/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include #include "quant-avx2.h" #include "../generic/quant-generic.h" #include "../strategies-common.h" #include "strategyselector.h" #include "encoder.h" #include "transform.h" #include "rdo.h" #if COMPILE_INTEL_AVX2 #include #include /** * \brief quantize transformed coefficents * */ void kvz_quant_flat_avx2(const encoder_state_t * const state, coeff_t *coef, coeff_t *q_coef, int32_t width, int32_t height, int8_t type, int8_t scan_idx, int8_t block_type) { const encoder_control_t * const encoder = state->encoder_control; const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2; const uint32_t * const scan = kvz_g_sig_last_scan[scan_idx][log2_block_size - 1]; int32_t qp_scaled = kvz_get_scaled_qp(type, state->global->QP, (encoder->bitdepth - 8) * 6); const uint32_t log2_tr_size = kvz_g_convert_to_bit[width] + 2; const int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]); const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_size - 2][scalinglist_type][qp_scaled % 6]; const int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; //!< Represents scaling through forward transform const int32_t q_bits = QUANT_SHIFT + qp_scaled / 6 + transform_shift; const int32_t add = ((state->global->slicetype == KVZ_SLICE_I) ? 171 : 85) << (q_bits - 9); const int32_t q_bits8 = q_bits - 8; assert(quant_coeff[0] <= (1 << 15) - 1 && quant_coeff[0] >= -(1 << 15)); //Assuming flat values to fit int16_t uint32_t ac_sum = 0; __m256i v_ac_sum = _mm256_setzero_si256(); __m256i v_quant_coeff = _mm256_set1_epi16(quant_coeff[0]); for (int32_t n = 0; n < width * height; n += 16) { __m256i v_level = _mm256_loadu_si256((__m256i*)&(coef[n])); __m256i v_sign = _mm256_cmpgt_epi16(_mm256_setzero_si256(), v_level); v_sign = _mm256_or_si256(v_sign, _mm256_set1_epi16(1)); v_level = _mm256_abs_epi16(v_level); __m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_set1_epi16(0)); __m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_set1_epi16(0)); __m256i low_b = _mm256_unpacklo_epi16(v_quant_coeff, _mm256_set1_epi16(0)); __m256i high_b = _mm256_unpackhi_epi16(v_quant_coeff, _mm256_set1_epi16(0)); __m256i v_level32_a = _mm256_madd_epi16(low_a, low_b); __m256i v_level32_b = _mm256_madd_epi16(high_a, high_b); v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add)); v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add)); v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits); v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits); v_level = _mm256_packs_epi32(v_level32_a, v_level32_b); v_level = _mm256_sign_epi16(v_level, v_sign); _mm256_storeu_si256((__m256i*)&(q_coef[n]), v_level); v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_a); v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_b); } __m128i temp = _mm_add_epi32(_mm256_castsi256_si128(v_ac_sum), _mm256_extracti128_si256(v_ac_sum, 1)); temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, KVZ_PERMUTE(2, 3, 0, 1))); temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, KVZ_PERMUTE(1, 0, 1, 0))); ac_sum += _mm_cvtsi128_si32(temp); if (!