/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS ****************************************************************************/ #include "encode_coding_tree.h" #include "cabac.h" #include "context.h" #include "cu.h" #include "encoder.h" #include "extras/crypto.h" #include "global.h" #include "imagelist.h" #include "inter.h" #include "intra.h" #include "kvazaar.h" #include "kvz_math.h" #include "strategyselector.h" #include "tables.h" #include "videoframe.h" /** * \brief Encode (X,Y) position of the last significant coefficient * * \param lastpos_x X component of last coefficient * \param lastpos_y Y component of last coefficient * \param width Block width * \param height Block height * \param type plane type / luminance or chrominance * \param scan scan type (diag, hor, ver) * * This method encodes the X and Y component within a block of the last * significant coefficient. */ void kvz_encode_last_significant_xy(cabac_data_t * const cabac, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { const int index = kvz_math_floor_log2(width) - 2; uint8_t ctx_offset = type ? 0 : (index * 3 + (index + 1) / 4); uint8_t shift = type ? index : (index + 3) / 4; cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma); cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma); if (scan == SCAN_VER) { SWAP(lastpos_x, lastpos_y, uint8_t); } const int group_idx_x = g_group_idx[lastpos_x]; const int group_idx_y = g_group_idx[lastpos_y]; // x prefix for (int last_x = 0; last_x < group_idx_x; last_x++) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (last_x >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_x_prefix"); } if (group_idx_x < g_group_idx[width - 1]) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (group_idx_x >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_x_prefix"); } // y prefix for (int last_y = 0; last_y < group_idx_y; last_y++) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (last_y >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_y_prefix"); } if (group_idx_y < g_group_idx[height - 1]) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (group_idx_y >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_y_prefix"); } // last_sig_coeff_x_suffix if (group_idx_x > 3) { const int suffix = lastpos_x - g_min_in_group[group_idx_x]; const int bits = (group_idx_x - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_x_suffix"); } // last_sig_coeff_y_suffix if (group_idx_y > 3) { const int suffix = lastpos_y - g_min_in_group[group_idx_y]; const int bits = (group_idx_y - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_y_suffix"); } } static void encode_transform_unit(encoder_state_t * const state, int x, int y, int depth) { assert(depth >= 1 && depth <= MAX_PU_DEPTH); const videoframe_t * const frame = state->tile->frame; const uint8_t width = LCU_WIDTH >> depth; const uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); int8_t scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode, depth); int cbf_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); if (cbf_y) { int x_local = x % LCU_WIDTH; int y_local = y % LCU_WIDTH; const coeff_t *coeff_y = &state->coeff->y[xy_to_zorder(LCU_WIDTH, x_local, y_local)]; // CoeffNxN // Residual Coding kvz_encode_coeff_nxn(state, &state->cabac, coeff_y, width, 0, scan_idx, cur_pu->tr_skip); } if (depth == MAX_DEPTH + 1) { // For size 4x4 luma transform the corresponding chroma transforms are // also of size 4x4 covering 8x8 luma pixels. The residual is coded in // the last transform unit. if (x % 8 == 0 || y % 8 == 0) { // Not the last luma transform block so there is nothing more to do. return; } else { // Time to to code the chroma transform blocks. Move to the top-left // corner of the block. x -= 4; y -= 4; cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); } } bool chroma_cbf_set = cbf_is_set(cur_pu->cbf, depth, COLOR_U) || cbf_is_set(cur_pu->cbf, depth, COLOR_V); if (chroma_cbf_set) { int x_local = (x >> 1) % LCU_WIDTH_C; int y_local = (y >> 1) % LCU_WIDTH_C; scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode_chroma, depth); const coeff_t *coeff_u = &state->coeff->u[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; const coeff_t *coeff_v = &state->coeff->v[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; if (cbf_is_set(cur_pu->cbf, depth, COLOR_U)) { kvz_encode_coeff_nxn(state, &state->cabac, coeff_u, width_c, 2, scan_idx, 0); } if (cbf_is_set(cur_pu->cbf, depth, COLOR_V)) { kvz_encode_coeff_nxn(state, &state->cabac, coeff_v, width_c, 2, scan_idx, 0); } } } /** * \param encoder * \param x_pu Prediction units' x coordinate. * \param y_pu Prediction units' y coordinate. * \param depth Depth from LCU. * \param tr_depth Depth from last CU. * \param parent_coeff_u What was signaled at previous level for cbf_cb. * \param parent_coeff_v What was signlaed at previous level for cbf_cr. */ static void encode_transform_coeff(encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v) { cabac_data_t * const cabac = &state->cabac; const encoder_control_t *const ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); // Round coordinates down to a multiple of 8 to get the location of the // containing CU. const int x_cu = 8 * (x / 8); const int y_cu = 8 * (y / 8); const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x_cu, y_cu); // NxN signifies implicit transform split at the first transform level. // There is a similar implicit split for inter, but it is only used when // transform hierarchy is not in use. int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN); // The implicit split by intra NxN is not counted towards max_tr_depth. int max_tr_depth; if (cur_cu->type == CU_INTRA) { max_tr_depth = ctrl->cfg.tr_depth_intra + intra_split_flag; } else { max_tr_depth = ctrl->tr_depth_inter; } int8_t split = (cur_cu->tr_depth > depth); const int cb_flag_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); const int cb_flag_u = cbf_is_set(cur_cu->cbf, depth, COLOR_U); const int cb_flag_v = cbf_is_set(cur_cu->cbf, depth, COLOR_V); // The split_transform_flag is not signaled when: // - transform size is greater than 32 (depth == 0) // - transform size is 4 (depth == MAX_PU_DEPTH) // - transform depth is max // - cu is intra NxN and it's the first split if (depth > 0 && depth < MAX_PU_DEPTH && tr_depth < max_tr_depth && !(intra_split_flag && tr_depth == 0)) { cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]); CABAC_BIN(cabac, split, "split_transform_flag"); } // Chroma cb flags are not signaled when one of the following: // - transform size is 4 (2x2 chroma transform doesn't exist) // - they have already been signaled to 0 previously // When they are not present they are inferred to be 0, except for size 4 // when the flags from previous level are used. if (depth < MAX_PU_DEPTH && state->encoder_control->chroma_format != KVZ_CSP_400) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || parent_coeff_u) { CABAC_BIN(cabac, cb_flag_u, "cbf_cb"); } if (tr_depth == 0 || parent_coeff_v) { CABAC_BIN(cabac, cb_flag_v, "cbf_cr"); } } if (split) { uint8_t offset = LCU_WIDTH >> (depth + 1); int x2 = x + offset; int y2 = y + offset; encode_transform_coeff(state, x, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x2, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x2, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); return; } // Luma coded block flag is signaled when one of the following: // - prediction mode is intra // - transform depth > 0 // - we have chroma coefficients at this level // When it is not present, it is inferred to be 1. if (cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[!tr_depth]); CABAC_BIN(cabac, cb_flag_y, "cbf_luma"); } if (cb_flag_y | cb_flag_u | cb_flag_v) { if (state->must_code_qp_delta) { const int qp_pred = kvz_get_cu_ref_qp(state, x_cu, y_cu, state->last_qp); const int qp_delta = cur_cu->qp - qp_pred; // Possible deltaQP range depends on bit depth as stated in HEVC specification. assert(qp_delta >= KVZ_QP_DELTA_MIN && qp_delta <= KVZ_QP_DELTA_MAX && "QP delta not in valid range."); const int qp_delta_abs = ABS(qp_delta); cabac_data_t* cabac = &state->cabac; // cu_qp_delta_abs prefix cabac->cur_ctx = &cabac->ctx.cu_qp_delta_abs[0]; kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.cu_qp_delta_abs, MIN(qp_delta_abs, 5), 1, 5, NULL); if (qp_delta_abs >= 5) { // cu_qp_delta_abs suffix kvz_cabac_write_ep_ex_golomb(state, cabac, qp_delta_abs - 5, 0); } if (qp_delta != 0) { CABAC_BIN_EP(cabac, (qp_delta >= 0 ? 