/** * HEVC Encoder * - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing. */ /*! \file search.c \brief searching \author Marko Viitanen \date 2013-04 Search related functions */ #include #include #include #include "global.h" #include "config.h" #include "bitstream.h" #include "picture.h" #include "intra.h" #include "encoder.h" #include "filter.h" #include "search.h" void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma) { int32_t leftColumn; /*!< left column iterator */ int16_t val; /*!< variable to store extrapolated value */ int32_t i; /*!< index iterator */ int16_t dcVal = 1<<(g_bitDepth-1); /*!< default predictor value */ int32_t topRow; /*!< top row iterator */ int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */ int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */ uint8_t* srcPic = (!chroma)?pic->yData: ((chroma==1)?pic->uData: pic->vData); /*!< input picture pointer */ int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */ uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */ int32_t width_in_SCU = pic->width_in_LCU<= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET) { break; } } /* Copy the pixels to output */ for(i = 0; i < leftColumn*SCU_width-1; i ++) { dst[(i+1)*dststride] = srcShifted[i*srcWidth-1]; } /* if the loop was not completed, extrapolate the last pixel pushed to output */ if(leftColumn != outwidth/SCU_width) { val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1]; for(i = (leftColumn*SCU_width); i < outwidth; i++) { dst[i*dststride] = val; } } } /* If left column not available, copy from toprow or use the default predictor */ else { val = yCtb?srcShifted[-srcWidth]:dcVal; for(i = 0; i < outwidth; i++) { dst[i*dststride] = val; } } if(yCtb) { /* Loop top SCU's */ for(topRow = 1; topRow < outwidth/SCU_width; topRow++) { if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET) { break; } } for(i = 0; i < topRow*SCU_width-1; i ++) { dst[i+1] = srcShifted[i-srcWidth]; } if(topRow != outwidth/SCU_width) { val = srcShifted[(topRow*SCU_width)-srcWidth-1]; for(i = (topRow*SCU_width); i < outwidth; i++) { dst[i] = val; } } } else { val = xCtb?srcShifted[-1]:dcVal; for(i = 1; i < outwidth; i++) { dst[i] = val; } } /* Topleft corner */ dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride]; } void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_split_x = ((encoder->in.width) < ( (xCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border_split_y = ((encoder->in.height) < ( (yCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost = 0xffffffff; cur_CU->inter.cost = 0xffffffff; /* Force split on border */ if(depth != MAX_DEPTH) { if(border) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); SET_SPLITDATA(cur_CU,1); search_tree(encoder,xCtb,yCtb,depth+1); if(!border_x || border_split_x) { search_tree(encoder,xCtb+change,yCtb,depth+1); } if(!border_y || border_split_y) { search_tree(encoder,xCtb,yCtb+change,depth+1); } if(!border || (border_split_x && border_split_y) ) { search_tree(encoder,xCtb+change,yCtb+change,depth+1); } /* We don't need to do anything else here */ return; } } /* INTER SEARCH */ if(encoder->in.cur_pic.slicetype != SLICE_I) { /* Motion estimation on P-frame */ if(encoder->in.cur_pic.slicetype != SLICE_B) { } cur_CU->type = CU_INTER; cur_CU->inter.mv[0] = 1<<2; cur_CU->inter.mv[1] = -2<<2; cur_CU->inter.cost = 10; cur_CU->inter.mv_dir = 1; return; } /* INTRA SEARCH */ if(depth >= MIN_SEARCH_DEPTH) { int x = 0,y = 0; uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; uint32_t width = LCU_WIDTH>>depth; /* INTRAPREDICTION */ int16_t pred[LCU_WIDTH*LCU_WIDTH+1]; int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1]; //int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t)); //int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t)); /* Build reconstructed block to use in prediction with extrapolated borders */ search_buildReferenceBorder(&encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0); cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic.yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost); //free(pred); //free(rec); } /* Split and search to max_depth */ if(depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); search_tree(encoder,xCtb,yCtb,depth+1); search_tree(encoder,xCtb+change,yCtb,depth+1); search_tree(encoder,xCtb,yCtb+change,depth+1); search_tree(encoder,xCtb+change,yCtb+change,depth+1); } } uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost; uint32_t cost = 0; uint32_t lambdaCost = 4*g_lambda_cost[encoder->QP]<<4;//<<5; //ToDo: Correct cost calculation /* Split and search to max_depth */ if(depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); cost = search_best_mode(encoder,xCtb,yCtb,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1); cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1); /* We split if the cost is better (0 cost -> not checked) */ if(cost != 0 && cost+lambdaCost < bestCost) { /* Set split to 1 */ picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,1); bestCost = cost+lambdaCost; } /* Else, dont split and recursively set block mode */ else { /* Set split to 0 and mode to intra.mode */ picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); } } else { /* Set split to 0 and mode to intra.mode */ picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); } return bestCost; } void search_slice_data(encoder_control* encoder) { int16_t xCtb,yCtb; /* Loop through every LCU in the slice */ for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++) { for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++) { uint8_t depth = 0; /* Recursive function for looping through all the sub-blocks */ search_tree(encoder, xCtb<