/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include "inter.h"
#include
#include
#include
#include "config.h"
#include "filter.h"
#include "strategies/strategies-ipol.h"
#include "strategies/generic/ipol-generic.h"
#include "strategies/generic/picture-generic.h"
/**
* \brief Set block info to the CU structure
* \param pic picture to use
* \param x_cu x CU position (smallest CU)
* \param y_cu y CU position (smallest CU)
* \param depth current CU depth
* \param cur_cu CU to take the settings from
* \returns Void
*/
void inter_set_block(videoframe_t* frame, uint32_t x_cu, uint32_t y_cu, uint8_t depth, cu_info_t* cur_cu)
{
uint32_t x, y;
// Width in smallest CU
int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
int tr_depth = (depth == 0 ? 1 : depth);
// Loop through all the block in the area of cur_cu
for (y = y_cu; y < y_cu + block_scu_width; y++) {
for (x = x_cu; x < x_cu + block_scu_width; x++) {
cu_info_t * const cu = videoframe_get_cu(frame, x, y);
// Set all SCU's to this blocks values at the bottom most depth.
cu->depth = depth;
cu->type = CU_INTER;
cu->part_size = SIZE_2Nx2N;
memcpy(&cu->inter, &cur_cu->inter, sizeof(cur_cu->inter));
cu->tr_depth = tr_depth;
}
}
}
void inter_recon_frac_luma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, const int16_t mv_param[2], lcu_t *lcu)
{
int mv_frac_x = (mv_param[0] & 3);
int mv_frac_y = (mv_param[1] & 3);
int y, x;
#define FILTER_SIZE_Y 8 //Luma filter size
// Fractional luma 1/4-pel
kvz_pixel qpel_src_y[(LCU_WIDTH + FILTER_SIZE_Y) * (LCU_WIDTH + FILTER_SIZE_Y)];
kvz_pixel* qpel_src_off_y = &qpel_src_y[(block_width + FILTER_SIZE_Y)*(FILTER_SIZE_Y >> 1) + (FILTER_SIZE_Y >> 1)];
// Fractional luma
extend_borders(xpos, ypos, mv_param[0] >> 2, mv_param[1] >> 2, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->lcu_offset_y * LCU_WIDTH,
ref->y, ref->width, ref->height, FILTER_SIZE_Y, block_width, block_width, qpel_src_y);
sample_quarterpel_luma_generic(state->encoder_control, qpel_src_off_y, block_width + FILTER_SIZE_Y, block_width,
block_width, lcu->rec.y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH), LCU_WIDTH, mv_frac_x, mv_frac_y, mv_param);
}
void inter_recon_frac_chroma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, const int16_t mv_param[2], lcu_t *lcu)
{
int mv_frac_x = (mv_param[0] & 7);
int mv_frac_y = (mv_param[1] & 7);
// Translate to chroma
xpos >>= 1;
ypos >>= 1;
block_width >>= 1;
#define FILTER_SIZE_C 4 //Chroma filter size
// Fractional chroma 1/8-pel
kvz_pixel octpel_src[((LCU_WIDTH_C) + FILTER_SIZE_C) * ((LCU_WIDTH_C) + FILTER_SIZE_C)];
kvz_pixel* octpel_src_off = &octpel_src[(block_width + FILTER_SIZE_C)*(FILTER_SIZE_C >> 1) + (FILTER_SIZE_C >> 1)];
//Fractional chroma U
extend_borders(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_width, octpel_src);
sample_octpel_chroma_generic(state->encoder_control, octpel_src_off, block_width + FILTER_SIZE_C, block_width,
block_width, lcu->rec.u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param);
//Fractional chroma V
extend_borders(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_width, octpel_src);
sample_octpel_chroma_generic(state->encoder_control, octpel_src_off, block_width + FILTER_SIZE_C, block_width,
block_width, lcu->rec.v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param);
}
/**
* \brief Reconstruct inter block
* \param ref picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param mv[2] motion vector
* \param lcu destination lcu
* \returns Void
*/
void inter_recon_lcu(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos,int32_t width, const int16_t mv_param[2], lcu_t *lcu)
{
int x,y,coord_x,coord_y;
int16_t mv[2] = { mv_param[0], mv_param[1] };