0 : 1), "qp_delta_sign_flag"); } state->must_code_qp_delta = false; } encode_transform_unit(state, x, y, depth); } } void kvz_encode_inter_prediction_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x, int y, int width, int height, int depth, lcu_t* lcu, double* bits_out) { // Mergeflag int16_t num_cand = 0; double bits = 0; CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_merge_flag_ext_model), cur_cu->merged, bits, "MergeFlag"); num_cand = state->encoder_control->cfg.max_merge; if (cur_cu->merged) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_merge_idx_ext_model), symbol, bits, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); if(cabac->only_count) bits += 1; } if (symbol == 0) break; } } } else { if (state->frame->slicetype == KVZ_SLICE_B) { // Code Inter Dir uint8_t inter_dir = cur_cu->inter.mv_dir-1; if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 8) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.inter_dir[depth]), inter_dir == 2, bits, "inter_pred_idc"); } if (inter_dir < 2) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.inter_dir[4]), inter_dir, bits, "inter_pred_idc"); } } for (uint32_t ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { if (!(cur_cu->inter.mv_dir & (1 << ref_list_idx))) { continue; } // size of the current reference index list (L0/L1) uint8_t ref_LX_size = state->frame->ref_LX_size[ref_list_idx]; if (ref_LX_size > 1) { // parseRefFrmIdx int32_t ref_frame = cur_cu->inter.mv_ref[ref_list_idx]; CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_ref_pic_model[0]), (ref_frame != 0), bits, "ref_idx_lX"); if (ref_frame > 0) { ref_frame--; int32_t ref_num = ref_LX_size - 2; for (int32_t i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { cabac->cur_ctx = &cabac->ctx.cu_ref_pic_model[1]; CABAC_FBITS_UPDATE(cabac, &cabac->ctx.cu_ref_pic_model[1], symbol, bits, "ref_idx_lX"); } else { CABAC_BIN_EP(cabac, symbol, "ref_idx_lX"); if (cabac->only_count) bits += 1; } if (symbol == 0) break; } } } if (state->frame->ref_list != REF_PIC_LIST_1 || cur_cu->inter.mv_dir != 3) { int16_t mv_cand[2][2]; if (lcu) { kvz_inter_get_mv_cand( state, x, y, width, height, mv_cand, cur_cu, lcu, ref_list_idx); } else { kvz_inter_get_mv_cand_cua( state, x, y, width, height, mv_cand, cur_cu, ref_list_idx ); } uint8_t cu_mv_cand = CU_GET_MV_CAND(cur_cu, ref_list_idx); const int32_t mvd_hor = cur_cu->inter.mv[ref_list_idx][0] - mv_cand[cu_mv_cand][0]; const int32_t mvd_ver = cur_cu->inter.mv[ref_list_idx][1] - mv_cand[cu_mv_cand][1]; kvz_encode_mvd(state, cabac, mvd_hor, mvd_ver, bits_out); } // Signal which candidate MV to use kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.mvp_idx_model, CU_GET_MV_CAND(cur_cu, ref_list_idx), 1, AMVP_MAX_NUM_CANDS - 1, bits_out); } // for ref_list } // if !merge if(bits_out) *bits_out += bits; } static INLINE uint8_t intra_mode_encryption(encoder_state_t * const state, uint8_t intra_pred_mode) { const uint8_t sets[3][17] = { { 0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, 31, 32, 33, 34}, /* 17 */ { 22, 23, 24, 25, 27, 28, 29, 30, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 9 */ { 6, 7, 8, 9, 11, 12, 13, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1} /* 9 */ }; const uint8_t nb_elems[3] = {17, 8, 8}; if (intra_pred_mode == 26 || intra_pred_mode == 10) { // correct chroma intra prediction mode return intra_pred_mode; } else { uint8_t keybits, scan_dir, elem_idx=0; keybits = kvz_crypto_get_key(state->crypto_hdl, 5); scan_dir = SCAN_DIAG; if (intra_pred_mode > 5 && intra_pred_mode < 15) { scan_dir = SCAN_VER; } if (intra_pred_mode > 21 && intra_pred_mode < 31) { scan_dir = SCAN_HOR; } for (int i = 0; i < nb_elems[scan_dir]; i++) { if (intra_pred_mode == sets[scan_dir][i]) { elem_idx = i; break; } } keybits = keybits % nb_elems[scan_dir]; keybits = (elem_idx + keybits) % nb_elems[scan_dir]; return sets[scan_dir][keybits]; } } static void encode_intra_coding_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x, int y, int depth, lcu_t* lcu, double* bits_out) { const videoframe_t * const frame = state->tile->frame; uint8_t intra_pred_mode_actual[4]; uint8_t *intra_pred_mode = intra_pred_mode_actual; #if KVZ_SEL_ENCRYPTION const bool do_crypto = !state->cabac.only_count && state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_INTRA_MODE; #else const bool do_crypto = false; #endif uint8_t intra_pred_mode_encry[4] = {-1, -1, -1, -1}; if (do_crypto) { intra_pred_mode = intra_pred_mode_encry; } uint8_t intra_pred_mode_chroma = cur_cu->intra.mode_chroma; int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; uint32_t flag[4]; #if ENABLE_PCM == 1 // Code must start after variable initialization kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode const int num_pred_units = kvz_part_mode_num_parts[cur_cu->part_size]; const int cu_width = LCU_WIDTH >> depth; for (int j = 0; j < num_pred_units; ++j) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j); const cu_info_t *cur_pu = lcu ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(pu_x), SUB_SCU(pu_y)) : kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); const cu_info_t *left_pu = NULL; const cu_info_t *above_pu = NULL; if (pu_x > 0) { assert(pu_x >> 2 > 0); left_pu = lcu ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(pu_x -1), SUB_SCU(pu_y)) : kvz_cu_array_at_const(frame->cu_array, pu_x - 1, pu_y); } // Don't take the above PU across the LCU boundary. if (pu_y % LCU_WIDTH > 0 && pu_y > 0) { assert(pu_y >> 2 > 0); above_pu = lcu ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(pu_x), SUB_SCU(pu_y - 1)) : kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y - 1); } if (do_crypto) { #if KVZ_SEL_ENCRYPTION // Need to wrap in preprocessor directives because this function is // only defined when KVZ_SEL_ENCRYPTION is defined. kvz_intra_get_dir_luma_predictor_encry(pu_x, pu_y, intra_preds[j], cur_pu, left_pu, above_pu); #endif } else { kvz_intra_get_dir_luma_predictor(pu_x, pu_y, intra_preds[j], cur_pu, left_pu, above_pu); } intra_pred_mode_actual[j] = cur_pu->intra.mode; if (do_crypto) { intra_pred_mode_encry[j] = intra_mode_encryption(state, cur_pu->intra.mode); } for (int i = 0; i < 3; i++) { if (intra_preds[j][i] == intra_pred_mode[j]) { mpm_preds[j] = (int8_t)i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; #if KVZ_SEL_ENCRYPTION // Need to wrap in preprocessor directives because // cu_info_t.intra.mode_encry is only defined when KVZ_SEL_ENCRYPTION // is defined. if (do_crypto) { // Set the modified intra_pred_mode of the current pu here to make it // available from its neighbours for mpm decision. // FIXME: there might be a more efficient way to propagate mode_encry // for future use from left and above PUs const int pu_width = PU_GET_W(cur_cu->part_size, cu_width, j); for (int y = pu_y; y < pu_y + pu_width; y += 4 ) { for (int x = pu_x; x < pu_x + pu_width; x += 4) { cu_info_t *cu = kvz_cu_array_at(frame->cu_array, x, y); cu->intra.mode_encry = intra_pred_mode_encry[j]; } } } #endif } for (int j = 0; j < num_pred_units; ++j) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.intra_mode_model),flag[j], *bits_out, "prev_intra_luma_pred_flag"); } for (int j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx"); if (cabac->only_count) *bits_out += 1; if (mpm_preds[j] != 0) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx"); if (cabac->only_count) *bits_out += 1; } } else { // Signal the actual prediction mode. int32_t tmp_pred = intra_pred_mode[j]; // Sort prediction list from lowest to highest. if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t); if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t); if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t); // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (int i = 2; i >= 0; i--) { tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred); } CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode"); if (cabac->only_count) *bits_out += 5; } } // Code chroma prediction mode. if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned pred_mode = 5; unsigned chroma_pred_modes[4] = {0, 26, 10, 1}; if (intra_pred_mode_chroma == intra_pred_mode_actual[0]) { pred_mode = 4; } else if (intra_pred_mode_chroma == 34) { // Angular 34 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (int i = 0; i < 4; ++i) { if (intra_pred_mode_actual[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (int i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } // pred_mode == 5 mean intra_pred_mode_chroma is something that can't // be coded. assert(pred_mode != 5); /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]); if (pred_mode == 4) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.chroma_pred_model[0]), 0, *bits_out,"intra_chroma_pred_mode"); } else { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.chroma_pred_model[0]), 1, *bits_out,"intra_chroma_pred_mode"); CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode"); if (cabac->only_count) *bits_out += 2; } } // if we are counting bits, the cost for transform coeffs is done separately // To get the distortion at the same time if(!cabac->only_count) encode_transform_coeff(state, x, y, depth, 0, 0, 0); } double kvz_encode_part_mode(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int depth) { // Binarization from Table 9-34 of the HEVC spec: // // | log2CbSize > | log2CbSize == // | MinCbLog2SizeY | MinCbLog2SizeY // -------+-------+----------+---------+-----------+---------- // pred | part | AMP | AMP | | // mode | mode | disabled | enabled | size == 8 | size > 8 // -------+-------+----------+---------+-----------+---------- // intra | 2Nx2N | - - | 1 1 // | NxN | - - | 0 0 // -------+-------+--------------------+---------------------- // inter | 2Nx2N | 1 1 | 1 1 // | 2NxN | 01 011 | 01 01 // | Nx2N | 00 001 | 00 001 // | NxN | - - | - 000 // | 2NxnU | - 0100 | - - // | 2NxnD | - 0101 | - - // | nLx2N | - 0000 | - - // | nRx2N | - 0001 | - - // -------+-------+--------------------+---------------------- // // // Context indices from Table 9-37 of the HEVC spec: // // binIdx // | 0 1 2 3 // ------------------------------+------------------ // log2CbSize == MinCbLog2SizeY | 0 1 2 bypass // log2CbSize > MinCbLog2SizeY | 0 1 3 bypass // ------------------------------+------------------ double bits = 0; if (cur_cu->type == CU_INTRA) { if (depth == MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[0]), 1, bits, "part_mode 2Nx2N"); } else { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[0]), 0, bits, "part_mode NxN"); } } } else { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[0]), 1, bits, "part_mode 2Nx2N"); return bits; } CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[0]), 0, bits, "part_mode split"); cabac->cur_ctx = &(cabac->ctx.part_size_model[1]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_2NxnD) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[1]), 1, bits, "part_mode vertical"); } else { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[1]), 0, bits, "part_mode horizontal"); } if (state->encoder_control->cfg.amp_enable && depth < MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[3]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_Nx2N) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[3]), 1, bits, "part_mode SMP"); return bits; } CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.part_size_model[3]), 0, bits, "part_mode AMP"); if (cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_nLx2N) { CABAC_BINS_EP(cabac, 0, 1, "part_mode AMP"); if(cabac->only_count) bits += 1; } else { CABAC_BINS_EP(cabac, 1, 1, "part_mode AMP"); if(cabac->only_count) bits += 1; } } } return bits; } void kvz_encode_coding_tree(encoder_state_t * const state, uint16_t x, uint16_t y, uint8_t depth) { cabac_data_t * const cabac = &state->cabac; const encoder_control_t * const ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x, y); const int cu_width = LCU_WIDTH >> depth; const int half_cu = cu_width >> 1; const cu_info_t *left_cu = NULL; if (x > 0) { left_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y); } const cu_info_t *above_cu = NULL; if (y > 0) { above_cu = kvz_cu_array_at_const(frame->cu_array, x, y - 1); } uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; // Absolute coordinates uint16_t abs_x = x + state->tile->offset_x; uint16_t abs_y = y + state->tile->offset_y; // Check for slice border bool border_x = ctrl->in.width < abs_x + cu_width; bool border_y = ctrl->in.height < abs_y + cu_width; bool border_split_x = ctrl->in.width >= abs_x + (LCU_WIDTH >> MAX_DEPTH) + half_cu; bool border_split_y = ctrl->in.height >= abs_y + (LCU_WIDTH >> MAX_DEPTH) + half_cu; bool border = border_x || border_y; /*!