/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include #include "ipol-avx2.h" #include "strategyselector.h" #include "encoder.h" #include "strategies/generic/picture-generic.h" extern int8_t g_luma_filter[4][8]; extern int8_t g_chroma_filter[8][4]; int16_t eight_tap_filter_hor_avx2(int8_t *filter, pixel *data) { int16_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t eight_tap_filter_hor_16bit_avx2(int8_t *filter, int16_t *data) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[i]; } return temp; } int16_t eight_tap_filter_ver_avx2(int8_t *filter, pixel *data, int16_t stride) { int16_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int32_t eight_tap_filter_ver_16bit_avx2(int8_t *filter, int16_t *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int16_t four_tap_filter_hor_avx2(int8_t *filter, pixel *data) { int16_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t four_tap_filter_hor_16bit_avx2(int8_t *filter, int16_t *data) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[i]; } return temp; } int16_t four_tap_filter_ver_avx2(int8_t *filter, pixel *data, int16_t stride) { int16_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int32_t four_tap_filter_ver_16bit_avx2(int8_t *filter, int16_t *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[stride * i]; } return temp; } void filter_inter_quarterpel_luma_avx2(const encoder_control_t * const encoder, pixel *src, int16_t src_stride, int width, int height, pixel *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag) { int32_t x, y; int32_t shift1 = BIT_DEPTH - 8; int32_t shift2 = 6; int32_t shift3 = 14 - BIT_DEPTH; int32_t offset3 = 1 << (shift3 - 1); int32_t offset23 = 1 << (shift2 + shift3 - 1); //coefficients for 1/4, 2/4 and 3/4 positions int8_t *c1, *c2, *c3; int i; c1 = g_luma_filter[1]; c2 = g_luma_filter[2]; c3 = g_luma_filter[3]; int16_t temp[3][8]; // Loop source pixels and generate sixteen filtered quarter-pel pixels on each round for (y = 0; y < height; y++) { int dst_pos_y = (y << 2)*dst_stride; int src_pos_y = y*src_stride; for (x = 0; x < width; x++) { // Calculate current dst and src pixel positions int dst_pos = dst_pos_y + (x << 2); int src_pos = src_pos_y + x; // Original pixel dst[dst_pos] = src[src_pos]; // if (hor_flag && !ver_flag) { temp[0][3] = eight_tap_filter_hor_avx2(c1, &src[src_pos - 3]) >> shift1; temp[1][3] = eight_tap_filter_hor_avx2(c2, &src[src_pos - 3]) >> shift1; temp[2][3] = eight_tap_filter_hor_avx2(c3, &src[src_pos - 3]) >> shift1; } // ea0,0 - needed only when ver_flag if (ver_flag) { dst[dst_pos + 1 * dst_stride] = fast_clip_16bit_to_pixel(((eight_tap_filter_ver_avx2(c1, &src[src_pos - 3 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 2 * dst_stride] = fast_clip_16bit_to_pixel(((eight_tap_filter_ver_avx2(c2, &src[src_pos - 3 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 3 * dst_stride] = fast_clip_16bit_to_pixel(((eight_tap_filter_ver_avx2(c3, &src[src_pos - 3 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); } // When both flags, we use _only_ this pixel (but still need ae0,0 for it) if (hor_flag && ver_flag) { // Calculate temporary values.. src_pos -= 3 * src_stride; //0,-3 for (i = 0; i < 8; ++i) { temp[0][i] = eight_tap_filter_hor_avx2(c1, &src[src_pos + i * src_stride - 3]) >> shift1; // h0(0,-3+i) temp[1][i] = eight_tap_filter_hor_avx2(c2, &src[src_pos + i * src_stride - 3]) >> shift1; // h1(0,-3+i) temp[2][i] = eight_tap_filter_hor_avx2(c3, &src[src_pos + i * src_stride - 3]) >> shift1; // h2(0,-3+i) } for (i = 0; i<3; ++i){ dst[dst_pos + 1 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((eight_tap_filter_hor_16bit_avx2(c1, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 2 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((eight_tap_filter_hor_16bit_avx2(c2, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 3 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((eight_tap_filter_hor_16bit_avx2(c3, &temp[i][0]) + offset23) >> shift2) >> shift3); } } if (hor_flag) { dst[dst_pos + 1] = fast_clip_32bit_to_pixel((temp[0][3] + offset3) >> shift3); dst[dst_pos + 2] = fast_clip_32bit_to_pixel((temp[1][3] + offset3) >> shift3); dst[dst_pos + 3] = fast_clip_32bit_to_pixel((temp[2][3] + offset3) >> shift3); } } } } /** * \brief Interpolation for chroma half-pixel * \param src source image in integer pels (-2..width+3, -2..height+3) * \param src_stride stride of source image * \param width width of source image block * \param height height of source image block * \param dst