_state,
cu_info *cur_cu, int luma_depth, color_index color,
const pixel *base_u, pixel *recbase_u, coefficient *orig_coeff_u)
{
pixel pred_u[LCU_WIDTH*LCU_WIDTH>>2];
coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2];
int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
const int chroma_depth = (luma_depth == MAX_PU_DEPTH ? luma_depth - 1 : luma_depth);
const int8_t width_c = LCU_WIDTH >> (chroma_depth + 1);
const coeff_scan_order_t scan_idx_chroma = get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, luma_depth);
int has_coeffs = 0;
{
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
pred_u[x + y * LCU_WIDTH_C] = recbase_u[x + y * LCU_WIDTH_C];
}
}
}
transform_chroma(encoder_state, cur_cu, chroma_depth, base_u, pred_u, coeff_u, scan_idx_chroma, pre_quant_coeff, block);
{
int i;
for (i = 0; i < width_c * width_c; i++) {
if (coeff_u[i] != 0) {
has_coeffs = 1;
break;
}
}
}
// Copy coefficients, even if they are all zeroes.
{
int i = 0;
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
orig_coeff_u[x + y * LCU_WIDTH_C] = coeff_u[i];
i++;
}
}
}
if (has_coeffs) {
reconstruct_chroma(encoder_state, cur_cu, chroma_depth,
coeff_u, recbase_u, pred_u, (color == COLOR_U ? 2 : 3),
pre_quant_coeff, block);
}
return has_coeffs;
}
void decide_trskip(encoder_state * const encoder_state, cu_info *cur_cu, int8_t depth, int pu_index,
int16_t *residual, uint32_t *ac_sum)
{
const encoder_control * const encoder = encoder_state->encoder_control;
const coeff_scan_order_t scan_idx_luma = get_scan_order(cur_cu->type, cur_cu->intra[pu_index].mode, depth);
const int8_t width = LCU_WIDTH >> depth;
//int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
int i;
coefficient temp_block[16]; coefficient temp_coeff[16];
coefficient temp_block2[16]; coefficient temp_coeff2[16];
uint32_t cost = 0,cost2 = 0;
uint32_t coeffcost = 0,coeffcost2 = 0;
// Test for transform skip
transformskip(encoder, residual,pre_quant_coeff, width);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransformskip(encoder, temp_block,pre_quant_coeff,width);
transform2d(encoder, residual,pre_quant_coeff,width,0);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff2, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransform2d(encoder, temp_block2,pre_quant_coeff,width,0);
// SSD between original and reconstructed
for (i = 0; i < 16; i++) {
int diff = temp_block[i] - residual[i];
cost += diff*diff;
diff = temp_block2[i] - residual[i];
cost2 += diff*diff;
}
// Simple RDO
if(encoder->rdo == 1) {
// SSD between reconstruction and original + sum of coeffs
for (i = 0; i < 16; i++) {
coeffcost += abs((int)temp_coeff[i]);
coeffcost2 += abs((int)temp_coeff2[i]);
}
cost += (1 + coeffcost + (coeffcost>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += (coeffcost2 + (coeffcost2>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
// Full RDO
} else if(encoder->rdo == 2) {
coeffcost = get_coeff_cost(encoder_state, temp_coeff, 4, 0, scan_idx_luma);
coeffcost2 = get_coeff_cost(encoder_state, temp_coeff2, 4, 0, scan_idx_luma);
cost += coeffcost*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += coeffcost2*((int)encoder_state->global->cur_lambda_cost+0.5);
}
cur_cu->intra[pu_index].tr_skip = (cost < cost2);
}
/**
* This function calculates the residual coefficients for a region of the LCU
* (defined by x, y and depth) and updates the reconstruction with the
* kvantized residual.
*
* It handles recursion for transform split, but that is currently only work
* for 64x64 inter to 32x32 transform blocks.
