/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "sao.h" #include #include #include #include "cabac.h" #include "image.h" #include "rdo.h" #include "strategies/strategies-sao.h" static void init_sao_info(sao_info_t *sao) { sao->type = SAO_TYPE_NONE; sao->merge_left_flag = 0; sao->merge_up_flag = 0; } static float sao_mode_bits_none(const encoder_state_t * const state, sao_info_t *sao_top, sao_info_t *sao_left) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded type_idx_, none = 0 ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); return mode_bits; } static float sao_mode_bits_merge(const encoder_state_t * const state, int8_t merge_cand) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 1); if (merge_cand == 1) return mode_bits; mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 2); return mode_bits; } static float sao_mode_bits_edge(const encoder_state_t * const state, int edge_class, int offsets[NUM_SAO_EDGE_CATEGORIES], sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded type_idx_, edge = 2 = cMax ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0; // TR coded offsets. for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++) { sao_eo_cat edge_cat; for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) { int abs_offset = abs(offsets[edge_cat+5*buf_index]); if (abs_offset == 0 || abs_offset == SAO_ABS_OFFSET_MAX) { mode_bits += abs_offset + 1; } else { mode_bits += abs_offset + 2; } } } mode_bits += 2.0; return mode_bits; } static float sao_mode_bits_band(const encoder_state_t * const state, int band_position[2], int offsets[10], sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded sao_type_idx_, band = 1 ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0; // TR coded offsets and possible FL coded offset signs. for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++) { int i; for (i = 0; i < 4; ++i) { int abs_offset = abs(offsets[i + 1 + buf_index*5]); if (abs_offset == 0) { mode_bits += abs_offset + 1; } else if(abs_offset == SAO_ABS_OFFSET_MAX) { mode_bits += abs_offset + 1 + 1; } else { mode_bits += abs_offset + 2 + 1; } } } // FL coded band position. mode_bits += 5.0 * buf_cnt; return mode_bits; } /** * \brief calculate an array of intensity correlations for each intensity value */ void kvz_calc_sao_offset_array(const encoder_control_t * const encoder, const sao_info_t *sao, int *offset, color_t color_i) { int val; int values = (1<bitdepth); int shift = encoder->bitdepth-5; int band_pos = (color_i == COLOR_V) ? 1 : 0; // Loop through all intensity values and construct an offset array for (val = 0; val < values; val++) { int cur_band = val>>shift; if (cur_band >= sao->band_position[band_pos] && cur_band < sao->band_position[band_pos] + 4) { offset[val] = CLIP(0, values - 1, val + sao->offsets[cur_band - sao->band_position[band_pos] + 1 + 5 * band_pos]); } else { offset[val] = val; } } } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param sao_bands an array of bands for original and reconstructed block */ static int calc_sao_band_offsets(int sao_bands[2][32], int offsets[4], int *band_position) { int band; int offset; int best_dist; int temp_dist; int dist[32]; int temp_offsets[32]; int temp_rate[32]; int best_dist_pos = 0; FILL(dist, 0); FILL(temp_rate, 0); // Calculate distortion for each band using N*h^2 - 2*h*E for (band = 0; band < 32; band++) { best_dist = INT_MAX; offset = 0; if (sao_bands[1][band] != 0) { offset = (sao_bands[0][band] + (sao_bands[1][band] >> 1)) / sao_bands[1][band]; offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset); } dist[band] = offset==0?0:INT_MAX; temp_offsets[band] = 0; while(offset != 0) { temp_dist = sao_bands[1][band]*offset*offset - 2*offset*sao_bands[0][band]; // Store best distortion and offset if(temp_dist < best_dist) { dist[band] = temp_dist; temp_offsets[band] = offset; } offset += (offset > 0) ? -1:1; } } best_dist = INT_MAX; //Find starting pos for best 4 band distortions for (band = 0; band < 28; band++) { temp_dist = dist[band] + dist[band+1] + dist[band+2] + dist[band+3]; if(temp_dist < best_dist) { best_dist = temp_dist; best_dist_pos = band; } } // Copy best offsets to output memcpy(offsets, &temp_offsets[best_dist_pos], 4*sizeof(int)); *band_position = best_dist_pos; return best_dist; } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param sao_bands an array of bands for original and reconstructed block */ static void calc_sao_bands(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int sao_bands[2][32]) { int y, x; int shift = state->encoder_control->bitdepth-5; //Loop pixels and take top 5 bits to classify different bands for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { int32_t curr_pos = y * block_width + x; kvz_pixel sb_index = rec_data[curr_pos] >> shift; sao_bands[0][sb_index] += orig_data[curr_pos] - rec_data[curr_pos]; sao_bands[1][sb_index]++; } } } /** * \brief Reconstruct SAO. * * \param encoder encoder state * \param buffer Buffer containing the deblocked input pixels. The * area to filter starts at index 0. * \param stride stride of buffer * \param frame_x x-coordinate of the top-left corner in pixels * \param frame_y y-coordinate of the top-left corner in pixels * \param width width of the area to filter * \param height height of the area to filter * \param sao SAO information * \param color color plane index */ void kvz_sao_reconstruct(const encoder_state_t *state, const kvz_pixel *buffer, int stride, int frame_x, int frame_y, int width, int height, const sao_info_t *sao, color_t color) { const encoder_control_t *const ctrl = state->encoder_control; videoframe_t *const frame = state->tile->frame; const int shift = color == COLOR_Y ? 0 : 1; const int frame_width = frame->width >> shift; const int frame_height = frame->height >> shift; const int frame_stride = frame->rec->stride >> shift; kvz_pixel *output = &frame->rec->data[color][frame_x + frame_y * frame_stride]; if (sao->type == SAO_TYPE_EDGE) { const vector2d_t *offset = g_sao_edge_offsets[sao->eo_class]; if (frame_x + width + offset[0].x > frame_width || frame_x + width + offset[1].x > frame_width) { // Nothing to do for the rightmost column. width -= 1; } if (frame_x + offset[0].x < 0 || frame_x + offset[1].x < 0) { // Nothing to do for the leftmost column. buffer += 1; output += 1; width -= 1; } if (frame_y + height + offset[0].y > frame_height || frame_y + height + offset[1].y > frame_height) { // Nothing to do for the bottommost row. height -= 1; } if (frame_y + offset[0].y < 0 || frame_y + offset[1].y < 0) { // Nothing to do for the topmost row. buffer += stride; output += frame_stride; height -= 1; } } if (sao->type != SAO_TYPE_NONE) { kvz_sao_reconstruct_color(ctrl, buffer, output, sao, stride, frame_stride, width, height, color); } } static void sao_search_edge_sao(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left) { sao_eo_class edge_class; // This array is used to calculate the mean offset used to minimize distortion. int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]; unsigned i = 0; sao_out->type = SAO_TYPE_EDGE; sao_out->ddistortion = INT_MAX; for (edge_class = SAO_EO0; edge_class <= SAO_EO3; ++edge_class) { int edge_offset[NUM_SAO_EDGE_CATEGORIES*2]; int sum_ddistortion = 0; sao_eo_cat edge_cat; // Call calc_sao_edge_dir once for luma and twice for chroma. for (i = 0; i < buf_cnt; ++i) { FILL(cat_sum_cnt, 