(encoder->sign_hiding && ac_sum >= 2)) return; int32_t delta_u[LCU_WIDTH*LCU_WIDTH >> 2]; for (int32_t n = 0; n < width * height; n++) { int32_t level; level = coef[n]; level = ((int64_t)abs(level) * quant_coeff[n] + add) >> q_bits; delta_u[n] = (int32_t)(((int64_t)abs(coef[n]) * quant_coeff[n] - (level << q_bits)) >> q_bits8); } if (ac_sum >= 2) { #define SCAN_SET_SIZE 16 #define LOG2_SCAN_SET_SIZE 4 int32_t n, last_cg = -1, abssum = 0, subset, subpos; for (subset = (width*height - 1) >> LOG2_SCAN_SET_SIZE; subset >= 0; subset--) { int32_t first_nz_pos_in_cg = SCAN_SET_SIZE, last_nz_pos_in_cg = -1; subpos = subset << LOG2_SCAN_SET_SIZE; abssum = 0; // Find last coeff pos for (n = SCAN_SET_SIZE - 1; n >= 0; n--) { if (q_coef[scan[n + subpos]]) { last_nz_pos_in_cg = n; break; } } // First coeff pos for (n = 0; n = 0 && last_cg == -1) { last_cg = 1; } if (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4) { int32_t signbit = (q_coef[scan[subpos + first_nz_pos_in_cg]] > 0 ? 0 : 1); if (signbit != (abssum & 0x1)) { // compare signbit with sum_parity int32_t min_cost_inc = 0x7fffffff, min_pos = -1, cur_cost = 0x7fffffff; int16_t final_change = 0, cur_change = 0; for (n = (last_cg == 1 ? last_nz_pos_in_cg : SCAN_SET_SIZE - 1); n >= 0; n--) { uint32_t blkPos = scan[n + subpos]; if (q_coef[blkPos] != 0) { if (delta_u[blkPos] > 0) { cur_cost = -delta_u[blkPos]; cur_change = 1; } else if (n == first_nz_pos_in_cg && abs(q_coef[blkPos]) == 1) { cur_cost = 0x7fffffff; } else { cur_cost = delta_u[blkPos]; cur_change = -1; } } else if (n < first_nz_pos_in_cg && ((coef[blkPos] >= 0) ? 0 : 1) != signbit) { cur_cost = 0x7fffffff; } else { cur_cost = -delta_u[blkPos]; cur_change = 1; } if (cur_cost < min_cost_inc) { min_cost_inc = cur_cost; final_change = cur_change; min_pos = blkPos; } } // CG loop if (q_coef[min_pos] == 32767 || q_coef[min_pos] == -32768) { final_change = -1; } if (coef[min_pos] >= 0) q_coef[min_pos] += final_change; else q_coef[min_pos] -= final_change; } // Hide } if (last_cg == 1) last_cg = 0; } #undef SCAN_SET_SIZE #undef LOG2_SCAN_SET_SIZE } } /** * \brief Quantize residual and get both the reconstruction and coeffs. * * \param width Transform width. * \param color Color. * \param scan_order Coefficient scan order. * \param use_trskip Whether transform skip is used. * \param stride Stride for ref_in, pred_in rec_out and coeff_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Reconstructed pixels. * \param coeff_out Coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ int kvz_quantize_residual_avx2(encoder_state_t *const state, const cu_info_t *const cur_cu, const int width, const color_t color, const coeff_scan_order_t scan_order, const int use_trskip, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { // Temporary arrays to pass data to and from kvz_quant and transform functions. int16_t residual[TR_MAX_WIDTH * TR_MAX_WIDTH]; coeff_t quant_coeff[TR_MAX_WIDTH * TR_MAX_WIDTH]; coeff_t coeff[TR_MAX_WIDTH * TR_MAX_WIDTH]; int has_coeffs = 0; assert(width <= TR_MAX_WIDTH); assert(width >= TR_MIN_WIDTH); // Get residual. (ref_in - pred_in -> residual) { int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; x+=4) { #if KVZ_BIT_DEPTH==8 __m128i v_ref_in = _mm_cvtsi32_si128(*(int32_t*)&(ref_in[x + y * in_stride])); __m128i v_pred_in = _mm_cvtsi32_si128(*(int32_t*)&(pred_in[x + y * in_stride])); __m128i v_residual = _mm_sub_epi16(_mm_cvtepu8_epi16(v_ref_in), _mm_cvtepu8_epi16(v_pred_in) ); _mm_storel_epi64((__m128i*)&residual[x + y * width], v_residual); #else __m128i v_ref_in = _mm_loadl_epi64((__m128i*)&ref_in[x + y * in_stride])); __m128i v_pred_in = _mm_loadl_epi64((__m128i*)&pred_in[x + y * in_stride])); __m128i v_residual = _mm_sub_epi16(v_ref_in, v_pred_in); _mm_storel_pd((__m128i*)&residual[x + y * width], v_residual); residual[x + y * width] = (int16_t)(ref_in[x + y * in_stride] - pred_in[x + y * in_stride]); #endif } } } // Transform residual. (residual -> coeff) if (use_trskip) { kvz_transformskip(state->encoder_control, residual, coeff, width); } else { kvz_transform2d(state->encoder_control, residual, coeff, width, (color == COLOR_Y ? 