int32_t dst_width_c = LCU_WIDTH>>1; //!< Destination picture width in chroma pixels
int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels
// negative overflow flag
int8_t overflow_neg_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) < 0)?1:0;
int8_t overflow_neg_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) < 0)?1:0;
// positive overflow flag
int8_t overflow_pos_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) + width > ref->width )?1:0;
int8_t overflow_pos_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) + width > ref->height)?1:0;
// Chroma half-pel
#define HALFPEL_CHROMA_WIDTH ((LCU_WIDTH>>1) + 8)
int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel
kvz_pixel halfpel_src_u[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< U source block for interpolation
kvz_pixel halfpel_src_v[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< V source block for interpolation
kvz_pixel *halfpel_src_off_u = &halfpel_src_u[HALFPEL_CHROMA_WIDTH * 4 + 4]; //!< halfpel_src_u with offset (4,4)
kvz_pixel *halfpel_src_off_v = &halfpel_src_v[HALFPEL_CHROMA_WIDTH * 4 + 4]; //!< halfpel_src_v with offset (4,4)
kvz_pixel halfpel_u[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (u)
kvz_pixel halfpel_v[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (v)
// Luma quarter-pel
int8_t fractional_mv = (mv[0]&1) || (mv[1]&1) || (mv[0]&2) || (mv[1]&2); // either of 2 lowest bits of mv set -> mv is fractional
if(fractional_mv) {
inter_recon_frac_luma(state, ref, xpos, ypos, width, mv_param, lcu);
inter_recon_frac_chroma(state, ref, xpos, ypos, width, mv_param, lcu);
}
mv[0] >>= 2;
mv[1] >>= 2;
// Chroma half-pel
// get half-pel interpolated block and push it to output
if(!fractional_mv) {
if(chroma_halfpel) {
int halfpel_y, halfpel_x;
int abs_mv_x = mv[0]&1;
int abs_mv_y = mv[1]&1;
int8_t overflow_neg_y_temp,overflow_pos_y_temp,overflow_neg_x_temp,overflow_pos_x_temp;
// Fill source blocks with data from reference, -4...width+4
for (halfpel_y = 0, y = (ypos>>1) - 4; y < ((ypos + width)>>1) + 4; halfpel_y++, y++) {
// calculate y-pixel offset
coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1);
// On y-overflow set coord_y accordingly
overflow_neg_y_temp = (coord_y < 0) ? 1 : 0;
overflow_pos_y_temp = (coord_y >= ref->height>>1) ? 1 : 0;
if (overflow_neg_y_temp) coord_y = 0;
else if (overflow_pos_y_temp) coord_y = (ref->height>>1) - 1;
coord_y *= ref_width_c;
for (halfpel_x = 0, x = (xpos>>1) - 4; x < ((xpos + width)>>1) + 4; halfpel_x++, x++) {
coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1);
// On x-overflow set coord_x accordingly
overflow_neg_x_temp = (coord_x < 0) ? 1 : 0;
overflow_pos_x_temp = (coord_x >= ref_width_c) ? 1 : 0;
if (overflow_neg_x_temp) coord_x = 0;
else if (overflow_pos_x_temp) coord_x = ref_width_c - 1;
// Store source block data (with extended borders)
halfpel_src_u[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->u[coord_y + coord_x];
halfpel_src_v[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->v[coord_y + coord_x];
}
}
// Filter the block to half-pel resolution
filter_inter_halfpel_chroma(state->encoder_control, halfpel_src_off_u, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_u, LCU_WIDTH, abs_mv_x, abs_mv_y);
filter_inter_halfpel_chroma(state->encoder_control, halfpel_src_off_v, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_v, LCU_WIDTH, abs_mv_x, abs_mv_y);
// Assign filtered pixels to output, take every second half-pel sample with offset of abs_mv_y/x
for (halfpel_y = abs_mv_y, y = ypos>>1; y < (ypos + width)>>1; halfpel_y += 2, y++) {
for (halfpel_x = abs_mv_x, x = xpos>>1; x < (xpos + width)>>1; halfpel_x += 2, x++) {
int x_in_lcu = (x & ((LCU_WIDTH>>1)-1));