*
* Inputs are:
* - lcu->rec pixels after prediction for the area
* - lcu->ref reference pixels for the area
* - lcu->cu for the area
*
* Outputs are:
* - lcu->rec reconstruction after quantized residual
* - lcu->coeff quantized coefficients for the area
* - lcu->cbf coded block flags for the area
* - lcu->cu.intra[].tr_skip for the area
*/
void encode_transform_tree(encoder_state * const encoder_state, int32_t x, int32_t y, const uint8_t depth, lcu_t* lcu)
{
const encoder_control * const encoder = encoder_state->encoder_control;
// we have 64>>depth transform size
const vector2d lcu_px = {x & 0x3f, y & 0x3f};
const int pu_index = PU_INDEX(lcu_px.x / 4, lcu_px.y / 4);
cu_info *cur_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x>>3) + (lcu_px.y>>3)*LCU_T_CU_WIDTH];
const int8_t width = LCU_WIDTH>>depth;
int i;
// Tell clang-analyzer what is up. For some reason it can't figure out from
// asserting just depth.
assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64);
// Split transform and increase depth
if (depth == 0 || cur_cu->tr_depth > depth) {
int offset = width / 2;
encode_transform_tree(encoder_state, x, y, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y, depth+1, lcu);
encode_transform_tree(encoder_state, x, y + offset, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y + offset, depth+1, lcu);
// Propagate coded block flags from child CUs to parent CU.
if (depth < MAX_DEPTH) {
cu_info *cu_a = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset)>>3) + (lcu_px.y>>3) *LCU_T_CU_WIDTH];
cu_info *cu_b = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x>>3) + ((lcu_px.y+offset)>>3)*LCU_T_CU_WIDTH];
cu_info *cu_c = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset)>>3) + ((lcu_px.y+offset)>>3)*LCU_T_CU_WIDTH];
if (cbf_is_set(cu_a->cbf.y, depth+1) || cbf_is_set(cu_b->cbf.y, depth+1) || cbf_is_set(cu_c->cbf.y, depth+1)) {
cbf_set(&cur_cu->cbf.y, depth);
}
if (cbf_is_set(cu_a->cbf.u, depth+1) || cbf_is_set(cu_b->cbf.u, depth+1) || cbf_is_set(cu_c->cbf.u, depth+1)) {
cbf_set(&cur_cu->cbf.u, depth);
}
if (cbf_is_set(cu_a->cbf.v, depth+1) || cbf_is_set(cu_b->cbf.v, depth+1) || cbf_is_set(cu_c->cbf.v, depth+1)) {
cbf_set(&cur_cu->cbf.v, depth);
}
}
return;
}
{
const int luma_offset = lcu_px.x + lcu_px.y * LCU_WIDTH;
// Pointers to current location in arrays with prediction.
pixel *recbase_y = &lcu->rec.y[luma_offset];
// Pointers to current location in arrays with reference.
const pixel *base_y = &lcu->ref.y[luma_offset];
// Pointers to current location in arrays with kvantized coefficients.
coefficient *orig_coeff_y = &lcu->coeff.y[luma_offset];
// Temporary buffers. Not really used for much. Possibly unnecessary.
pixel pred_y[LCU_WIDTH*LCU_WIDTH];
// Buffers for coefficients.
coefficient coeff_y[LCU_WIDTH*LCU_WIDTH];
// Temporary buffers for kvantization and transformation.
int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
uint32_t ac_sum = 0;
uint8_t scan_idx_luma = SCAN_DIAG;
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
uint32_t residual_sum = 0;
#endif
// Clear coded block flag structures for depths lower than current depth.