0 : 65535)); } // Quantize coeffs. (coeff -> quant_coeff) if (state->encoder_control->rdoq_enable) { int8_t tr_depth = cur_cu->tr_depth - cur_cu->depth; tr_depth += (cur_cu->part_size == SIZE_NxN ? 1 : 0); kvz_rdoq(state, coeff, quant_coeff, width, width, (color == COLOR_Y ? 0 : 2), scan_order, cur_cu->type, tr_depth); } else { kvz_quant(state, coeff, quant_coeff, width, width, (color == COLOR_Y ? 0 : 2), scan_order, cur_cu->type); } // Check if there are any non-zero coefficients. { int i; for (i = 0; i < width * width; i+=8) { __m128i v_quant_coeff = _mm_loadu_si128((__m128i*)&(quant_coeff[i])); has_coeffs = !_mm_testz_si128(_mm_set1_epi8(0xFF), v_quant_coeff); if(has_coeffs) break; } } // Copy coefficients to coeff_out. kvz_coefficients_blit(quant_coeff, coeff_out, width, width, width, out_stride); // Do the inverse quantization and transformation and the reconstruction to // rec_out. if (has_coeffs) { int y, x; // Get quantized residual. (quant_coeff -> coeff -> residual) kvz_dequant(state, quant_coeff, coeff, width, width, (color == COLOR_Y ? 0 : (color == COLOR_U ? 2 : 3)), cur_cu->type); if (use_trskip) { kvz_itransformskip(state->encoder_control, residual, coeff, width); } else { kvz_itransform2d(state->encoder_control, residual, coeff, width, (color == COLOR_Y ? 0 : 65535)); } // Get quantized reconstruction. (residual + pred_in -> rec_out) for (y = 0; y < width; ++y) { for (x = 0; x < width; x+=4) { //int16_t val = residual[x + y * width] + pred_in[x + y * in_stride]; //rec_out[x + y * out_stride] = (kvz_pixel)CLIP(0, PIXEL_MAX, val); #if KVZ_BIT_DEPTH==8 __m128i v_residual = _mm_loadl_epi64((__m128i*)&(residual[x + y * width])); __m128i v_pred_in = _mm_cvtsi32_si128(*((int32_t*)&(pred_in[x + y * in_stride]))); __m128i v_val = _mm_add_epi16(v_residual, _mm_cvtepu8_epi16(v_pred_in)); *((int32_t*)&(rec_out[x + y * out_stride])) = _mm_cvtsi128_si32(_mm_packus_epi16(v_val, v_val)); #else assert(0); //TODO #endif } } } else if (rec_out != pred_in) { // With no coeffs and rec_out == pred_int we skip copying the coefficients // because the reconstruction is just the prediction. int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { rec_out[x + y * out_stride] = pred_in[x + y * in_stride]; } } } return has_coeffs; } void kvz_quant_avx2(const encoder_state_t * const state, coeff_t *coef, coeff_t *q_coef, int32_t width, int32_t height, int8_t type, int8_t scan_idx, int8_t block_type) { if (state->encoder_control->scaling_list.enable){ kvz_quant_generic(state, coef, q_coef, width, height, type, scan_idx, block_type); } else { kvz_quant_flat_avx2(state, coef, q_coef, width, height, type, scan_idx, block_type); } } #endif //COMPILE_INTEL_AVX2 int kvz_strategy_register_quant_avx2(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_AVX2 success &= kvz_strategyselector_register(opaque, "quant", "avx2", 40, &kvz_quant_avx2); success &= kvz_strategyselector_register(opaque, "quantize_residual", "avx2", 40, &kvz_quantize_residual_avx2); #endif //COMPILE_INTEL_AVX2 return success; }