/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "search.h" #include #include #include #include "config.h" #include "bitstream.h" #include "picture.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "debug.h" // Temporarily for debugging. #define USE_INTRA_IN_P 0 //#define RENDER_CU encoder->frame==2 #define RENDER_CU 0 #define USE_CHROMA_IN_MV_SEARCH 0 #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) typedef struct { int x; int y; } vector2d; /** * This is used in the hexagon_search to select 3 points to search. * * The start of the hexagonal pattern has been repeated at the end so that * the indices between 1-6 can be used as the start of a 3-point list of new * points to search. * * 6 o-o 1 / 7 * / \ * 5 o 0 o 2 / 8 * \ / * 4 o-o 3 */ const vector2d large_hexbs[10] = { { 0, 0 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 }, { 1, -2 }, { 2, 0 } }; /** * This is used as the last step of the hexagon search. */ const vector2d small_hexbs[5] = { { 0, 0 }, { -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 } }; void hexagon_search(picture *pic, picture *ref, cu_info *cur_cu, int orig_x, int orig_y, int x, int y, unsigned depth) { int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = -1; unsigned i; unsigned best_index = 0; // in large_hexbs[] // Search the initial 7 points of the hexagon. for (i = 0; i < 7; ++i) { const vector2d *pattern = large_hexbs + i; unsigned cost = calc_sad(pic, ref, orig_x, orig_y, orig_x + x + pattern->x, orig_y + y + pattern->y, block_width, block_width); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; } } // Try the 0,0 vector. if (!(x == 0 && y == 0)) { unsigned cost = calc_sad(pic, ref, orig_x, orig_y, orig_x, orig_y, block_width, block_width); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = 0; x = 0; y = 0; // Redo the search around the 0,0 point. for (i = 1; i < 7; ++i) { const vector2d *pattern = large_hexbs + i; unsigned cost = calc_sad(pic, ref, orig_x, orig_y, orig_x + pattern->x, orig_y + pattern->y, block_width, block_width); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; } } } } // Iteratively search the 3 new points around the best match, until the best // match is in the center. while (best_index != 0) { unsigned start; // Starting point of the 3 offsets to be searched. if (best_index == 1) { start = 6; } else if (best_index == 8) { start = 1; } else { start = best_index - 1; } // Move the center to the best match. x += large_hexbs[best_index].x; y += large_hexbs[best_index].y; best_index = 0; // Iterate through the next 3 points. for (i = 0; i < 3; ++i) { const vector2d *offset = large_hexbs + start + i; unsigned cost = calc_sad(pic, ref, orig_x, orig_y, orig_x + x + offset->x, orig_y + y + offset->y, block_width, block_width); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = start + i; } ++offset; } } // Do the final step of the search with a small pattern. x += large_hexbs[best_index].x; y += large_hexbs[best_index].y; best_index = 0; for (i = 1; i < 5; ++i) { const vector2d *offset = small_hexbs + i; unsigned cost = calc_sad(pic, ref, orig_x, orig_y, orig_x + x + offset->x, orig_y + y + offset->y, block_width, block_width); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; } } x += small_hexbs[best_index].x; y += small_hexbs[best_index].y; best_index = 0; cur_cu->inter.cost = best_cost + 1; // +1 so that cost is > 0. cur_cu->inter.mv[0] = x << 2; cur_cu->inter.mv[1] = y << 2; } /** * \brief */ void search_buildReferenceBorder(picture *pic, int32_t x_ctb, int32_t y_ctb, int16_t outwidth, pixel *dst, int32_t dststride, int8_t chroma) { int32_t left_col; // left column iterator pixel val; // variable to store extrapolated value int32_t i; // index iterator pixel dc_val = 1 << (g_bitdepth - 1); // default predictor value int32_t top_row; // top row iterator int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height pixel *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width pixel *src_shifted = &src_pic[x_ctb * scu_width + (y_ctb * scu_width) * src_width]; // input picture pointer shifted to start from the left-top corner of the current block int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU // Fill left column if (x_ctb) { // Loop SCU's for (left_col = 1; left_col < outwidth / scu_width; left_col++) { // If over the picture height or block not yet searched, stop if ((y_ctb + left_col) * scu_width >= src_height || pic->cu_array[MAX_DEPTH][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) { break; } } // Copy the pixels to output for (i = 0; i < left_col * scu_width - 1; i++) { dst[(i + 1) * dststride] = src_shifted[i * src_width - 1]; } // if the loop was not completed, extrapolate the last pixel pushed to output if (left_col != outwidth / scu_width) { val = src_shifted[(left_col * scu_width - 1) * src_width - 1]; for (i = (left_col * scu_width); i < outwidth; i++) { dst[i * dststride] = val; } } } else { // If left column not available, copy from toprow or use the default predictor val = y_ctb ? src_shifted[-src_width] : dc_val; for (i = 0; i < outwidth; i++) { dst[i * dststride] = val; } } if (y_ctb) { // Loop top SCU's for (top_row = 1; top_row < outwidth / scu_width; top_row++) { if ((x_ctb + top_row) * scu_width >= src_width || pic->cu_array[MAX_DEPTH][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type == CU_NOTSET) { break; } } for (i = 0; i < top_row * scu_width - 1; i++) { dst[i + 1] = src_shifted[i - src_width]; } if (top_row != outwidth / scu_width) { val = src_shifted[(top_row * scu_width) - src_width - 1]; for (i = (top_row * scu_width); i < outwidth; i++) { dst[i] = val; } } } else { val = x_ctb ? src_shifted[-1] : dc_val; for (i = 1; i < outwidth; i++) { dst[i] = val; } } // Topleft corner dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride]; } /** * \brief */ void search_tree(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; // are we in any border CU cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; cur_cu->intra.cost = 0xffffffff; cur_cu->inter.cost = 0xffffffff; // Force split on border if (depth != MAX_DEPTH) { if (border) { // Split blocks and remember to change x and y block positions uint8_t change = 1 << (MAX_DEPTH - 1 - depth); search_tree(encoder, x_ctb, y_ctb, depth + 1); if (!border_x || border_split_x) { search_tree(encoder, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { search_tree(encoder, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } // We don't need to do anything else here return; } } // INTER SEARCH if (depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH && encoder->in.cur_pic->slicetype != SLICE_I) { // Motion estimation on P-frame if (encoder->in.cur_pic->slicetype != SLICE_B) { } { picture *cur_pic = encoder->in.cur_pic; picture *ref_pic = encoder->ref->pics[0]; unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu); cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb]; int x = x_ctb * CU_MIN_SIZE_PIXELS; int y = y_ctb * CU_MIN_SIZE_PIXELS; pixel *cur_data = &cur_pic->y_data[(y * cur_pic->width) + x]; int start_x = 0; int start_y = 0; // Convert from sub-pixel accuracy. if (ref_cu->type == CU_INTER) { start_x = ref_cu->inter.mv[0] >> 2; start_y = ref_cu->inter.mv[1] >> 2; } hexagon_search(cur_pic, ref_pic, cur_cu, x, y, start_x, start_y, depth); } cur_cu->type = CU_INTER; cur_cu->inter.mv_dir = 1; } // INTRA SEARCH if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH && (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) { int x = 0, y = 0; pixel *base = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; uint32_t width = LCU_WIDTH >> depth; // INTRAPREDICTION pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)]; pixel *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; // Build reconstructed block to use in prediction with extrapolated borders search_buildReferenceBorder(encoder->in.cur_pic, x_ctb, y_ctb, (LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0); cur_cu->intra.mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, recShift, (LCU_WIDTH >> (depth)) * 2 + 8, x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)), width, pred, width, &cur_cu->intra.cost); //free(pred); //free(rec); } // Split and search to max_depth if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) { // Split blocks and remember to change x and y block positions uint8_t change = 1 << (MAX_DEPTH - 1 - depth); search_tree(encoder, x_ctb, y_ctb, depth + 1); search_tree(encoder, x_ctb + change, y_ctb, depth + 1); search_tree(encoder, x_ctb, y_ctb + change, depth + 1); search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } } /** * \brief */ uint32_t search_best_mode(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint32_t best_intra_cost = cur_cu->intra.cost; uint32_t best_inter_cost = cur_cu->inter.cost; uint32_t best_cost = 0; uint32_t cost = 0; uint32_t lambdaCost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation // Split and search to max_depth if (depth != MAX_INTRA_SEARCH_DEPTH) { // Split blocks and remember to change x and y block positions uint8_t change = 1 << (MAX_DEPTH - 1 - depth); cost = search_best_mode(encoder, x_ctb, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1); // We split if the cost is better (0 cost -> not checked) if ( (encoder->in.cur_pic->slicetype == SLICE_I && depth < MIN_INTRA_SEARCH_DEPTH) || (cost != 0 && (best_intra_cost != 0 && cost + lambdaCost < best_intra_cost) && (best_inter_cost != 0 && cost + lambdaCost < best_inter_cost))) { // Set split to 1 best_cost = cost + lambdaCost; } else if (best_inter_cost != 0 // Else, check if inter cost is smaller or the same as intra && (best_inter_cost <= best_intra_cost || best_intra_cost == 0) && encoder->in.cur_pic->slicetype != SLICE_I) { // Set split to 0 and mode to inter.mode inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu); best_cost = best_inter_cost; } else { // Else, dont split and recursively set block mode // Set split to 0 and mode to intra.mode intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra.mode); best_cost = best_intra_cost; } } else if (best_inter_cost != 0 && (best_inter_cost <= best_intra_cost || best_intra_cost == 0) && encoder->in.cur_pic->slicetype != SLICE_I) { // Set split to 0 and mode to inter.mode inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu); best_cost = best_inter_cost; } else { // Set split to 0 and mode to intra.mode intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra.mode); best_cost = best_intra_cost; } return best_cost; } /** * \brief */ void search_slice_data(encoder_control *encoder) { int16_t x_lcu, y_lcu; FILE *fp = 0, *fp2 = 0; if (RENDER_CU) { fp = open_cu_file("cu_search.html"); fp2 = open_cu_file("cu_best.html"); } // Loop through every LCU in the slice for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) { for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) { uint8_t depth = 0; // Recursive function for looping through all the sub-blocks search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); if (RENDER_CU) { render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp); } // Decide actual coding modes search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); if (RENDER_CU) { render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2); } } } if (RENDER_CU && fp) { close_cu_file(fp); fp = 0; } if (RENDER_CU && fp2) { close_cu_file(fp2); fp2 = 0; } }