// This should ensure that the CBF data doesn't get corrupted if this function
// is called more than once.
cbf_clear(&cur_cu->cbf.y, depth + pu_index);
if (pu_index == 0) {
cbf_clear(&cur_cu->cbf.u, depth);
cbf_clear(&cur_cu->cbf.v, depth);
}
// Pick coeff scan mode according to intra prediction mode.
if (cur_cu->type == CU_INTRA) {
int chroma_mode = cur_cu->intra[0].mode_chroma;
if (chroma_mode == 36) {
chroma_mode = cur_cu->intra[pu_index].mode;
}
scan_idx_luma = get_scan_order(cur_cu->type, cur_cu->intra[pu_index].mode, depth);
}
// Copy Luma and Chroma to the pred-block
for(y = 0; y < width; y++) {
for(x = 0; x < width; x++) {
pred_y[x+y*LCU_WIDTH]=recbase_y[x+y*LCU_WIDTH];
}
}
// Get residual by subtracting prediction
i = 0;
ac_sum = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
block[i] = ((int16_t)base_y[x + y * LCU_WIDTH]) -
pred_y[x + y * LCU_WIDTH];
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
residual_sum += block[i];
#endif
i++;
}
}
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
#define RESIDUAL_THRESHOLD 500
if(residual_sum < RESIDUAL_THRESHOLD/(width)) {
memset(block, 0, sizeof(int16_t)*(width)*(width));
}
#endif
// For 4x4 blocks, check for transform skip
if(width == 4 && encoder->trskip_enable) {
decide_trskip(encoder_state, cur_cu, depth, pu_index, block, &ac_sum);
}
// Transform and quant residual to coeffs
if(width == 4 && cur_cu->intra[pu_index].tr_skip) {
transformskip(encoder, block,pre_quant_coeff,width);
} else {
transform2d(encoder, block,pre_quant_coeff,width,0);
}
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0,
scan_idx_luma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, cur_cu->type);
}
// Check for non-zero coeffs
for (i = 0; i < width * width; i++) {
if (coeff_y[i] != 0) {
// Found one, we can break here
cbf_set(&cur_cu->cbf.y, depth + pu_index);
break;
}
}
// Copy coefficients, even if they are all zeroes. This takes care of the
// case where the original coefficients aren't already zeroed.
{
int i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
orig_coeff_y[x + y * LCU_WIDTH] = coeff_y[i];
i++;
}
}
}
if (cbf_is_set(cur_cu->cbf.y, depth + pu_index)) {
// Combine inverese quantized coefficients with the prediction to get
// reconstructed image.
//picture_set_block_residual(cur_pic,x_cu,y_cu,depth,1);
int i;
dequant(encoder_state, coeff_y, pre_quant_coeff, width, width, 0, cur_cu->type);
if(width == 4 && cur_cu->intra[pu_index].tr_skip) {
itransformskip(encoder, block,pre_quant_coeff,width);
} else {
itransform2d(encoder, block,pre_quant_coeff,width,0);
}
i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
int val = block[i++] + pred_y[x + y * LCU_WIDTH];
//TODO: support 10+bits
recbase_y[x + y * LCU_WIDTH] = (pixel)CLIP(0, 255, val);
}
}
}
}
// If luma is 4x4, do chroma for the 8x8 luma area when handling the top
// left PU because the coordinates are correct.
