/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include "filter.h"
#include
#include
#include
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "cabac.h"
#include "transform.h"
//////////////////////////////////////////////////////////////////////////
// INITIALIZATIONS
const uint8_t g_tc_table_8x8[54] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 3, 3, 3, 3, 4, 4, 4, 5, 5,
6, 6, 7, 8, 9, 10, 11, 13, 14, 16,
18, 20, 22, 24
};
const uint8_t g_beta_table_8x8[52] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 20,
22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52, 54, 56, 58, 60,
62, 64
};
const int16_t g_luma_filter[4][8] =
{
{ 0, 0, 0, 64, 0, 0, 0, 0 },
{ -1, 4, -10, 58, 17, -5, 1, 0 },
{ -1, 4, -11, 40, 40, -11, 4, -1 },
{ 0, 1, -5, 17, 58, -10, 4, -1 }
};
const int16_t g_chroma_filter[8][4] =
{
{ 0, 64, 0, 0 },
{ -2, 58, 10, -2 },
{ -4, 54, 16, -2 },
{ -6, 46, 28, -4 },
{ -4, 36, 36, -4 },
{ -4, 28, 46, -6 },
{ -2, 16, 54, -4 },
{ -2, 10, 58, -2 }
};
//////////////////////////////////////////////////////////////////////////
// FUNCTIONS
/**
* \brief
*/
INLINE void filter_deblock_luma(pixel *src, int32_t offset,
int32_t tc, int8_t sw,
int8_t part_P_nofilter, int8_t part_Q_nofilter,
int32_t thr_cut,
int8_t filter_second_P, int8_t filter_second_Q)
{
int32_t delta;
int16_t m0 = src[-offset * 4];
int16_t m1 = src[-offset * 3];
int16_t m2 = src[-offset * 2];
int16_t m3 = src[-offset];
int16_t m4 = src[0];
int16_t m5 = src[offset];
int16_t m6 = src[offset * 2];
int16_t m7 = src[offset * 3];
if (sw) {
src[-offset * 3] = CLIP(m1 - 2*tc, m1 + 2*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3);
src[-offset * 2] = CLIP(m2 - 2*tc, m2 + 2*tc, ( m1 + m2 + m3 + m4 + 2) >> 2);
src[-offset] = CLIP(m3 - 2*tc, m3 + 2*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3);
src[0] = CLIP(m4 - 2*tc, m4 + 2*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3);
src[offset] = CLIP(m5 - 2*tc, m5 + 2*tc, ( m3 + m4 + m5 + m6 + 2) >> 2);
src[offset * 2] = CLIP(m6 - 2*tc, m6 + 2*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3);
} else {
// Weak filter
delta = (9*(m4 - m3) - 3*(m5 - m2) + 8) >> 4;
if (abs(delta) < thr_cut) {
int32_t tc2 = tc >> 1;
delta = CLIP(-tc, tc, delta);
src[-offset] = CLIP(0, (1 << g_bitdepth) - 1, (m3 + delta));
src[0] = CLIP(0, (1 << g_bitdepth) - 1, (m4 - delta));
if(filter_second_P) {
int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1);
src[-offset * 2] = CLIP(0, (1 << g_bitdepth) - 1, m2 + delta1);
}
if(filter_second_Q) {
int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1);
src[offset] = CLIP(0, (1 << g_bitdepth) - 1, m5 + delta2);
}
}
}
if(part_P_nofilter) {
src[-offset] = (uint8_t)m3;
src[-offset*2] = (uint8_t)m2;
src[-offset*3] = (uint8_t)m1;
}
if(part_Q_nofilter) {
src[0] = (uint8_t)m4;
src[offset] = (uint8_t)m5;
src[offset*2] = (uint8_t)m6;
}
}
/**
* \brief
*/
INLINE void filter_deblock_chroma(pixel *src, int32_t offset, int32_t tc,
int8_t part_P_nofilter, int8_t part_Q_nofilter)
{
int32_t delta;
int16_t m2 = src[-offset * 2];
int16_t m3 = src[-offset];
int16_t m4 = src[0];
int16_t m5 = src[offset];
delta = CLIP(-tc,tc, (((m4 - m3) << 2) + m2 - m5 + 4 ) >> 3);
if(!part_P_nofilter) {
src[-offset] = CLIP(0, (1 << g_bitdepth) - 1, m3 + delta);
}
if(!part_Q_nofilter) {
src[0] = CLIP(0, (1 << g_bitdepth) - 1, m4 - delta);
}
}
/**
* \brief
*/
void filter_deblock_edge_luma(encoder_control *encoder,
int32_t xpos, int32_t ypos,
int8_t depth, int8_t dir)
{
int32_t stride = encoder->in.cur_pic->width;
int32_t offset = stride;
int32_t beta_offset_div2 = encoder->beta_offset_div2;
int32_t tc_offset_div2 = encoder->tc_offset_div2;
// TODO: support 10+bits
pixel *orig_src = &encoder->in.cur_pic->y_recdata[xpos + ypos*stride];
pixel *src = orig_src;
int32_t step = 1;
cu_info *cu_q = &encoder->in.cur_pic->cu_array[MAX_DEPTH][(xpos>>MIN_SIZE) + (ypos>>MIN_SIZE) * (encoder->in.width_in_lcu << MAX_DEPTH)];
cu_info *cu_p = NULL;
int16_t x_cu = xpos>>MIN_SIZE,y_cu = ypos>>MIN_SIZE;
int8_t strength = 0;
{
// Return if called with a coordinate which is not at CU or TU boundary.