< are we in any border CU */ if (depth <= state->frame->max_qp_delta_depth) { state->must_code_qp_delta = true; } // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) { split_model++; } if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) { split_model++; } cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]); CABAC_BIN(cabac, split_flag, "SplitFlag"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions kvz_encode_coding_tree(state, x, y, depth + 1); if (!border_x || border_split_x) { kvz_encode_coding_tree(state, x + half_cu, y, depth + 1); } if (!border_y || border_split_y) { kvz_encode_coding_tree(state, x, y + half_cu, depth + 1); } if (!border || (border_split_x && border_split_y)) { kvz_encode_coding_tree(state, x + half_cu, y + half_cu, depth + 1); } return; } } if (ctrl->cfg.lossless) { cabac->cur_ctx = &cabac->ctx.cu_transquant_bypass; CABAC_BIN(cabac, 1, "cu_transquant_bypass_flag"); } // Encode skip flag if (state->frame->slicetype != KVZ_SLICE_I) { // uiCtxSkip = aboveskipped + leftskipped; int8_t ctx_skip = 0; if (left_cu && left_cu->skipped) { ctx_skip++; } if (above_cu && above_cu->skipped) { ctx_skip++; } cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]); CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag"); if (cur_cu->skipped) { int16_t num_cand = state->encoder_control->cfg.max_merge; if (num_cand > 1) { for (int ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } goto end; } } // Prediction mode if (state->frame->slicetype != KVZ_SLICE_I) { cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model); CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode"); } // part_mode kvz_encode_part_mode(state, cabac, cur_cu, depth); if (cur_cu->type == CU_INTER) { const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size]; for (int i = 0; i < num_pu; ++i) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, i); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, i); const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i); const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); kvz_encode_inter_prediction_unit(state, cabac, cur_pu, pu_x, pu_y, pu_w, pu_h, depth, NULL, NULL); } { int cbf = cbf_is_set_any(cur_cu->cbf, depth); // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (cur_cu->part_size != SIZE_2Nx2N || !cur_cu->merged) { cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model); CABAC_BIN(cabac, cbf, "rqt_root_cbf"); } // Code (possible) coeffs to bitstream if (cbf) { encode_transform_coeff(state, x, y, depth, 0, 0, 0); } } } else if (cur_cu->type == CU_INTRA) { encode_intra_coding_unit(state, cabac, cur_cu, x, y, depth, NULL, NULL); } #if ENABLE_PCM // Code IPCM block else if (cur_cu->type == CU_PCM) { kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1 kvz_cabac_finish(cabac); kvz_bitstream_add_rbsp_trailing_bits(cabac.stream); // PCM sample pixel *base_y = &cur_pic->y_data[x + y * encoder->in.width]; pixel *base_u = &cur_pic->u_data[x / 2 + y / 2 * encoder->in.width / 2]; pixel *base_v = &cur_pic->v_data[x / 2 + y / 2 * encoder->in.width / 2]; // Luma for (unsigned y_px = 0; y_px < LCU_WIDTH >> depth; y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> depth; x_px++) { kvz_bitstream_put(cabac.stream, base_y[x_px + y_px * encoder->in.width], 8); } } // Chroma if (encoder->in.video_format != FORMAT_400) { for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) { kvz_bitstream_put(cabac.stream, base_u[x_px + y_px * (encoder->in.width >> 1)], 8); } } for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) { kvz_bitstream_put(cabac.stream, base_v[x_px + y_px * (encoder->in.width >> 1)], 8); } } } kvz_cabac_start(cabac); } #endif else { // CU type not set. Should not happen. assert(0); exit(1); } end: if (is_last_cu_in_qg(state, x, y, depth)) { state->last_qp = cur_cu->qp; } #ifdef VERBOSE if((x % 64 != 0 && y % 64 != 0) || 1) { fprintf(stderr, "%f\t%d\t%d\t%d\n", bits_written, x, y, depth); bits_written = 0; } #endif } double kvz_mock_encode_coding_unit( encoder_state_t* const state, cabac_data_t* cabac, int x, int y, int depth, lcu_t* lcu, cu_info_t* cur_cu) { double bits = 0; const encoder_control_t* const ctrl = state->encoder_control; int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); const int cu_width = LCU_WIDTH >> depth; const cu_info_t* left_cu = NULL, *above_cu = NULL; if (x) { left_cu = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local); } if (y) { above_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local-1); } uint8_t split_model = 0; // Absolute coordinates uint16_t abs_x = x + state->tile->offset_x; uint16_t abs_y = y + state->tile->offset_y; // Check for slice border bool border_x = ctrl->in.width < abs_x + cu_width; bool border_y = ctrl->in.height < abs_y + cu_width; bool border = border_x || border_y; /*!