if (depth <= MAX_DEPTH || pu_index == 0) {
const int chroma_offset = lcu_px.x / 2 + lcu_px.y / 2 * LCU_WIDTH / 2;
pixel *recbase_u = &lcu->rec.u[chroma_offset];
pixel *recbase_v = &lcu->rec.v[chroma_offset];
const pixel *base_u = &lcu->ref.u[chroma_offset];
const pixel *base_v = &lcu->ref.v[chroma_offset];
coefficient *orig_coeff_u = &lcu->coeff.u[chroma_offset];
coefficient *orig_coeff_v = &lcu->coeff.v[chroma_offset];
if (cur_cu->intra[0].mode_chroma == 36) {
cur_cu->intra[0].mode_chroma = cur_cu->intra[0].mode;
}
if (quantize_residual_chroma(encoder_state, cur_cu, depth, COLOR_U, base_u, recbase_u, orig_coeff_u)) {
cbf_set(&cur_cu->cbf.u, depth);
}
if (quantize_residual_chroma(encoder_state, cur_cu, depth, COLOR_V, base_v, recbase_v, orig_coeff_v)) {
cbf_set(&cur_cu->cbf.v, depth);
}
}
}
static void encode_transform_unit(encoder_state * const encoder_state,
int x_pu, int y_pu, int depth, int tr_depth)
{

View file

@ -253,12 +253,13 @@ void encode_last_significant_xy(encoder_state *encoder,
uint8_t type, uint8_t scan);
void encode_coeff_nxn(encoder_state *encoder, int16_t *coeff, uint8_t width,
uint8_t type, int8_t scan_mode, int8_t tr_skip);
void encode_transform_tree(encoder_state *encoder_state, int32_t x, int32_t y, uint8_t depth, lcu_t* lcu );
void encode_transform_coeff(encoder_state *encoder_state, int32_t x_cu, int32_t y_cu,
int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v);
void encode_block_residual(const encoder_control * const encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth);
coeff_scan_order_t get_scan_order(int8_t cu_type, int intra_mode, int depth);
static const uint8_t g_group_idx[32] = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6,
6, 6, 7, 7, 7, 7, 8, 8, 8, 8,

View file

@ -26,9 +26,11 @@
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "config.h"
#include "nal.h"
#include "rdo.h"
//////////////////////////////////////////////////////////////////////////
// INITIALIZATIONS
@ -799,3 +801,407 @@ void dequant(const encoder_state * const encoder_state, int16_t *q_coef, int16_t
}
}
static void transform_chroma(encoder_state * const encoder_state, cu_info *cur_cu,
int depth, const pixel *base_u, pixel *pred_u,
coefficient *coeff_u, int8_t scan_idx_chroma,
coefficient *pre_quant_coeff, coefficient *block)
{
const encoder_control * const encoder = encoder_state->encoder_control;
int base_stride = LCU_WIDTH;
int pred_stride = LCU_WIDTH;
int8_t width_c = LCU_WIDTH >> (depth + 1);
int i = 0;
unsigned ac_sum = 0;
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) -
pred_u[x + y * (pred_stride >> 1)];
i++;
}
}
transform2d(encoder, block, pre_quant_coeff, width_c, 65535);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type);
}
}
static void reconstruct_chroma(const encoder_state * const encoder_state, cu_info *cur_cu,
int depth, coefficient *coeff_u,
pixel *recbase_u, pixel *pred_u, int color_type,
coefficient *pre_quant_coeff, coefficient *block)
{
int8_t width_c = LCU_WIDTH >> (depth + 1);
int i, y, x;
dequant(encoder_state, coeff_u, pre_quant_coeff, width_c, width_c, (int8_t)color_type, cur_cu->type);
itransform2d(encoder_state->encoder_control, block, pre_quant_coeff, width_c, 65535);
i = 0;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
int16_t val = block[i++] + pred_u[x + y * LCU_WIDTH_C];
//TODO: support 10+bits
recbase_u[x + y * LCU_WIDTH_C] = (uint8_t)CLIP(0, 255, val);
}
}
}
int quantize_residual_chroma(encoder_state * const encoder_state,
cu_info *cur_cu, int luma_depth, color_index color,
const pixel *base_u, pixel *recbase_u, coefficient *orig_coeff_u)
{
pixel pred_u[LCU_WIDTH*LCU_WIDTH>>2];
coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2];
int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
const int chroma_depth = (luma_depth == MAX_PU_DEPTH ? luma_depth - 1 : luma_depth);
const int8_t width_c = LCU_WIDTH >> (chroma_depth + 1);
const coeff_scan_order_t scan_idx_chroma = get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, luma_depth);
int has_coeffs = 0;
{
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
pred_u[x + y * LCU_WIDTH_C] = recbase_u[x + y * LCU_WIDTH_C];
}
}
}
transform_chroma(encoder_state, cur_cu, chroma_depth, base_u, pred_u, coeff_u, scan_idx_chroma, pre_quant_coeff, block);
{
int i;
for (i = 0; i < width_c * width_c; i++) {
if (coeff_u[i] != 0) {
has_coeffs = 1;
break;
}
}
}
// Copy coefficients, even if they are all zeroes.