// TODO: Add handling for asymmetric inter CU boundaries which do not coincide
// with transform boundaries.
const int tu_width = LCU_WIDTH >> cu_q->tr_depth;
if (dir == EDGE_HOR && (ypos & (tu_width - 1))) return;
if (dir == EDGE_VER && (xpos & (tu_width - 1))) return;
}
if(dir == EDGE_VER) {
offset = 1;
step = stride;
}
{
int32_t qp = encoder->QP;
int32_t bitdepth_scale = 1 << (g_bitdepth - 8);
int32_t b_index = CLIP(0, 51, qp + (beta_offset_div2 << 1));
int32_t beta = g_beta_table_8x8[b_index] * bitdepth_scale;
int32_t side_threshold = (beta + (beta >>1 )) >> 3;
uint32_t blocks_in_part = (LCU_WIDTH >> depth) / 4;
uint32_t block_idx;
int32_t tc_index,tc,thr_cut;
// TODO: add CU based QP calculation
// For each 4-pixel part in the edge
for (block_idx = 0; block_idx < blocks_in_part; ++block_idx) {
int32_t dp0, dq0, dp3, dq3, d0, d3, dp, dq, d;
{
vector2d px = {
(dir == EDGE_HOR ? xpos + block_idx * 4 : xpos),
(dir == EDGE_VER ? ypos + block_idx * 4 : ypos)
};
// Don't deblock the last 4x4 block of the LCU. This will be deblocked
// when processing the next LCU.
if (block_idx > 0 && dir == EDGE_HOR && (px.x + 4) % 64 == 0 && (px.x + 4 != encoder->in.width)) {
continue;
}
// CU in the side we are filtering, update every 8-pixels
cu_p = &encoder->in.cur_pic->cu_array[MAX_DEPTH][(x_cu - (dir == EDGE_VER) + (dir == EDGE_HOR ? block_idx>>1 : 0)) +
(y_cu - (dir == EDGE_HOR) + (dir == EDGE_VER ? block_idx>>1 : 0))
* (encoder->in.width_in_lcu << MAX_DEPTH)];
// Filter strength
strength = 0;
// Intra blocks have strength 2
if(cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
strength = 2;
// Non-zero residual/coeffs and transform boundary
} else if(cu_q->coeff_top_y[cu_q->tr_depth] || cu_p->coeff_top_y[cu_p->tr_depth]) {
strength = 1;
// Absolute motion vector diff between blocks >= 1 (Integer pixel)
} else if((abs(cu_q->inter.mv[0] - cu_p->inter.mv[0]) >= 4) || (abs(cu_q->inter.mv[1] - cu_p->inter.mv[1]) >= 4)) {
strength = 1;
} else if(cu_q->inter.mv_ref != cu_p->inter.mv_ref) {
strength = 1;
}
tc_index = CLIP(0, 51 + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1)));
tc = g_tc_table_8x8[tc_index] * bitdepth_scale;
thr_cut = tc * 10;
}
if(!strength) continue;
// Check conditions for filtering
// TODO: Get rid of these inline defines.