0); kvz_calc_sao_edge_dir(data[i], recdata[i], edge_class, block_width, block_height, cat_sum_cnt); for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) { int cat_sum = cat_sum_cnt[0][edge_cat]; int cat_cnt = cat_sum_cnt[1][edge_cat]; // The optimum offset can be calculated by getting the minima of the // fast ddistortion estimation formula. The minima is the mean error // and we round that to the nearest integer. int offset = 0; if (cat_cnt != 0) { offset = (cat_sum + (cat_cnt >> 1)) / cat_cnt; offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset); } // Sharpening edge offsets can't be encoded, so set them to 0 here. if (edge_cat >= SAO_EO_CAT1 && edge_cat <= SAO_EO_CAT2 && offset < 0) { offset = 0; } if (edge_cat >= SAO_EO_CAT3 && edge_cat <= SAO_EO_CAT4 && offset > 0) { offset = 0; } edge_offset[edge_cat+5*i] = offset; // The ddistortion is amount by which the SSE of data changes. It should // be negative for all categories, if offset was chosen correctly. // ddistortion = N * h^2 - 2 * h * E, where N is the number of samples // and E is the sum of errors. // It basically says that all pixels that are not improved by offset // increase increase SSE by h^2 and all pixels that are improved by // offset decrease SSE by h*E. sum_ddistortion += cat_cnt * offset * offset - 2 * offset * cat_sum; } } { float mode_bits = sao_mode_bits_edge(state, edge_class, edge_offset, sao_top, sao_left, buf_cnt); sum_ddistortion += (int)((double)mode_bits*state->lambda +0.5); } // SAO is not applied for category 0. edge_offset[SAO_EO_CAT0] = 0; edge_offset[SAO_EO_CAT0 + 5] = 0; // Choose the offset class that offers the least error after offset. if (sum_ddistortion < sao_out->ddistortion) { sao_out->eo_class = edge_class; sao_out->ddistortion = sum_ddistortion; memcpy(sao_out->offsets, edge_offset, sizeof(int) * NUM_SAO_EDGE_CATEGORIES * 2); } } } static void sao_search_band_sao(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left) { unsigned i; sao_out->type = SAO_TYPE_BAND; sao_out->ddistortion = MAX_INT; // Band offset { int sao_bands[2][32]; int temp_offsets[10]; int ddistortion = 0; float temp_rate = 0.0; for (i = 0; i < buf_cnt; ++i) { FILL(sao_bands, 0); calc_sao_bands(state, data[i], recdata[i],block_width, block_height,sao_bands); ddistortion += calc_sao_band_offsets(sao_bands, &temp_offsets[1+5*i], &sao_out->band_position[i]); } temp_rate = sao_mode_bits_band(state, sao_out->band_position, temp_offsets, sao_top, sao_left, buf_cnt); ddistortion += (int)((double)temp_rate*state->lambda + 0.5); // Select band sao over edge sao when distortion is lower if (ddistortion < sao_out->ddistortion) { sao_out->type = SAO_TYPE_BAND; sao_out->ddistortion = ddistortion; memcpy(&sao_out->offsets[0], &temp_offsets[0], sizeof(int) * buf_cnt * 5); } } } /** * \param data Array of pointers to reference pixels. * \param recdata Array of pointers to reconstructed pixels. * \param block_width Width of the area to be examined. * \param block_height Height of the area to be examined. * \param buf_cnt Number of pointers data and recdata have. * \param sao_out Output parameter for the best sao parameters. */ static void sao_search_best_mode(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { sao_info_t edge_sao; sao_info_t band_sao; init_sao_info(&edge_sao); init_sao_info(&band_sao); //Avoid "random" uninitialized value edge_sao.band_position[0] = edge_sao.band_position[1] = 0; edge_sao.eo_class = SAO_EO0; band_sao.offsets[0] = 0; band_sao.offsets[5] = 0; band_sao.eo_class = SAO_EO0; if (state->encoder_control->cfg.sao_type & 1){ sao_search_edge_sao(state, data, recdata, block_width, block_height, buf_cnt, &edge_sao, sao_top, sao_left); float