int y_in_lcu = (y & ((LCU_WIDTH>>1)-1));
lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = (kvz_pixel)halfpel_u[halfpel_y*LCU_WIDTH + halfpel_x];
lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = (kvz_pixel)halfpel_v[halfpel_y*LCU_WIDTH + halfpel_x];
}
}
}
// With overflow present, more checking
if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) {
// Copy Luma with boundary checking
for (y = ypos; y < ypos + width; y++) {
for (x = xpos; x < xpos + width; x++) {
int x_in_lcu = (x & ((LCU_WIDTH)-1));
int y_in_lcu = (y & ((LCU_WIDTH)-1));
coord_x = (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0];
coord_y = (y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1];
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (coord_y < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width )?1:0;
overflow_pos_y = (coord_y >= ref->height)?1:0;
// On x-overflow set coord_x accordingly
if (overflow_neg_x) {
coord_x = 0;
} else if (overflow_pos_x) {
coord_x = ref->width - 1;
}
// On y-overflow set coord_y accordingly
if (overflow_neg_y) {
coord_y = 0;
} else if (overflow_pos_y) {
coord_y = ref->height - 1;
}
// set destination to (corrected) pixel value from the reference
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y*ref->width + coord_x];
}
}
if(!chroma_halfpel) {
// Copy Chroma with boundary checking
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
int x_in_lcu = (x & ((LCU_WIDTH>>1)-1));
int y_in_lcu = (y & ((LCU_WIDTH>>1)-1));
coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH >> 1)) + (mv[0]>>1);
coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH >> 1)) + (mv[1]>>1);
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width>>1 )?1:0;
overflow_pos_y = (coord_y >= ref->height>>1)?1:0;
// On x-overflow set coord_x accordingly
if(overflow_neg_x) {
coord_x = 0;
} else if(overflow_pos_x) {
coord_x = (ref->width>>1) - 1;
}
// On y-overflow set coord_y accordingly
if(overflow_neg_y) {
coord_y = 0;
} else if(overflow_pos_y) {
coord_y = (ref->height>>1) - 1;
}
// set destinations to (corrected) pixel value from the reference
lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y * ref_width_c + coord_x];
lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y * ref_width_c + coord_x];
}
}
}
} else { //If no overflow, we can copy without checking boundaries
// Copy Luma
for (y = ypos; y < ypos + width; y++) {
int y_in_lcu = (y & ((LCU_WIDTH)-1));
coord_y = ((y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]) * ref->width; // pre-calculate
for (x = xpos; x < xpos + width; x++) {
int x_in_lcu = (x & ((LCU_WIDTH)-1));
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y + (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]];
}
}
if(!chroma_halfpel) {
// Copy Chroma
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
int y_in_lcu = (y & ((LCU_WIDTH>>1)-1));
coord_y = ((y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1)) * ref_width_c; // pre-calculate
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
int x_in_lcu = (x & ((LCU_WIDTH>>1)-1));
lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)];
lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)];
}
}
}
}
}
}
/**
* \brief Reconstruct bi-pred inter block
* \param ref1 reference picture to copy the data from
* \param ref2 other reference picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param mv[2][2] motion vectors
* \param lcu destination lcu
* \returns Void
*/
void inter_recon_lcu_bipred(const encoder_state_t * const state, const kvz_picture * ref1, const kvz_picture * ref2, int32_t xpos, int32_t ypos, int32_t width, int16_t mv_param[2][2], lcu_t* lcu) {
kvz_pixel temp_lcu_y[64 * 64];
kvz_pixel temp_lcu_u[32 * 32];