#define calc_DP(s,o) abs( (int16_t)s[-o*3] - (int16_t)2*s[-o*2] + (int16_t)s[-o] )
#define calc_DQ(s,o) abs( (int16_t)s[0] - (int16_t)2*s[o] + (int16_t)s[o*2] )
dp0 = calc_DP((src+step*(block_idx*4+0)), offset);
dq0 = calc_DQ((src+step*(block_idx*4+0)), offset);
dp3 = calc_DP((src+step*(block_idx*4+3)), offset);
dq3 = calc_DQ((src+step*(block_idx*4+3)), offset);
d0 = dp0 + dq0;
d3 = dp3 + dq3;
dp = dp0 + dp3;
dq = dq0 + dq3;
d = d0 + d3;
#if ENABLE_PCM
// TODO: add PCM deblocking
#endif
if (d < beta) {
int8_t filter_P = (dp < side_threshold) ? 1 : 0;
int8_t filter_Q = (dq < side_threshold) ? 1 : 0;
// Strong filtering flag checking
#define useStrongFiltering(o,d,s) ( ((abs(s[-o*4]-s[-o]) + abs(s[o*3]-s[0])) < (beta>>3)) && (d<(beta>>2)) && ( abs(s[-o]-s[0]) < ((tc*5+1)>>1)) )
int8_t sw = useStrongFiltering(offset, 2*d0, (src+step*(block_idx*4+0))) &&
useStrongFiltering(offset, 2*d3, (src+step*(block_idx*4+3)));
// Filter four rows/columns
filter_deblock_luma(src + step * (4*block_idx + 0), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q);
filter_deblock_luma(src + step * (4*block_idx + 1), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q);
filter_deblock_luma(src + step * (4*block_idx + 2), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q);
filter_deblock_luma(src + step * (4*block_idx + 3), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q);
}
}
}
}
/**
* \brief
*/
void filter_deblock_edge_chroma(encoder_control *encoder,
int32_t x, int32_t y,
int8_t depth, int8_t dir)
{
int32_t stride = encoder->in.cur_pic->width >> 1;
int32_t tc_offset_div2 = encoder->tc_offset_div2;
// TODO: support 10+bits
pixel *src_u = &encoder->in.cur_pic->u_recdata[x + y*stride];
pixel *src_v = &encoder->in.cur_pic->v_recdata[x + y*stride];
// Init offset and step to EDGE_HOR
int32_t offset = stride;
int32_t step = 1;
cu_info *cu_q = &encoder->in.cur_pic->cu_array[MAX_DEPTH][(x>>(MIN_SIZE-1)) + (y>>(MIN_SIZE-1)) * (encoder->in.width_in_lcu << MAX_DEPTH)];
cu_info *cu_p = NULL;
int16_t x_cu = x>>(MIN_SIZE-1),y_cu = y>>(MIN_SIZE-1);
int8_t strength = 2;
// We cannot filter edges not on 8x8 grid
if((depth >= MAX_DEPTH && (( (y & 0x7) && dir == EDGE_HOR ) || ( (x & 0x7) && dir == EDGE_VER ) ) ))
{
return;
}
{
// Don't do anything if there is no PU or TU edge here.
int cu_width = (LCU_WIDTH / 2) >> (cu_q->depth);
if (dir == EDGE_HOR && y % cu_width != 0) {
return;
}
}
if(dir == EDGE_VER)
{
offset = 1;
step = stride;
}
// For each subpart
{
int32_t QP = g_chroma_scale[encoder->QP];
int32_t bitdepth_scale = 1 << (g_bitdepth-8);
int32_t TC_index = CLIP(0, 51+2, (int32_t)(QP + 2*(strength-1) + (tc_offset_div2 << 1)));
int32_t Tc = g_tc_table_8x8[TC_index]*bitdepth_scale;
uint32_t blocks_in_part= (LCU_WIDTH>>(depth == 4 ? depth : depth + 1)) / 4;
uint32_t blk_idx;
for (blk_idx = 0; blk_idx < blocks_in_part; ++blk_idx)
{
vector2d px = {
(dir == EDGE_HOR ? x + blk_idx * 4 : x),
(dir == EDGE_VER ? y + blk_idx * 4 : y)
};
cu_p = &encoder->in.cur_pic->cu_array[MAX_DEPTH][(x_cu - (dir == EDGE_VER) + (dir == EDGE_HOR ? blk_idx : 0)) +
(y_cu - (dir == EDGE_HOR) + (dir == EDGE_VER ? blk_idx : 0))
* (encoder->in.width_in_lcu << MAX_DEPTH)];
// Don't deblock the last 4x4 block of the LCU. This will be deblocked
// when processing the next LCU.
