/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encode_coding_tree.h" #include "cabac.h" #include "context.h" #include "cu.h" #include "encoder.h" #include "extras/crypto.h" #include "imagelist.h" #include "inter.h" #include "intra.h" #include "kvazaar.h" #include "kvz_math.h" #include "tables.h" #include "videoframe.h" /** * \brief Encode (X,Y) position of the last significant coefficient * * \param lastpos_x X component of last coefficient * \param lastpos_y Y component of last coefficient * \param width Block width * \param height Block height * \param type plane type / luminance or chrominance * \param scan scan type (diag, hor, ver) DEPRECATED? * * This method encodes the X and Y component within a block of the last * significant coefficient. */ static void encode_last_significant_xy(cabac_data_t * const cabac, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { const int index = kvz_math_floor_log2(width); const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 }; //ToDo: own ctx_offset and shift for X and Y uint8_t ctx_offset = type ? 0 : prefix_ctx[index]; uint8_t shift = type ? CLIP(0, 2, width>>3) : (index+1)>>2; cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma); cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma); /* if (scan == SCAN_VER) { SWAP(lastpos_x, lastpos_y, uint8_t); } */ const int group_idx_x = g_group_idx[lastpos_x]; const int group_idx_y = g_group_idx[lastpos_y]; // x prefix int last_x = 0; for (last_x = 0; last_x < group_idx_x; last_x++) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (last_x >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_x_prefix"); } if (group_idx_x < ( /*width == 32 ? g_group_idx[15] : */g_group_idx[MIN(32, (int32_t)width) - 1])) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (last_x >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_x_prefix"); } // y prefix int last_y = 0; for (last_y = 0; last_y < group_idx_y; last_y++) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (last_y >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_y_prefix"); } if (group_idx_y < (/* height == 32 ? g_group_idx[15] : */g_group_idx[MIN(32, (int32_t)height) - 1])) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (last_y >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_y_prefix"); } // last_sig_coeff_x_suffix if (group_idx_x > 3) { const int suffix = lastpos_x - g_min_in_group[group_idx_x]; const int bits = (group_idx_x - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_x_suffix"); } // last_sig_coeff_y_suffix if (group_idx_y > 3) { const int suffix = lastpos_y - g_min_in_group[group_idx_y]; const int bits = (group_idx_y - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_y_suffix"); } } /** * \brief Encode block coefficients * * \param state current encoder state * \param cabac current cabac state * \param coeff Input coefficients * \param width Block width * \param type plane type / luminance or chrominance * \param scan_mode scan type (diag, hor, ver) DEPRECATED? * * This method encodes coefficients of a block * */ void kvz_encode_coeff_nxn(encoder_state_t * const state, cabac_data_t * const cabac, const coeff_t *coeff, uint8_t width, uint8_t type, int8_t scan_mode, int8_t tr_skip, uint8_t cbf_cb) { //const encoder_control_t * const encoder = state->encoder_control; //int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; // ToDo: large block support in VVC? uint32_t sig_coeffgroup_flag[32 * 32] = { 0 }; int32_t scan_pos; //int32_t next_sig_pos; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2; const uint32_t *scan = kvz_g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode]; const uint32_t clipped_log2_size = log2_block_size > 4 ? 4 : log2_block_size; const uint32_t num_blk_side = width >> clipped_log2_size; // Init base contexts according to block type cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.sig_coeff_group_model[(type == 0 ? 