kvz_pixel temp_lcu_v[32 * 32];
int temp_x, temp_y;
int shift = 15 - KVZ_BIT_DEPTH;
int offset = 1 << (shift - 1);
//Reconstruct both predictors
inter_recon_lcu(state, ref1, xpos, ypos, width, mv_param[0], lcu);
memcpy(temp_lcu_y, lcu->rec.y, sizeof(kvz_pixel) * 64 * 64);
memcpy(temp_lcu_u, lcu->rec.u, sizeof(kvz_pixel) * 32 * 32);
memcpy(temp_lcu_v, lcu->rec.v, sizeof(kvz_pixel) * 32 * 32);
inter_recon_lcu(state, ref2, xpos, ypos, width, mv_param[1], lcu);
// After reconstruction, merge the predictors by taking an average of each pixel
for (temp_y = 0; temp_y < width; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; ++temp_x) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (kvz_pixel)fast_clip_32bit_to_pixel(((int)lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] +
(int)temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] + offset) >> shift);
}
}
for (temp_y = 0; temp_y < width>>1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width>>1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)(((int)lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] +
(int)temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] + 1) >> 1);
lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)(((int)lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] +
(int)temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] + 1) >> 1);
}
}
}
/**
* \brief Set unused L0/L1 motion vectors and reference
* \param cu coding unit to clear
*/
static void inter_clear_cu_unused(cu_info_t* cu) {
if(!(cu->inter.mv_dir & 1)) {
cu->inter.mv[0][0] = 0;
cu->inter.mv[0][1] = 0;
cu->inter.mv_ref[0] = 255;
}
if(!(cu->inter.mv_dir & 2)) {
cu->inter.mv[1][0] = 0;
cu->inter.mv[1][1] = 0;
cu->inter.mv_ref[1] = 255;
}
}
/**
* \brief Get merge candidates for current block
* \param encoder encoder control struct to use
* \param x_cu block x position in SCU
* \param y_cu block y position in SCU
* \param depth current block depth
* \param b0 candidate b0
* \param b1 candidate b1
* \param b2 candidate b2
* \param a0 candidate a0
* \param a1 candidate a1
*/
void inter_get_spatial_merge_candidates(int32_t x, int32_t y, int8_t depth, cu_info_t **b0, cu_info_t **b1,
cu_info_t **b2,cu_info_t **a0,cu_info_t **a1, lcu_t *lcu)
{
uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
int32_t x_cu = (x & (LCU_WIDTH - 1)) >> MAX_DEPTH; //!< coordinates from top-left of this LCU
int32_t y_cu = (y & (LCU_WIDTH - 1)) >> MAX_DEPTH;
cu_info_t* cu = &lcu->cu[LCU_CU_OFFSET];
// A0 and A1 availability testing
if (x != 0) {
*a1 = &cu[x_cu - 1 + (y_cu + cur_block_in_scu - 1) * LCU_T_CU_WIDTH];
if (!(*a1)->coded) *a1 = NULL;
if(*a1) inter_clear_cu_unused(*a1);
if (y_cu + cur_block_in_scu < LCU_WIDTH>>3) {
*a0 = &cu[x_cu - 1 + (y_cu + cur_block_in_scu) * LCU_T_CU_WIDTH];
if (!(*a0)->coded) *a0 = NULL;
}
if(*a0) inter_clear_cu_unused(*a0);
}
// B0, B1 and B2 availability testing
if (y != 0) {
if (x_cu + cur_block_in_scu < LCU_WIDTH>>3) {
*b0 = &cu[x_cu + cur_block_in_scu + (y_cu - 1) * LCU_T_CU_WIDTH];
if (!(*b0)->coded) *b0 = NULL;
} else if(y_cu == 0) {
// Special case, top-right cu from LCU is the last in lcu->cu array
*b0 = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH];
if (!(*b0)->coded) *b0 = NULL;
}
if(*b0) inter_clear_cu_unused(*b0);
*b1 = &cu[x_cu + cur_block_in_scu - 1 + (y_cu - 1) * LCU_T_CU_WIDTH];
if (!(*b1)->coded) *b1 = NULL;
if(*b1) inter_clear_cu_unused(*b1);
if (x != 0) {
*b2 = &cu[x_cu - 1 + (y_cu - 1) * LCU_T_CU_WIDTH];
if(!(*b2)->coded) *b2 = NULL;
}
if(*b2) inter_clear_cu_unused(*b2);
}
}
/**
* \brief Get MV prediction for current block
* \param encoder encoder control struct to use
* \param x_cu block x position in SCU
* \param y_cu block y position in SCU