if (depth != 4 && dir == EDGE_HOR && (px.x + 4) % 32 == 0 && (px.x + 4 != encoder->in.width / 2)) {
continue;
}
// Only filter when strenght == 2 (one of the blocks is intra coded)
if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
// Chroma U
filter_deblock_chroma(src_u + step * (4*blk_idx + 0), offset, Tc, 0, 0);
filter_deblock_chroma(src_u + step * (4*blk_idx + 1), offset, Tc, 0, 0);
filter_deblock_chroma(src_u + step * (4*blk_idx + 2), offset, Tc, 0, 0);
filter_deblock_chroma(src_u + step * (4*blk_idx + 3), offset, Tc, 0, 0);
// Chroma V
filter_deblock_chroma(src_v + step * (4*blk_idx + 0), offset, Tc, 0, 0);
filter_deblock_chroma(src_v + step * (4*blk_idx + 1), offset, Tc, 0, 0);
filter_deblock_chroma(src_v + step * (4*blk_idx + 2), offset, Tc, 0, 0);
filter_deblock_chroma(src_v + step * (4*blk_idx + 3), offset, Tc, 0, 0);
}
}
}
}
/**
* \brief function to split LCU into smaller CU blocks
* \param encoder the encoder info structure
* \param xCtb block x-position (as SCU)
* \param yCtb block y-position (as SCU)
* \param depth block depth
* \param edge which edge we are filtering
*
* This function takes (SCU) block position as input and splits the block
* until the coded block size has been achived. Calls luma and chroma filtering
* functions for each coded CU size.
*/
void filter_deblock_cu(encoder_control *encoder, int32_t x, int32_t y, int8_t depth, int32_t edge)
{
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x + y*(encoder->in.width_in_lcu << MAX_DEPTH)];
uint8_t split_flag = (cur_cu->depth > depth) ? 1 : 0;
uint8_t border_x = (encoder->in.width < x*(LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth)) ? 1 : 0;
uint8_t border_y = (encoder->in.height < y*(LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth)) ? 1 : 0;
uint8_t border_split_x = (encoder->in.width < ((x + 1) * (LCU_WIDTH >> MAX_DEPTH)) + (LCU_WIDTH >> (depth + 1))) ? 0 : 1;
uint8_t border_split_y = (encoder->in.height < ((y + 1) * (LCU_WIDTH >> MAX_DEPTH)) + (LCU_WIDTH >> (depth + 1))) ? 0 : 1;
uint8_t border = border_x | border_y; // are we in any border CU?
// split 64x64, on split flag and on border
if (depth == 0 || split_flag || border) {
// Split the four sub-blocks of this block recursively.
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
filter_deblock_cu(encoder, x, y, depth + 1, edge);
if(!border_x || border_split_x) {
filter_deblock_cu(encoder, x + change, y, depth + 1, edge);
}
if(!border_y || border_split_y) {
filter_deblock_cu(encoder, x , y + change, depth + 1, edge);
}
if((!border_x && !border_y) || (border_split_x && border_split_y)) {
filter_deblock_cu(encoder, x + change, y + change, depth + 1, edge);
}
return;
}
// no filtering on borders (where filter would use pixels outside the picture)
if ((x == 0 && edge == EDGE_VER) || (y == 0 && edge == EDGE_HOR)) return;
// do the filtering for block edge
filter_deblock_edge_luma(encoder, x*(LCU_WIDTH >> MAX_DEPTH), y*(LCU_WIDTH >> MAX_DEPTH), depth, edge);
filter_deblock_edge_chroma(encoder, x*(LCU_WIDTH >> (MAX_DEPTH + 1)), y*(LCU_WIDTH >> (MAX_DEPTH + 1)), depth, edge);
}
/**
* \brief Main function for Deblocking filtering
* \param encoder the encoder info structure
*
* This is the main function for deblocking filter, it will loop through all
* the Largest Coding Units (LCU) and call filter_deblock_cu with absolute
* X and Y coordinates of the LCU.