0 : 1) * 2]); // Scan all coeff groups to find out which of them have coeffs. // Populate sig_coeffgroup_flag with that info. /* unsigned sig_cg_cnt = 0; for (int cg_y = 0; cg_y < width / 4; ++cg_y) { for (int cg_x = 0; cg_x < width / 4; ++cg_x) { unsigned cg_pos = cg_y * width * 4 + cg_x * 4; for (int coeff_row = 0; coeff_row < 4; ++coeff_row) { // Load four 16-bit coeffs and see if any of them are non-zero. unsigned coeff_pos = cg_pos + coeff_row * width; uint64_t four_coeffs = *(uint64_t*)(&coeff[coeff_pos]); if (four_coeffs) { ++sig_cg_cnt; unsigned cg_pos_y = (cg_pos >> log2_block_size) >> TR_MIN_LOG2_SIZE; unsigned cg_pos_x = (cg_pos & (width - 1)) >> TR_MIN_LOG2_SIZE; assert(cg_pos_x + cg_pos_y * num_blk_side < 8 * 8); sig_coeffgroup_flag[cg_pos_x + cg_pos_y * num_blk_side] = 1; break; } } } } // Rest of the code assumes at least one non-zero coeff. assert(sig_cg_cnt > 0); // Find the last coeff group by going backwards in scan order. unsigned scan_cg_last = num_blk_side * num_blk_side - 1; while (!sig_coeffgroup_flag[scan_cg[scan_cg_last]]) { --scan_cg_last; } // Find the last coeff by going backwards in scan order. unsigned scan_pos_last = scan_cg_last * 16 + 15; while (!coeff[scan[scan_pos_last]]) { --scan_pos_last; } */ unsigned scan_cg_last = -1; unsigned scan_pos_last = -1; for (int i = 0; i < width * width; i++) { if (coeff[scan[i]]) { scan_pos_last = i; sig_coeffgroup_flag[scan_cg[i >> clipped_log2_size]] = 1; } } scan_cg_last = scan_pos_last >> clipped_log2_size; int pos_last = scan[scan_pos_last]; // transform skip flag /* if (width == 4 && encoder->cfg.trskip_enable) { cabac->cur_ctx = (type == 0) ? &(cabac->ctx.transform_skip_model_luma) : &(cabac->ctx.transform_skip_model_chroma); CABAC_BIN(cabac, tr_skip, "transform_skip_flag"); } */ last_coeff_y = (uint8_t)(pos_last / width); last_coeff_x = (uint8_t)(pos_last - (last_coeff_y * width)); // Code last_coeff_x and last_coeff_y encode_last_significant_xy(cabac, last_coeff_x, last_coeff_y, width, width, type, scan_mode); uint32_t quant_state_transition_table = 0; //ToDo: dep quant enable changes this int32_t quant_state = 0; uint8_t ctx_offset[16]; int32_t temp_diag = -1; int32_t temp_sum = -1; // significant_coeff_flag for (i = scan_cg_last; i >= 0; i--) { //int32_t abs_coeff[64*64]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / (MIN((uint8_t)32, width) >> (clipped_log2_size/2)); int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * (MIN((uint8_t)32, width) >> (clipped_log2_size / 2))); /*if (type == 0 && width <= 32) { if ((width == 32 && (cg_pos_x >= (16 >> clipped_log2_size))) || (width == 32 && (cg_pos_y >= (16 >> clipped_log2_size)))) { continue; } }*/ // !!! residual_coding_subblock() !!! // Encode significant coeff group flag when not the last or the first if (i == scan_cg_last || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, (MIN((uint8_t)32, width) >> (clipped_log2_size / 2))); cabac->cur_ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(cabac, sig_coeff_group, "significant_coeffgroup_flag"); } if (sig_coeffgroup_flag[cg_blk_pos]) { uint32_t next_pass = 0; int32_t min_sub_pos = i << clipped_log2_size; // LOG2_SCAN_SET_SIZE; int32_t first_sig_pos = (i == scan_cg_last) ? scan_pos_last : (min_sub_pos + (1 << clipped_log2_size) - 1); int32_t next_sig_pos = first_sig_pos; int32_t infer_sig_pos = (next_sig_pos != scan_pos_last) ? ((i != 0) ? min_sub_pos : -1) : next_sig_pos; int32_t num_non_zero = 0; int32_t reg_bins = 32; //8 for 2x2 int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = next_sig_pos; int32_t remainder_abs_coeff = -1; uint32_t coeff_signs = 0; /* **** FIRST PASS **** */ for (next_sig_pos = first_sig_pos; next_sig_pos >= min_sub_pos && reg_bins >= 4; next_sig_pos--) { blk_pos = scan[next_sig_pos]; pos_y = blk_pos / width; pos_x = blk_pos - (pos_y * width); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (num_non_zero || next_sig_pos != infer_sig_pos) { ctx_sig = kvz_context_get_sig_ctx_idx_abs(coeff, pos_x, pos_y, width, width, type, &temp_diag, &temp_sum); cabac_ctx_t* sig_ctx_luma = &(cabac->ctx.cu_sig_model_luma[MAX(0, quant_state - 1)][ctx_sig]); cabac_ctx_t* sig_ctx_chroma = &(cabac->ctx.cu_sig_model_chroma[MAX(0, quant_state - 1)][ctx_sig]); cabac->cur_ctx = (type == 0 ? sig_ctx_luma : sig_ctx_chroma); CABAC_BIN(cabac, sig, "sig_coeff_flag"); reg_bins--; } else if(next_sig_pos != scan_pos_last) { ctx_sig = kvz_context_get_sig_ctx_idx_abs(coeff, pos_x, pos_y, width, width, type, &temp_diag, &temp_sum); } if (sig) { assert(next_sig_pos - min_sub_pos >= 0 && next_sig_pos - min_sub_pos < 16); uint8_t* offset = &ctx_offset[next_sig_pos - min_sub_pos]; num_non_zero++; // ctxOffsetAbs() { *offset = 0; if (temp_diag != -1) { *offset = MIN(temp_sum, 4) + 1; *offset += (!temp_diag ? (type == 0 /* luma channel*/ ? 