* \param depth current block depth
* \param mv_pred[2][2] 2x motion vector prediction
*/
void inter_get_mv_cand(const encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int16_t mv_cand[2][2], cu_info_t* cur_cu, lcu_t *lcu, int8_t reflist)
{
uint8_t candidates = 0;
uint8_t b_candidates = 0;
int8_t reflist2nd = !reflist;
cu_info_t *b0, *b1, *b2, *a0, *a1;
b0 = b1 = b2 = a0 = a1 = NULL;
inter_get_spatial_merge_candidates(x, y, depth, &b0, &b1, &b2, &a0, &a1, lcu);
#define CALCULATE_SCALE(cu,tb,td) ((tb * ((0x4000 + (abs(td)>>1))/td) + 32) >> 6)
#define APPLY_MV_SCALING(cu, cand, list) {int td = state->global->poc - state->global->ref->pocs[(cu)->inter.mv_ref[list]];\
int tb = state->global->poc - state->global->ref->pocs[cur_cu->inter.mv_ref[reflist]];\
if (td != tb) { \
int scale = CALCULATE_SCALE(cu,tb,td); \
mv_cand[cand][0] = ((scale * (cu)->inter.mv[list][0] + 127 + (scale * (cu)->inter.mv[list][0] < 0)) >> 8 ); \
mv_cand[cand][1] = ((scale * (cu)->inter.mv[list][1] + 127 + (scale * (cu)->inter.mv[list][1] < 0)) >> 8 ); }}
// Left predictors
if (a0 && a0->type == CU_INTER && (
((a0->inter.mv_dir & 1) && a0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((a0->inter.mv_dir & 2) && a0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (a0->inter.mv_dir & (1 << reflist) && a0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = a0->inter.mv[reflist][0];
mv_cand[candidates][1] = a0->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1];
}
candidates++;
} else if (a1 && a1->type == CU_INTER && (
((a1->inter.mv_dir & 1) && a1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((a1->inter.mv_dir & 2) && a1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (a1->inter.mv_dir & (1 << reflist) && a1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = a1->inter.mv[reflist][0];
mv_cand[candidates][1] = a1->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1];
}
candidates++;
}
if(!candidates) {
// Left predictors
if (a0 && a0->type == CU_INTER) {
if (a0->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = a0->inter.mv[reflist][0];
mv_cand[candidates][1] = a0->inter.mv[reflist][1];
APPLY_MV_SCALING(a0, candidates, reflist);
} else {
mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(a0, candidates, reflist2nd);
}
candidates++;
} else if (a1 && a1->type == CU_INTER) {
if (a1->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = a1->inter.mv[reflist][0];
mv_cand[candidates][1] = a1->inter.mv[reflist][1];
APPLY_MV_SCALING(a1, candidates, reflist);
} else {
mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(a1, candidates, reflist2nd);
}
candidates++;
}
}
// Top predictors
if (b0 && b0->type == CU_INTER && (
((b0->inter.mv_dir & 1) && b0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b0->inter.mv_dir & 2) && b0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b0->inter.mv_dir & (1 << reflist) && b0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b0->inter.mv[reflist][0];
mv_cand[candidates][1] = b0->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1];
}
b_candidates++;
} else if (b1 && b1->type == CU_INTER && (
((b1->inter.mv_dir & 1) && b1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b1->inter.mv_dir & 2) && b1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b1->inter.mv_dir & (1 << reflist) && b1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b1->inter.mv[reflist][0];
mv_cand[candidates][1] = b1->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1];
}
b_candidates++;
} else if (b2 && b2->type == CU_INTER && (
((b2->inter.mv_dir & 1) && b2->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b2->inter.mv_dir & 2) && b2->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b2->inter.mv_dir & (1 << reflist) && b2->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b2->inter.mv[reflist][0];