destination image in half-pixel resolution * \param dst_stride stride of destination image * */ void filter_inter_halfpel_chroma_avx2(const encoder_control_t * const encoder, pixel *src, int16_t src_stride, int width, int height, pixel *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag) { /* ____________ * | B0,0|ae0,0| * |ea0,0|ee0,0| * * ae0,0 = (-4*B-1,0 + 36*B0,0 + 36*B1,0 - 4*B2,0) >> shift1 * ea0,0 = (-4*B0,-1 + 36*B0,0 + 36*B0,1 - 4*B0,2) >> shift1 * ee0,0 = (-4*ae0,-1 + 36*ae0,0 + 36*ae0,1 - 4*ae0,2) >> shift2 */ int32_t x, y; int32_t shift1 = BIT_DEPTH - 8; int32_t shift2 = 6; int32_t shift3 = 14 - BIT_DEPTH; int32_t offset3 = 1 << (shift3 - 1); int32_t offset23 = 1 << (shift2 + shift3 - 1); int8_t* c = g_chroma_filter[4]; int16_t temp[4]; // Loop source pixels and generate four filtered half-pel pixels on each round for (y = 0; y < height; y++) { int dst_pos_y = (y << 1)*dst_stride; int src_pos_y = y*src_stride; for (x = 0; x < width; x++) { // Calculate current dst and src pixel positions int dst_pos = dst_pos_y + (x << 1); int src_pos = src_pos_y + x; // Original pixel (not really needed) dst[dst_pos] = src[src_pos]; //B0,0 // ae0,0 - We need this only when hor_flag and for ee0,0 if (hor_flag) { temp[1] = four_tap_filter_hor_avx2(c, &src[src_pos - 1]) >> shift1; // ae0,0 } // ea0,0 - needed only when ver_flag if (ver_flag) { dst[dst_pos + 1 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c, &src[src_pos - src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); // ea0,0 } // When both flags, we use _only_ this pixel (but still need ae0,0 for it) if (hor_flag && ver_flag) { // Calculate temporary values.. src_pos -= src_stride; //0,-1 temp[0] = (four_tap_filter_hor_avx2(c, &src[src_pos - 1]) >> shift1); // ae0,-1 src_pos += 2 * src_stride; //0,1 temp[2] = (four_tap_filter_hor_avx2(c, &src[src_pos - 1]) >> shift1); // ae0,1 src_pos += src_stride; //0,2 temp[3] = (four_tap_filter_hor_avx2(c, &src[src_pos - 1]) >> shift1); // ae0,2 dst[dst_pos + 1 * dst_stride + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c, temp) + offset23) >> shift2) >> shift3); // ee0,0 } if (hor_flag) { dst[dst_pos + 1] = fast_clip_32bit_to_pixel((temp[1] + offset3) >> shift3); } } } } void filter_inter_octpel_chroma_avx2(const encoder_control_t * const encoder, pixel *src, int16_t src_stride, int width, int height, pixel *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag) { int32_t x, y; int32_t shift1 = BIT_DEPTH - 8; int32_t shift2 = 6; int32_t shift3 = 14 - BIT_DEPTH; int32_t offset3 = 1 << (shift3 - 1); int32_t offset23 = 1 << (shift2 + shift3 - 1); //coefficients for 1/8, 2/8, 3/8, 4/8, 5/8, 6/8 and 7/8 positions int8_t *c1, *c2, *c3, *c4, *c5, *c6, *c7; int i; c1 = g_chroma_filter[1]; c2 = g_chroma_filter[2]; c3 = g_chroma_filter[3]; c4 = g_chroma_filter[4]; c5 = g_chroma_filter[5]; c6 = g_chroma_filter[6]; c7 = g_chroma_filter[7]; int16_t temp[7][4]; // Temporary horizontal values calculated from integer pixels // Loop source pixels and generate 64 filtered 1/8-pel pixels on each round for (y = 0; y < height; y++) { int dst_pos_y = (y << 3)*dst_stride; int src_pos_y = y*src_stride; for (x = 0; x < width; x++) { // Calculate current dst and src pixel positions int dst_pos = dst_pos_y + (x << 3); int src_pos = src_pos_y + x; // Original pixel dst[dst_pos] = src[src_pos]; // Horizontal 1/8-values if (hor_flag && !ver_flag) { temp[0][1] = (four_tap_filter_hor_avx2(c1, &src[src_pos - 1]) >> shift1); // ae0,0 h0 temp[1][1] = (four_tap_filter_hor_avx2(c2, &src[src_pos - 1]) >> shift1); temp[2][1] = (four_tap_filter_hor_avx2(c3, &src[src_pos - 1]) >> shift1); temp[3][1] = (four_tap_filter_hor_avx2(c4, &src[src_pos - 1]) >> shift1); temp[4][1] = (four_tap_filter_hor_avx2(c5, &src[src_pos - 1]) >> shift1); temp[5][1] = (four_tap_filter_hor_avx2(c6, &src[src_pos - 1]) >> shift1); temp[6][1] = (four_tap_filter_hor_avx2(c7, &src[src_pos - 1]) >> shift1); } // Vertical 1/8-values if (ver_flag) { dst[dst_pos + 1 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c1, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); // dst[dst_pos + 2 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c2, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 3 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c3, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 4 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c4, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 5 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c5, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 