*/
void filter_deblock(encoder_control* encoder)
{
int16_t x, y;
// TODO: Optimization: add thread for each LCU
// Filter vertically.
for (y = 0; y < encoder->in.height_in_lcu; y++)
{
for (x = 0; x < encoder->in.width_in_lcu; x++)
{
filter_deblock_cu(encoder, x << MAX_DEPTH, y << MAX_DEPTH, 0, EDGE_VER);
}
}
// Filter horizontally.
for (y = 0; y < encoder->in.height_in_lcu; y++)
{
for (x = 0; x < encoder->in.width_in_lcu; x++)
{
filter_deblock_cu(encoder, x << MAX_DEPTH, y << MAX_DEPTH, 0, EDGE_HOR);
}
}
}
/**
* \brief Interpolation for chroma half-pixel
* \param src source image in integer pels (-2..width+3, -2..height+3)
* \param src_stride stride of source image
* \param width width of source image block
* \param height height of source image block
* \param dst destination image in half-pixel resolution
* \param dst_stride stride of destination image
*
*/
void filter_inter_halfpel_chroma(int16_t *src, int16_t src_stride, int width, int height, int16_t *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag)
{
/* ____________
* | B0,0|ae0,0|
* |ea0,0|ee0,0|
*
* ae0,0 = (-4*B-1,0 + 36*B0,0 + 36*B1,0 - 4*B2,0) >> shift1
* ea0,0 = (-4*B0,-1 + 36*B0,0 + 36*B0,1 - 4*B0,2) >> shift1
* ee0,0 = (-4*ae0,-1 + 36*ae0,0 + 36*ae0,1 - 4*ae0,2) >> shift2
*/
int32_t x, y;
int32_t shift1 = g_bitdepth-8;
int32_t shift2 = 6;
int32_t shift3 = 14-g_bitdepth;
int32_t offset3 = 1 << (shift3 - 1);
int32_t offset23 = 1 << (shift2 + shift3 - 1);
// Loop source pixels and generate four filtered half-pel pixels on each round
for (y = 0; y < height; y++) {
int dst_pos_y = (y<<1)*dst_stride;
int src_pos_y = y*src_stride;
for (x = 0; x < width; x++) {
// Calculate current dst and src pixel positions
int dst_pos = dst_pos_y+(x<<1);
int src_pos = src_pos_y+x;
// Temporary variables..
int32_t ae_temp, ae_temp1, ae_temp2, ae_temp3;
// Original pixel (not really needed)
dst[dst_pos] = src[src_pos]; //B0,0
// ae0,0 - We need this only when hor_flag and for ee0,0
if (hor_flag) {
ae_temp = ((-4*src[src_pos - 1] + 36*src[src_pos] + 36*src[src_pos + 1] - 4*src[src_pos + 2] ) >> shift1); // ae0,0
}
// ea0,0 - needed only when ver_flag
if(ver_flag) {
dst[dst_pos + 1*dst_stride] = (((-4*src[src_pos - src_stride] + 36*src[src_pos] + 36*src[src_pos + src_stride]
- 4*src[src_pos + 2*src_stride] ) >> shift1) + (1<<(shift3-1))) >> shift3; // ea0,0
}
// When both flags, we use _only_ this pixel (but still need ae0,0 for it)
if (hor_flag && ver_flag) {
// Calculate temporary values..
//TODO: optimization, store these values
src_pos -= src_stride; //0,-1
ae_temp1 = ((-4*src[src_pos - 1] + 36*src[src_pos] + 36*src[src_pos + 1] - 4*src[src_pos + 2] ) >> shift1); // ae0,-1
src_pos += 2*src_stride; //0,1
ae_temp2 = ((-4*src[src_pos - 1] + 36*src[src_pos] + 36*src[src_pos + 1] - 4*src[src_pos + 2] ) >> shift1); // ae0,1
src_pos += src_stride; //0,2
ae_temp3 = ((-4*src[src_pos - 1] + 36*src[src_pos] + 36*src[src_pos + 1] - 4*src[src_pos + 2] ) >> shift1); // ae0,2
dst[dst_pos + 1*dst_stride + 1] = (((-4*ae_temp1 + 36*ae_temp + 36*ae_temp2 - 4*ae_temp3 ) + offset23) >> shift2) >> shift3; // ee0,0
}
if(hor_flag) {
dst[dst_pos + 1] = (ae_temp + offset3) >> shift3;
}
}
}
}