mv_cand[candidates][1] = b2->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1];
}
b_candidates++;
}
candidates += b_candidates;
// When a1 or a0 is available, we dont check for secondary B candidates
if((a1 && a1->type == CU_INTER) || (a0 && a0->type == CU_INTER)) {
b_candidates = 1;
} else if(candidates != 2) {
b_candidates = 0;
}
if(!b_candidates) {
// Top predictors
if (b0 && b0->type == CU_INTER) {
if (b0->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b0->inter.mv[reflist][0];
mv_cand[candidates][1] = b0->inter.mv[reflist][1];
APPLY_MV_SCALING(b0, candidates, reflist);
} else {
mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b0, candidates, reflist2nd);
}
candidates++;
} else if (b1 && b1->type == CU_INTER) {
if (b1->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b1->inter.mv[reflist][0];
mv_cand[candidates][1] = b1->inter.mv[reflist][1];
APPLY_MV_SCALING(b1, candidates, reflist);
} else {
mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b1, candidates, reflist2nd);
}
candidates++;
} else if(b2 && b2->type == CU_INTER) {
if (b2->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b2->inter.mv[reflist][0];
mv_cand[candidates][1] = b2->inter.mv[reflist][1];
APPLY_MV_SCALING(b2, candidates, reflist);
} else {
mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b2, candidates, reflist2nd);
}
candidates++;
}
}
// Remove identical candidate
if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
candidates = 1;
}
#if ENABLE_TEMPORAL_MVP
if(candidates < AMVP_MAX_NUM_CANDS) {
//TODO: add temporal mv predictor
}
#endif
// Fill with (0,0)
while (candidates < AMVP_MAX_NUM_CANDS) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
#undef CALCULATE_SCALE
#undef APPLY_MV_SCALING
}
/**
* \brief Get merge predictions for current block
* \param encoder encoder control struct to use
* \param x_cu block x position in SCU
* \param y_cu block y position in SCU
* \param depth current block depth
* \param mv_pred[MRG_MAX_NUM_CANDS][2] MRG_MAX_NUM_CANDS motion vector prediction
*/
uint8_t inter_get_merge_cand(const encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS], lcu_t *lcu)
{
uint8_t candidates = 0;
int8_t duplicate = 0;
cu_info_t *b0, *b1, *b2, *a0, *a1;
int8_t zero_idx = 0;
b0 = b1 = b2 = a0 = a1 = NULL;
inter_get_spatial_merge_candidates(x, y, depth, &b0, &b1, &b2, &a0, &a1, lcu);
#define CHECK_DUPLICATE(CU1,CU2) {duplicate = 0; if ((CU2) && (CU2)->type == CU_INTER && \
(CU1)->inter.mv_dir == (CU2)->inter.mv_dir && \
(!(((CU1)->inter.mv_dir & 1) && ((CU2)->inter.mv_dir & 1)) || \
((CU1)->inter.mv[0][0] == (CU2)->inter.mv[0][0] && \
(CU1)->inter.mv[0][1] == (CU2)->inter.mv[0][1] && \
(CU1)->inter.mv_ref[0] == (CU2)->inter.mv_ref[0]) ) && \
(!(((CU1)->inter.mv_dir & 2) && ((CU2)->inter.mv_dir & 2) ) || \
((CU1)->inter.mv[1][0] == (CU2)->inter.mv[1][0] && \
(CU1)->inter.mv[1][1] == (CU2)->inter.mv[1][1] && \
(CU1)->inter.mv_ref[1] == (CU2)->inter.mv_ref[1]) ) \
) duplicate = 1; }
if (a1 && a1->type == CU_INTER) {
mv_cand[candidates].mv[0][0] = a1->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = a1->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = a1->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = a1->inter.mv[1][1];
mv_cand[candidates].ref[0] = a1->inter.mv_ref[0];
mv_cand[candidates].ref[1] = a1->inter.mv_ref[1];
mv_cand[candidates].dir = a1->inter.mv_dir;
candidates++;
}
if (b1 && b1->type == CU_INTER) {
if(candidates) CHECK_DUPLICATE(b1, a1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b1->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b1->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b1->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b1->inter.mv[1][1];