mode_bits = sao_mode_bits_edge(state, edge_sao.eo_class, edge_sao.offsets, sao_top, sao_left, buf_cnt); int ddistortion = (int)(mode_bits * state->lambda + 0.5); unsigned buf_i; for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i], block_width, block_height, edge_sao.eo_class, &edge_sao.offsets[5 * buf_i]); } edge_sao.ddistortion = ddistortion; } else{ edge_sao.ddistortion = INT_MAX; } if (state->encoder_control->cfg.sao_type & 2){ sao_search_band_sao(state, data, recdata, block_width, block_height, buf_cnt, &band_sao, sao_top, sao_left); float mode_bits = sao_mode_bits_band(state, band_sao.band_position, band_sao.offsets, sao_top, sao_left, buf_cnt); int ddistortion = (int)(mode_bits * state->lambda + 0.5); unsigned buf_i; for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i], block_width, block_height, band_sao.band_position[buf_i], &band_sao.offsets[1 + 5 * buf_i]); } band_sao.ddistortion = ddistortion; } else{ band_sao.ddistortion = INT_MAX; } if (edge_sao.ddistortion <= band_sao.ddistortion) { *sao_out = edge_sao; merge_cost[0] = edge_sao.ddistortion; } else { *sao_out = band_sao; merge_cost[0] = band_sao.ddistortion; } // Choose between SAO and doing nothing, taking into account the // rate-distortion cost of coding do nothing. { int cost_of_nothing = (int)(sao_mode_bits_none(state, sao_top, sao_left) * state->lambda + 0.5); if (sao_out->ddistortion >= cost_of_nothing) { sao_out->type = SAO_TYPE_NONE; merge_cost[0] = cost_of_nothing; } } // Calculate merge costs if (sao_top || sao_left) { sao_info_t* merge_sao[2] = { sao_left, sao_top}; int i; for (i = 0; i < 2; i++) { sao_info_t* merge_cand = merge_sao[i]; if (merge_cand) { unsigned buf_i; float mode_bits = sao_mode_bits_merge(state, i + 1); int ddistortion = (int)(mode_bits * state->lambda + 0.5); switch (merge_cand->type) { case SAO_TYPE_EDGE: for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i], block_width, block_height, merge_cand->eo_class, &merge_cand->offsets[5 * buf_i]); } merge_cost[i + 1] = ddistortion; break; case SAO_TYPE_BAND: for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i], block_width, block_height, merge_cand->band_position[buf_i], &merge_cand->offsets[1 + 5 * buf_i]); } merge_cost[i + 1] = ddistortion; break; case SAO_TYPE_NONE: merge_cost[i + 1] = ddistortion; break; } } } } return; } static void sao_search_chroma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { int block_width = (LCU_WIDTH / 2); int block_height = (LCU_WIDTH / 2); const kvz_pixel *orig_list[2]; const kvz_pixel *rec_list[2]; kvz_pixel orig[2][LCU_CHROMA_SIZE]; kvz_pixel rec[2][LCU_CHROMA_SIZE]; color_t color_i; // Check for right and bottom boundaries. if (x_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->width / 2) { block_width = (frame->width - x_ctb * LCU_WIDTH) / 2; } if (y_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->height / 2) { block_height = (frame->height - y_ctb * LCU_WIDTH) / 2; } sao->type = SAO_TYPE_EDGE; // Copy data to temporary buffers and init orig and rec lists to point to those buffers. for (color_i = COLOR_U; color_i <= COLOR_V; ++color_i) { kvz_pixel *data = &frame->source->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->source->stride / 2)]; kvz_pixel *recdata = &frame->rec->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->rec->stride / 2)]; kvz_pixels_blit(data, orig[color_i - 1], block_width, block_height, frame->source->stride / 2, block_width); kvz_pixels_blit(recdata, rec[color_i - 1], block_width, block_height, frame->rec->stride / 2, block_width); orig_list[color_i - 1] = &orig[color_i - 1][0]; rec_list[color_i - 1] = &rec[color_i - 1][0]; } // Calculate sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 