< are we in any border CU */ if (depth <= state->frame->max_qp_delta_depth) { state->must_code_qp_delta = true; } // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implicit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) { split_model++; } if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) { split_model++; } // This mocks encoding the current CU so it should be never split CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.split_flag_model[split_model]), 0, bits, "SplitFlag"); } } // Encode skip flag if (state->frame->slicetype != KVZ_SLICE_I) { int8_t ctx_skip = 0; if (left_cu && left_cu->skipped) { ctx_skip++; } if (above_cu && above_cu->skipped) { ctx_skip++; } CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_skip_flag_model[ctx_skip]), cur_cu->skipped, bits, "SkipFlag"); if (cur_cu->skipped) { int16_t num_cand = state->encoder_control->cfg.max_merge; if (num_cand > 1) { for (int ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_merge_idx_ext_model), symbol, bits, "MergeIndex"); } else { CABAC_BIN_EP(cabac, symbol, "MergeIndex"); if(cabac->only_count) bits += 1; } if (symbol == 0) { break; } } } return bits; } } // Prediction mode if (state->frame->slicetype != KVZ_SLICE_I) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_pred_mode_model), (cur_cu->type == CU_INTRA), bits, "PredMode"); } // part_mode bits += kvz_encode_part_mode(state, cabac, cur_cu, depth); if (cur_cu->type == CU_INTER) { const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size]; for (int i = 0; i < num_pu; ++i) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, i); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, i); const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i); const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i); const cu_info_t* cur_pu = LCU_GET_CU_AT_PX(lcu, SUB_SCU(pu_x), SUB_SCU(pu_y)); kvz_encode_inter_prediction_unit(state, cabac, cur_pu, pu_x, pu_y, pu_w, pu_h, depth, lcu, &bits); } } else if (cur_cu->type == CU_INTRA) { encode_intra_coding_unit(state, cabac, cur_cu, x, y, depth, lcu, &bits); } return bits; } void kvz_encode_mvd(encoder_state_t * const state, cabac_data_t *cabac, int32_t mvd_hor, int32_t mvd_ver, double* bits_out) { const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac->cur_ctx = &cabac->ctx.cu_mvd_model[0]; CABAC_FBITS_UPDATE(cabac, &cabac->ctx.cu_mvd_model[0], (mvd_hor != 0), *bits_out, "abs_mvd_greater0_flag_hor"); CABAC_FBITS_UPDATE(cabac, &cabac->ctx.cu_mvd_model[0], (mvd_ver != 0), *bits_out, "abs_mvd_greater0_flag_ver"); cabac->cur_ctx = &cabac->ctx.cu_mvd_model[1]; if (hor_abs_gr0) { CABAC_FBITS_UPDATE(cabac, &cabac->ctx.cu_mvd_model[1], (mvd_hor_abs>1), *bits_out,"abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_FBITS_UPDATE(cabac, &cabac->ctx.cu_mvd_model[1], (mvd_ver_abs>1), *bits_out, "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { uint32_t bits = kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_hor_abs - 2, 1); if(cabac->only_count) *bits_out += bits; } uint32_t mvd_hor_sign = (mvd_hor > 0) ? 0 : 1; if (!state->cabac.only_count && state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) { mvd_hor_sign = mvd_hor_sign ^ kvz_crypto_get_key(state->crypto_hdl, 1); } CABAC_BIN_EP(cabac, mvd_hor_sign, "mvd_sign_flag_hor"); if (cabac->only_count) *bits_out += 1; } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { uint32_t bits = kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_ver_abs - 2, 1); if (cabac->only_count) *bits_out += bits; } uint32_t mvd_ver_sign = mvd_ver > 0 ? 0 : 1; if (!state->cabac.only_count && state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) { mvd_ver_sign = mvd_ver_sign^kvz_crypto_get_key(state->crypto_hdl, 1); } CABAC_BIN_EP(cabac, mvd_ver_sign, "mvd_sign_flag_ver"); if (cabac->only_count) *bits_out += 1; } }