mv_cand[candidates].ref[0] = b1->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b1->inter.mv_ref[1];
mv_cand[candidates].dir = b1->inter.mv_dir;
candidates++;
}
}
if (b0 && b0->type == CU_INTER) {
if(candidates) CHECK_DUPLICATE(b0,b1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b0->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b0->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b0->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b0->inter.mv[1][1];
mv_cand[candidates].ref[0] = b0->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b0->inter.mv_ref[1];
mv_cand[candidates].dir = b0->inter.mv_dir;
candidates++;
}
}
if (a0 && a0->type == CU_INTER) {
if(candidates) CHECK_DUPLICATE(a0,a1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = a0->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = a0->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = a0->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = a0->inter.mv[1][1];
mv_cand[candidates].ref[0] = a0->inter.mv_ref[0];
mv_cand[candidates].ref[1] = a0->inter.mv_ref[1];
mv_cand[candidates].dir = a0->inter.mv_dir;
candidates++;
}
}
if (candidates != 4) {
if(b2 && b2->type == CU_INTER) {
CHECK_DUPLICATE(b2,a1);
if(!duplicate) {
CHECK_DUPLICATE(b2,b1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b2->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b2->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b2->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b2->inter.mv[1][1];
mv_cand[candidates].ref[0] = b2->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b2->inter.mv_ref[1];
mv_cand[candidates].dir = b2->inter.mv_dir;
candidates++;
}
}
}
}
#if ENABLE_TEMPORAL_MVP
if(candidates < AMVP_MAX_NUM_CANDS) {
//TODO: add temporal mv predictor
}
#endif
if (candidates < MRG_MAX_NUM_CANDS && state->global->slicetype == SLICE_B) {
#define NUM_PRIORITY_LIST 12;
static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 };
static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 };
uint8_t cutoff = candidates;
for (int32_t idx = 0; idx= candidates || j >= candidates) break;
// Find one L0 and L1 candidate according to the priority list
if ((mv_cand[i].dir & 0x1) && (mv_cand[j].dir & 0x2)) {
mv_cand[candidates].dir = 3;
// get Mv from cand[i] and cand[j]
mv_cand[candidates].mv[0][0] = mv_cand[i].mv[0][0];
mv_cand[candidates].mv[0][1] = mv_cand[i].mv[0][1];
mv_cand[candidates].mv[1][0] = mv_cand[j].mv[1][0];
mv_cand[candidates].mv[1][1] = mv_cand[j].mv[1][1];
mv_cand[candidates].ref[0] = mv_cand[i].ref[0];
mv_cand[candidates].ref[1] = mv_cand[j].ref[1];
if (mv_cand[i].ref[0] == mv_cand[j].ref[1] &&
mv_cand[i].mv[0][0] == mv_cand[j].mv[1][0] &&
mv_cand[i].mv[0][1] == mv_cand[j].mv[1][1]) {
// Not a candidate
} else {
candidates++;
}
}
}
}
int num_ref = state->global->ref->used_size;
if (candidates < MRG_MAX_NUM_CANDS && state->global->slicetype == SLICE_B) {
int j;
int ref_negative = 0;
int ref_positive = 0;
for (j = 0; j < state->global->ref->used_size; j++) {
if (state->global->ref->pocs[j] < state->global->poc) {
ref_negative++;
} else {
ref_positive++;
}
}
num_ref = MIN(ref_negative, ref_positive);
}
// Add (0,0) prediction
while (candidates != MRG_MAX_NUM_CANDS) {
mv_cand[candidates].mv[0][0] = 0;
mv_cand[candidates].mv[0][1] = 0;
mv_cand[candidates].ref[0] = (zero_idx>=num_ref-1)?0:zero_idx;
mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0];
mv_cand[candidates].dir = 1;
if (state->global->slicetype == SLICE_B) {
mv_cand[candidates].mv[1][0] = 0;
mv_cand[candidates].mv[1][1] = 0;
mv_cand[candidates].dir = 3;
}
zero_idx++;
candidates++;
}
return candidates;
}