6 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c6, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); dst[dst_pos + 7 * dst_stride] = fast_clip_32bit_to_pixel(((four_tap_filter_ver_avx2(c7, &src[src_pos - 1 * src_stride], src_stride) >> shift1) + (1 << (shift3 - 1))) >> shift3); } // When both flags, interpolate values from temporary horizontal values if (hor_flag && ver_flag) { // Calculate temporary values src_pos -= 1 * src_stride; //0,-3 for (i = 0; i < 4; ++i) { temp[0][i] = (four_tap_filter_hor_avx2(c1, &src[src_pos + i * src_stride - 1]) >> shift1); temp[1][i] = (four_tap_filter_hor_avx2(c2, &src[src_pos + i * src_stride - 1]) >> shift1); temp[2][i] = (four_tap_filter_hor_avx2(c3, &src[src_pos + i * src_stride - 1]) >> shift1); temp[3][i] = (four_tap_filter_hor_avx2(c4, &src[src_pos + i * src_stride - 1]) >> shift1); temp[4][i] = (four_tap_filter_hor_avx2(c5, &src[src_pos + i * src_stride - 1]) >> shift1); temp[5][i] = (four_tap_filter_hor_avx2(c6, &src[src_pos + i * src_stride - 1]) >> shift1); temp[6][i] = (four_tap_filter_hor_avx2(c7, &src[src_pos + i * src_stride - 1]) >> shift1); } //Calculate values from temporary horizontal 1/8-values for (i = 0; i<7; ++i){ dst[dst_pos + 1 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c1, &temp[i][0]) + offset23) >> shift2) >> shift3); // ee0,0 dst[dst_pos + 2 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c2, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 3 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c3, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 4 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c4, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 5 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c5, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 6 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c6, &temp[i][0]) + offset23) >> shift2) >> shift3); dst[dst_pos + 7 * dst_stride + i + 1] = fast_clip_32bit_to_pixel(((four_tap_filter_hor_16bit_avx2(c7, &temp[i][0]) + offset23) >> shift2) >> shift3); } } if (hor_flag) { dst[dst_pos + 1] = fast_clip_32bit_to_pixel((temp[0][1] + offset3) >> shift3); dst[dst_pos + 2] = fast_clip_32bit_to_pixel((temp[1][1] + offset3) >> shift3); dst[dst_pos + 3] = fast_clip_32bit_to_pixel((temp[2][1] + offset3) >> shift3); dst[dst_pos + 4] = fast_clip_32bit_to_pixel((temp[3][1] + offset3) >> shift3); dst[dst_pos + 5] = fast_clip_32bit_to_pixel((temp[4][1] + offset3) >> shift3); dst[dst_pos + 6] = fast_clip_32bit_to_pixel((temp[5][1] + offset3) >> shift3); dst[dst_pos + 7] = fast_clip_32bit_to_pixel((temp[6][1] + offset3) >> shift3); } } } } void extend_borders_avx2(int xpos, int ypos, int mv_x, int mv_y, int off_x, int off_y, pixel *ref, int ref_width, int ref_height, int filterSize, int width, int height, pixel *dst) { int16_t mv[2] = { mv_x, mv_y }; int halfFilterSize = filterSize >> 1; int dst_y; int y; int dst_x; int x; int coord_x; int coord_y; int8_t overflow_neg_y_temp, overflow_pos_y_temp, overflow_neg_x_temp, overflow_pos_x_temp; for (dst_y = 0, y = ypos - halfFilterSize; y < ((ypos + height)) + halfFilterSize; dst_y++, y++) { // calculate y-pixel offset coord_y = y + off_y + mv[1]; // On y-overflow set coord_y accordingly overflow_neg_y_temp = (coord_y < 0) ? 1 : 0; overflow_pos_y_temp = (coord_y >= ref_height) ? 1 : 0; if (overflow_neg_y_temp) coord_y = 0; else if (overflow_pos_y_temp) coord_y = (ref_height)-1; coord_y *= ref_width; for (dst_x = 0, x = (xpos)-halfFilterSize; x < ((xpos + width)) + halfFilterSize; dst_x++, x++) { coord_x = x + off_x + mv[0]; // On x-overflow set coord_x accordingly overflow_neg_x_temp = (coord_x < 0) ? 1 : 0; overflow_pos_x_temp = (coord_x >= ref_width) ? 1 : 0; if (overflow_neg_x_temp) coord_x = 0; else if (overflow_pos_x_temp) coord_x = ref_width - 1; // Store source block data (with extended borders) dst[dst_y*(width + filterSize) + dst_x] = ref[coord_y + coord_x]; } } } int strategy_register_ipol_avx2(void* opaque) { bool success = true; success &= strategyselector_register(opaque, "filter_inter_quarterpel_luma", "avx2", 0, &filter_inter_quarterpel_luma_avx2); success &= strategyselector_register(opaque, "filter_inter_halfpel_chroma", "avx2", 0, &filter_inter_halfpel_chroma_avx2); success &= strategyselector_register(opaque, "filter_inter_octpel_chroma", "avx2", 0, &filter_inter_octpel_chroma_avx2); success &= strategyselector_register(opaque, "extend_borders", "avx2", 0, &extend_borders_avx2); return success; }