2, sao, sao_top, sao_left, merge_cost); } static void sao_search_luma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { kvz_pixel orig[LCU_LUMA_SIZE]; kvz_pixel rec[LCU_LUMA_SIZE]; const kvz_pixel * orig_list[1] = { NULL }; const kvz_pixel * rec_list[1] = { NULL }; kvz_pixel *data = &frame->source->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->source->stride)]; kvz_pixel *recdata = &frame->rec->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->rec->stride)]; int block_width = LCU_WIDTH; int block_height = LCU_WIDTH; // Check for right and bottom boundaries. if (x_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->width) { block_width = frame->width - x_ctb * LCU_WIDTH; } if (y_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->height) { block_height = frame->height - y_ctb * LCU_WIDTH; } sao->type = SAO_TYPE_EDGE; // Fill temporary buffers with picture data. kvz_pixels_blit(data, orig, block_width, block_height, frame->source->stride, block_width); kvz_pixels_blit(recdata, rec, block_width, block_height, frame->rec->stride, block_width); orig_list[0] = orig; rec_list[0] = rec; sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 1, sao, sao_top, sao_left, merge_cost); } void kvz_sao_search_lcu(const encoder_state_t* const state, int lcu_x, int lcu_y) { assert(!state->encoder_control->cfg.lossless); videoframe_t* const frame = state->tile->frame; const int stride = frame->width_in_lcu; int32_t merge_cost_luma[3] = { INT32_MAX }; int32_t merge_cost_chroma[3] = { INT32_MAX }; sao_info_t *sao_luma = &frame->sao_luma[lcu_y * stride + lcu_x]; sao_info_t *sao_chroma = NULL; int enable_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; if (enable_chroma) { sao_chroma = &frame->sao_chroma[lcu_y * stride + lcu_x]; } // Merge candidates sao_info_t *sao_top_luma = lcu_y != 0 ? &frame->sao_luma [(lcu_y - 1) * stride + lcu_x] : NULL; sao_info_t *sao_left_luma = lcu_x != 0 ? &frame->sao_luma [lcu_y * stride + lcu_x - 1] : NULL; sao_info_t *sao_top_chroma = NULL; sao_info_t *sao_left_chroma = NULL; if (enable_chroma) { if (lcu_y != 0) sao_top_chroma = &frame->sao_chroma[(lcu_y - 1) * stride + lcu_x]; if (lcu_x != 0) sao_left_chroma = &frame->sao_chroma[lcu_y * stride + lcu_x - 1]; } sao_search_luma(state, frame, lcu_x, lcu_y, sao_luma, sao_top_luma, sao_left_luma, merge_cost_luma); if (enable_chroma) { sao_search_chroma(state, frame, lcu_x, lcu_y, sao_chroma, sao_top_chroma, sao_left_chroma, merge_cost_chroma); } else { merge_cost_chroma[0] = 0; merge_cost_chroma[1] = 0; merge_cost_chroma[2] = 0; } sao_luma->merge_up_flag = sao_luma->merge_left_flag = 0; // Check merge costs if (sao_top_luma) { // Merge up if cost is equal or smaller to the searched mode cost if (merge_cost_luma[2] + merge_cost_chroma[2] <= merge_cost_luma[0] + merge_cost_chroma[0]) { *sao_luma = *sao_top_luma; if (sao_top_chroma) *sao_chroma = *sao_top_chroma; sao_luma->merge_up_flag = 1; sao_luma->merge_left_flag = 0; } } if (sao_left_luma) { // Merge left if cost is equal or smaller to the searched mode cost // AND smaller than merge up cost, if merge up was already chosen if (merge_cost_luma[1] + merge_cost_chroma[1] <= merge_cost_luma[0] + merge_cost_chroma[0]) { if (!sao_luma->merge_up_flag || merge_cost_luma[1] + merge_cost_chroma[1] < merge_cost_luma[2] + merge_cost_chroma[2]) { *sao_luma = *sao_left_luma; if (sao_left_chroma) *sao_chroma = *sao_left_chroma; sao_luma->merge_left_flag = 1; sao_luma->merge_up_flag = 0; } } } assert(sao_luma->eo_class < SAO_NUM_EO); CHECKPOINT_SAO_INFO("sao_luma", *sao_luma); if (sao_chroma) { assert(sao_chroma->eo_class < SAO_NUM_EO); CHECKPOINT_SAO_INFO("sao_chroma", *sao_chroma); } }