15 : 5) : type == 0 /* luma channel*/ ? temp_diag < 3 ? 10 : (temp_diag < 10 ? 5 : 0) : 0); } } last_nz_pos_in_cg = MAX(last_nz_pos_in_cg, next_sig_pos); first_nz_pos_in_cg = next_sig_pos; remainder_abs_coeff = abs(coeff[blk_pos]) - 1; // If shift sign pattern and add current sign coeff_signs = (next_sig_pos != scan_pos_last ? 2 * coeff_signs : coeff_signs) + (coeff[blk_pos] < 0); // Code "greater than 1" flag uint8_t gt1 = remainder_abs_coeff ? 1 : 0; cabac->cur_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[1][*offset]) : &(cabac->ctx.cu_gtx_flag_model_chroma[1][*offset]); CABAC_BIN(cabac, gt1, "gt1_flag"); reg_bins--; if (gt1) { remainder_abs_coeff -= 1; // Code coeff parity cabac->cur_ctx = (type == 0) ? &(cabac->ctx.cu_parity_flag_model_luma[*offset]) : &(cabac->ctx.cu_parity_flag_model_chroma[*offset]); CABAC_BIN(cabac, remainder_abs_coeff & 1, "par_flag"); remainder_abs_coeff >>= 1; reg_bins--; uint8_t gt2 = remainder_abs_coeff ? 1 : 0; cabac->cur_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[0][*offset]) : &(cabac->ctx.cu_gtx_flag_model_chroma[0][*offset]); CABAC_BIN(cabac, gt2, "gt2_flag"); reg_bins--; } } quant_state = (quant_state_transition_table >> ((quant_state << 2) + ((coeff[blk_pos] & 1) << 1))) & 3; } /* **** SECOND PASS **** */ /* if (next_pass) { next_pass = 0; for (scan_pos = first_sig_pos; scan_pos >= min_sub_pos; scan_pos--) { blk_pos = scan[scan_pos]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); if (abs(coeff[blk_pos]) > 2) { assert(scan_pos - min_sub_pos >= 0 && scan_pos - min_sub_pos < 16); uint8_t* offset = &ctx_offset[scan_pos - min_sub_pos]; uint8_t gt2 = abs(coeff[blk_pos]) > 4 ? 1 : 0; cabac->cur_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[0][*offset]) : &(cabac->ctx.cu_gtx_flag_model_chroma[0][*offset]); CABAC_BIN(cabac, gt2, "gt2_flag"); next_pass |= gt2; } } } */ /* **** THIRD PASS **** */ /* **** SECOND PASS: Go-rice **** */ uint32_t rice_param = 0; uint32_t pos0 = 0; for (scan_pos = first_sig_pos; scan_pos > next_sig_pos; scan_pos--) { blk_pos = scan[scan_pos]; pos_y = blk_pos / width; pos_x = blk_pos - (pos_y * width); int32_t abs_sum = kvz_abs_sum(coeff, pos_x, pos_y, width, width, 4); rice_param = g_go_rice_pars[abs_sum]; uint32_t second_pass_abs_coeff = abs(coeff[blk_pos]); if (second_pass_abs_coeff >= 4) { uint32_t remainder = (second_pass_abs_coeff - 4) >> 1; kvz_cabac_write_coeff_remain(cabac, remainder, rice_param); } } /* **** coeff bypass **** */ for (scan_pos = next_sig_pos; scan_pos >= min_sub_pos; scan_pos--) { blk_pos = scan[scan_pos]; pos_y = blk_pos / width; pos_x = blk_pos - (pos_y * width); uint32_t coeff_abs = abs(coeff[blk_pos]); int32_t abs_sum = kvz_abs_sum(coeff, pos_x, pos_y, width, width, 0); rice_param = g_go_rice_pars[abs_sum]; pos0 = g_go_rice_pos0[MAX(0, quant_state - 1)][abs_sum]; uint32_t remainder = (coeff_abs == 0 ? pos0 : coeff_abs <= pos0 ? coeff_abs - 1 : coeff_abs); kvz_cabac_write_coeff_remain(cabac, remainder, rice_param); quant_state = (quant_state_transition_table >> ((quant_state << 2) + ((coeff_abs & 1) << 1))) & 3; if (coeff_abs) { num_non_zero++; last_nz_pos_in_cg = MAX(last_nz_pos_in_cg, scan_pos); coeff_signs <<= 1; if (coeff[blk_pos] < 0) coeff_signs++; } } uint32_t num_signs = num_non_zero; //ToDo: sign hiding if(state->encoder_control->cfg.signhide_enable && (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4)) { num_signs --; coeff_signs >>= 1; } CABAC_BINS_EP(cabac, coeff_signs, num_signs, "coeff_signs"); } } } #if 0 void kvz_encode_coeff_nxn(encoder_state_t * const state, cabac_data_t * const cabac, const coeff_t *coeff, uint8_t width, uint8_t