{
int i = 0;
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
orig_coeff_u[x + y * LCU_WIDTH_C] = coeff_u[i];
i++;
}
}
}
if (has_coeffs) {
reconstruct_chroma(encoder_state, cur_cu, chroma_depth,
coeff_u, recbase_u, pred_u, (color == COLOR_U ? 2 : 3),
pre_quant_coeff, block);
}
return has_coeffs;
}
void decide_trskip(encoder_state * const encoder_state, cu_info *cur_cu, int8_t depth, int pu_index,
int16_t *residual, uint32_t *ac_sum)
{
const encoder_control * const encoder = encoder_state->encoder_control;
const coeff_scan_order_t scan_idx_luma = get_scan_order(cur_cu->type, cur_cu->intra[pu_index].mode, depth);
const int8_t width = LCU_WIDTH >> depth;
//int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
int i;
coefficient temp_block[16]; coefficient temp_coeff[16];
coefficient temp_block2[16]; coefficient temp_coeff2[16];
uint32_t cost = 0,cost2 = 0;
uint32_t coeffcost = 0,coeffcost2 = 0;
// Test for transform skip
transformskip(encoder, residual,pre_quant_coeff, width);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransformskip(encoder, temp_block,pre_quant_coeff,width);
transform2d(encoder, residual,pre_quant_coeff,width,0);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff2, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransform2d(encoder, temp_block2,pre_quant_coeff,width,0);
// SSD between original and reconstructed
for (i = 0; i < 16; i++) {
int diff = temp_block[i] - residual[i];
cost += diff*diff;
diff = temp_block2[i] - residual[i];
cost2 += diff*diff;
}
// Simple RDO
if(encoder->rdo == 1) {
// SSD between reconstruction and original + sum of coeffs
for (i = 0; i < 16; i++) {
coeffcost += abs((int)temp_coeff[i]);
coeffcost2 += abs((int)temp_coeff2[i]);
}
cost += (1 + coeffcost + (coeffcost>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += (coeffcost2 + (coeffcost2>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
// Full RDO
} else if(encoder->rdo == 2) {
coeffcost = get_coeff_cost(encoder_state, temp_coeff, 4, 0, scan_idx_luma);
coeffcost2 = get_coeff_cost(encoder_state, temp_coeff2, 4, 0, scan_idx_luma);
cost += coeffcost*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += coeffcost2*((int)encoder_state->global->cur_lambda_cost+0.5);
}
cur_cu->intra[pu_index].tr_skip = (cost < cost2);
}
/**
* This function calculates the residual coefficients for a region of the LCU
* (defined by x, y and depth) and updates the reconstruction with the
* kvantized residual.
*
* It handles recursion for transform split, but that is currently only work
* for 64x64 inter to 32x32 transform blocks.
*
* Inputs are:
* - lcu->rec pixels after prediction for the area
* - lcu->ref reference pixels for the area
* - lcu->cu for the area
*
* Outputs are:
* - lcu->rec reconstruction after quantized residual
* - lcu->coeff quantized coefficients for the area
* - lcu->cbf coded block flags for the area
* - lcu->cu.intra[].tr_skip for the area
*/
void encode_transform_tree(encoder_state * const encoder_state, int32_t x, int32_t y, const uint8_t depth, lcu_t* lcu)
{
const encoder_control * const encoder = encoder_state->encoder_control;
// we have 64>>depth transform size
const vector2d lcu_px = {x & 0x3f, y & 0x3f};
const int pu_index = PU_INDEX(lcu_px.x / 4, lcu_px.y / 4);
cu_info *cur_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x>>3) + (lcu_px.y>>3)*LCU_T_CU_WIDTH];
const int8_t width = LCU_WIDTH>>depth;
int i;
// Tell clang-analyzer what is up. For some reason it can't figure out from
// asserting just depth.
assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64);
// Split transform and increase depth
if (depth == 0 || cur_cu->tr_depth > depth) {
int offset = width / 2;
encode_transform_tree(encoder_state, x, y, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y, depth+1, lcu);
encode_transform_tree(encoder_state, x, y + offset, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y + offset, depth+1, lcu);
// Propagate coded block flags from child CUs to parent CU.
if (depth < MAX_DEPTH) {
cu_info *cu_a = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset)>>3) + (lcu_px.y>>3) *LCU_T_CU_WIDTH];
cu_info *cu_b = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x>>3) + ((lcu_px.y+offset)>>3)*LCU_T_CU_WIDTH];
cu_info *cu_c = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset)>>3) + ((lcu_px.y+offset)>>3)*LCU_T_CU_WIDTH];
if (cbf_is_set(cu_a->cbf.y, depth+1) || cbf_is_set(cu_b->cbf.y, depth+1) || cbf_is_set(cu_c->cbf.y, depth+1)) {
cbf_set(&cur_cu->cbf.y, depth);
}
if (cbf_is_set(cu_a->cbf.u, depth+1) || cbf_is_set(cu_b->cbf.u, depth+1) || cbf_is_set(cu_c->cbf.u, depth+1)) {
cbf_set(&cur_cu->cbf.u, depth);
}
if (cbf_is_set(cu_a->cbf.v, depth+1) || cbf_is_set(cu_b->cbf.v, depth+1) || cbf_is_set(cu_c->cbf.v, depth+1)) {
cbf_set(&cur_cu->cbf.v, depth);
}
}
return;
}
{
const int luma_offset = lcu_px.x + lcu_px.y * LCU_WIDTH;
// Pointers to current location in arrays with prediction.
pixel *recbase_y = &lcu->rec.y[luma_offset];
// Pointers to current location in arrays with reference.
const pixel *base_y = &lcu->ref.y[luma_offset];
// Pointers to current location in arrays with kvantized coefficients.
coefficient *orig_coeff_y = &lcu->coeff.y[luma_offset];
// Temporary buffers. Not really used for much. Possibly unnecessary.
pixel pred_y[LCU_WIDTH*LCU_WIDTH];
// Buffers for coefficients.
coefficient coeff_y[LCU_WIDTH*LCU_WIDTH];
// Temporary buffers for kvantization and transformation.
int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
uint32_t ac_sum = 0;
uint8_t scan_idx_luma = SCAN_DIAG;
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
uint32_t residual_sum = 0;
#endif
// Clear coded block flag structures for depths lower than current depth.
// This should ensure that the CBF data doesn't get corrupted if this function
// is called more than once.
cbf_clear(&cur_cu->cbf.y, depth + pu_index);
if (pu_index == 0) {
cbf_clear(&cur_cu->cbf.u, depth);
cbf_clear(&cur_cu->cbf.v, depth);
}
// Pick coeff scan mode according to intra prediction mode.
