#include "greatest/greatest.h" #include "src/image.h" #include "src/strategyselector.h" #include ////////////////////////////////////////////////////////////////////////// // MACROS #define NUM_TESTS 3 #define LCU_MAX_LOG_W 6 #define LCU_MIN_LOG_W 2 ////////////////////////////////////////////////////////////////////////// // GLOBALS static strategy_list strategies; pixel * satd_bufs[NUM_TESTS][6][2]; static struct { int log_width; // for selecting dim from satd_bufs cost_pixel_nxn_func * tested_func; } satd_test_env; ////////////////////////////////////////////////////////////////////////// // SETUP, TEARDOWN AND HELPER FUNCTIONS static void satd_init_strategies() { strategies.allocated = 0; strategies.count = 0; strategies.strategies = NULL; // Init strategyselector because it sets hardware flags. strategyselector_init(); // Collect all strategies. if (!strategy_register_picture(&strategies)) { fprintf(stderr, "strategy_register_picture failed!\n"); return; } } static void setup_tests() { satd_init_strategies(); for (int test = 0; test < NUM_TESTS; ++test) { for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { satd_bufs[test][w][0] = 0; satd_bufs[test][w][1] = 0; } for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); satd_bufs[test][w][0] = malloc(size * sizeof(pixel)); satd_bufs[test][w][1] = malloc(size * sizeof(pixel)); } } int test = 0; for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); memset(satd_bufs[test][w][0], 0, size); memset(satd_bufs[test][w][1], 255, size); } test = 1; for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); for (int i = 0; i < size; ++i){ satd_bufs[test][w][0][i] = 255 * ( ( i + (i / (1 << w) ) ) % 2); satd_bufs[test][w][1][i] = 255 * ( ( i + (i / (1 << w) ) + 1 ) % 2); } } test = 2; for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); for (int i = 0; i < size; ++i){ int column = (i % (1 << w) ); int row = (i / (1 << w) ); int r = sqrt(row * row + column * column); satd_bufs[test][w][0][i] = 255 / (r + 1); satd_bufs[test][w][1][i] = 255 - 255 / (r + 1); } } } static void satd_tear_down_tests() { for (int test = 0; test < NUM_TESTS; ++test) { for (int log_width = 2; log_width <= 6; ++log_width) { free(satd_bufs[test][log_width][0]); free(satd_bufs[test][log_width][1]); } } } ////////////////////////////////////////////////////////////////////////// // TESTS /** * Test that the maximum SAD value for a given buffer size doesn't overflow. */ TEST satd_test_black_and_white(void) { const int const satd_results[5] = {2040, 4080, 16320, 65280, 261120}; const int test = 0; const int width = 1 << satd_test_env.log_width; pixel * buf1 = satd_bufs[test][satd_test_env.log_width][0]; pixel * buf2 = satd_bufs[test][satd_test_env.log_width][1]; unsigned result1 = satd_test_env.tested_func(buf1, buf2); unsigned result2 = satd_test_env.tested_func(buf2, buf1); printf("SATD B&W: %d\n", result1); ASSERT_EQ(result1, satd_results[satd_test_env.log_width - 2]); // Order of parameters must not matter. //ASSERT_EQ(result1, result2); // Result matches trivial implementation. //ASSERT_EQ(result1, 255 * width * width); PASS(); } TEST satd_test_checkers(void) { const int const satd_checkers_results[5] = { 2040, 4080, 16320, 65280, 261120 }; const int test = 1; const int width = 1 << satd_test_env.log_width; pixel * buf1 = satd_bufs[test][satd_test_env.log_width][0]; pixel * buf2 = satd_bufs[test][satd_test_env.log_width][1]; unsigned result1 = satd_test_env.tested_func(buf1, buf2); unsigned result2 = satd_test_env.tested_func(buf2, buf1); printf("SATD CHECKERS: %d\n", result1); ASSERT_EQ(result1, satd_checkers_results[satd_test_env.log_width - 2]); // Order of parameters must not matter. //ASSERT_EQ(result1, result2); // Result matches trivial implementation. //ASSERT_EQ(result1, 255 * width * width); PASS(); } TEST satd_test_gradient(void) { const int const satd_gradient_results[5] = {3140,9004,20481,67262,258672}; const int test = 2; const int width = 1 << satd_test_env.log_width; pixel * buf1 = satd_bufs[test][satd_test_env.log_width][0]; pixel * buf2 = satd_bufs[test][satd_test_env.log_width][1]; unsigned result1 = satd_test_env.tested_func(buf1, buf2); unsigned result2 = satd_test_env.tested_func(buf2, buf1); printf("SATD GRADIENT: %d\n", result1); ASSERT_EQ(result1, satd_gradient_results[satd_test_env.log_width - 2]); // Order of parameters must not matter. //ASSERT_EQ(result1, result2); // Result matches trivial implementation. //ASSERT_EQ(result1, 255 * width * width); PASS(); } static unsigned satd_test_performance(void) { const int test = 0; const int width = 1 << satd_test_env.log_width; pixel * buf1 = satd_bufs[test][satd_test_env.log_width][0]; pixel * buf2 = satd_bufs[test][satd_test_env.log_width][1]; unsigned result = satd_test_env.tested_func(buf1, buf2); return; } ////////////////////////////////////////////////////////////////////////// // TEST FIXTURES SUITE(satd_tests) { //SET_SETUP(sad_setup); //SET_TEARDOWN(sad_teardown); setup_tests(); // Loop through all strategies picking out the intra sad ones and run // selectec strategies though all tests. for (unsigned i = 0; i < strategies.count; ++i) { const char * type = strategies.strategies[i].type; if (strcmp(type, "satd_8bit_4x4") == 0) { satd_test_env.log_width = 2; } else if (strcmp(type, "satd_8bit_8x8") == 0) { satd_test_env.log_width = 3; } else if (strcmp(type, "satd_8bit_16x16") == 0) { satd_test_env.log_width = 4; } else if (strcmp(type, "satd_8bit_32x32") == 0) { satd_test_env.log_width = 5; } else if (strcmp(type, "satd_8bit_64x64") == 0) { satd_test_env.log_width = 6; } else { continue; } satd_test_env.tested_func = strategies.strategies[i].fptr; // Tests //RUN_TEST(satd_test_black_and_white); //RUN_TEST(satd_test_checkers); RUN_TEST(satd_test_gradient); for (int i = 0; i < 100000; ++i){ satd_test_performance(); } } satd_tear_down_tests(); }