if (cur_cu->type == CU_INTRA) {
int chroma_mode = cur_cu->intra[0].mode_chroma;
if (chroma_mode == 36) {
chroma_mode = cur_cu->intra[pu_index].mode;
}
scan_idx_luma = get_scan_order(cur_cu->type, cur_cu->intra[pu_index].mode, depth);
}
// Copy Luma and Chroma to the pred-block
for(y = 0; y < width; y++) {
for(x = 0; x < width; x++) {
pred_y[x+y*LCU_WIDTH]=recbase_y[x+y*LCU_WIDTH];
}
}
// Get residual by subtracting prediction
i = 0;
ac_sum = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
block[i] = ((int16_t)base_y[x + y * LCU_WIDTH]) -
pred_y[x + y * LCU_WIDTH];
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
residual_sum += block[i];
#endif
i++;
}
}
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
#define RESIDUAL_THRESHOLD 500
if(residual_sum < RESIDUAL_THRESHOLD/(width)) {
memset(block, 0, sizeof(int16_t)*(width)*(width));
}
#endif
// For 4x4 blocks, check for transform skip
if(width == 4 && encoder->trskip_enable) {
decide_trskip(encoder_state, cur_cu, depth, pu_index, block, &ac_sum);
}
// Transform and quant residual to coeffs
if(width == 4 && cur_cu->intra[pu_index].tr_skip) {
transformskip(encoder, block,pre_quant_coeff,width);
} else {
transform2d(encoder, block,pre_quant_coeff,width,0);
}
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0,
scan_idx_luma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, cur_cu->type);
}
// Check for non-zero coeffs
for (i = 0; i < width * width; i++) {
if (coeff_y[i] != 0) {
// Found one, we can break here
cbf_set(&cur_cu->cbf.y, depth + pu_index);
break;
}
}
// Copy coefficients, even if they are all zeroes. This takes care of the
// case where the original coefficients aren't already zeroed.
{
int i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
orig_coeff_y[x + y * LCU_WIDTH] = coeff_y[i];
i++;
}
}
}
if (cbf_is_set(cur_cu->cbf.y, depth + pu_index)) {
// Combine inverese quantized coefficients with the prediction to get
// reconstructed image.
//picture_set_block_residual(cur_pic,x_cu,y_cu,depth,1);
int i;
dequant(encoder_state, coeff_y, pre_quant_coeff, width, width, 0, cur_cu->type);
if(width == 4 && cur_cu->intra[pu_index].tr_skip) {
itransformskip(encoder, block,pre_quant_coeff,width);
} else {
itransform2d(encoder, block,pre_quant_coeff,width,0);
}
i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
int val = block[i++] + pred_y[x + y * LCU_WIDTH];
//TODO: support 10+bits
recbase_y[x + y * LCU_WIDTH] = (pixel)CLIP(0, 255, val);
}
}
}
}
// If luma is 4x4, do chroma for the 8x8 luma area when handling the top
// left PU because the coordinates are correct.
if (depth <= MAX_DEPTH || pu_index == 0) {
const int chroma_offset = lcu_px.x / 2 + lcu_px.y / 2 * LCU_WIDTH / 2;
pixel *recbase_u = &lcu->rec.u[chroma_offset];
pixel *recbase_v = &lcu->rec.v[chroma_offset];
const pixel *base_u = &lcu->ref.u[chroma_offset];
const pixel *base_v = &lcu->ref.v[chroma_offset];
coefficient *orig_coeff_u = &lcu->coeff.u[chroma_offset];
coefficient *orig_coeff_v = &lcu->coeff.v[chroma_offset];
if (cur_cu->intra[0].mode_chroma == 36) {
cur_cu->intra[0].mode_chroma = cur_cu->intra[0].mode;
}
if (quantize_residual_chroma(encoder_state, cur_cu, depth, COLOR_U, base_u, recbase_u, orig_coeff_u)) {
cbf_set(&cur_cu->cbf.u, depth);
}
if (quantize_residual_chroma(encoder_state, cur_cu, depth, COLOR_V, base_v, recbase_v, orig_coeff_v)) {
cbf_set(&cur_cu->cbf.v, depth);
}
}
}

View file

@ -46,4 +46,6 @@ void itransform2d(const encoder_control *encoder, int16_t *block,int16_t *coeff,
int32_t get_scaled_qp(int8_t type, int8_t qp, int8_t qp_offset);
void encode_transform_tree(encoder_state *encoder_state, int32_t x, int32_t y, uint8_t depth, lcu_t* lcu);
#endif