type, int8_t scan_mode, int8_t tr_skip) { const encoder_control_t * const encoder = state->encoder_control; int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[8 * 8] = { 0 }; int8_t be_valid = 0;// encoder->cfg.signhide_enable; int32_t scan_pos_sig; uint32_t go_rice_param = 0; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t num_blk_side = width >> TR_MIN_LOG2_SIZE; const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2; const uint32_t *scan = kvz_g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode]; // Init base contexts according to block type cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.cu_sig_coeff_group_model[type]); cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0][0]) : &(cabac->ctx.cu_sig_model_chroma[0][0]); // Scan all coeff groups to find out which of them have coeffs. // Populate sig_coeffgroup_flag with that info. unsigned sig_cg_cnt = 0; for (int cg_y = 0; cg_y < width / 4; ++cg_y) { for (int cg_x = 0; cg_x < width / 4; ++cg_x) { unsigned cg_pos = cg_y * width * 4 + cg_x * 4; for (int coeff_row = 0; coeff_row < 4; ++coeff_row) { // Load four 16-bit coeffs and see if any of them are non-zero. unsigned coeff_pos = cg_pos + coeff_row * width; uint64_t four_coeffs = *(uint64_t*)(&coeff[coeff_pos]); if (four_coeffs) { ++sig_cg_cnt; unsigned cg_pos_y = (cg_pos >> log2_block_size) >> TR_MIN_LOG2_SIZE; unsigned cg_pos_x = (cg_pos & (width - 1)) >> TR_MIN_LOG2_SIZE; sig_coeffgroup_flag[cg_pos_x + cg_pos_y * num_blk_side] = 1; break; } } } } // Rest of the code assumes at least one non-zero coeff. assert(sig_cg_cnt > 0); // Find the last coeff group by going backwards in scan order. unsigned scan_cg_last = num_blk_side * num_blk_side - 1; while (!sig_coeffgroup_flag[scan_cg[scan_cg_last]]) { --scan_cg_last; } // Find the last coeff by going backwards in scan order. unsigned scan_pos_last = scan_cg_last * 16 + 15; while (!coeff[scan[scan_pos_last]]) { --scan_pos_last; } int pos_last = scan[scan_pos_last]; // transform skip flag if(width == 4 && encoder->cfg.trskip_enable) { cabac->cur_ctx = (type == 0) ? &(cabac->ctx.transform_skip_model_luma) : &(cabac->ctx.transform_skip_model_chroma); CABAC_BIN(cabac, tr_skip, "transform_skip_flag"); } last_coeff_x = pos_last & (width - 1); last_coeff_y = (uint8_t)(pos_last >> log2_block_size); // Code last_coeff_x and last_coeff_y encode_last_significant_xy(cabac, last_coeff_x, last_coeff_y, width, width, type, scan_mode); scan_pos_sig = scan_pos_last; // significant_coeff_flag for (i = scan_cg_last; i >= 0; i--) { int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE; int32_t abs_coeff[16]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / num_blk_side; int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side); uint32_t coeff_signs = 0; int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = 16; int32_t num_non_zero = 0; go_rice_param = 0; if (scan_pos_sig == scan_pos_last) { abs_coeff[0] = abs(coeff[pos_last]); coeff_signs = (coeff[pos_last] < 0); num_non_zero = 1; last_nz_pos_in_cg = scan_pos_sig; first_nz_pos_in_cg = scan_pos_sig; scan_pos_sig--; } // Encode significant coeff group flag when not the last or the first if (i == scan_cg_last || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); cabac->cur_ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(cabac, sig_coeff_group, "coded_sub_block_flag"); } if (sig_coeffgroup_flag[cg_blk_pos]) { int32_t pattern_sig_ctx = kvz_context_calc_pattern_sig_ctx(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); for (; scan_pos_sig >= sub_pos; scan_pos_sig--) { blk_pos = scan[scan_pos_sig]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) { ctx_sig = kvz_context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y, log2_block_size, type); cabac->cur_ctx = &baseCtx[ctx_sig]; CABAC_BIN(cabac, sig, "sig_coeff_flag"); } if (sig) { abs_coeff[num_non_zero] = abs(coeff[blk_pos]); coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0); num_non_zero++; if (last_nz_pos_in_cg == -1) { last_nz_pos_in_cg = scan_pos_sig; } first_nz_pos_in_cg = scan_pos_sig; } } } else { scan_pos_sig = sub_pos - 1; } if (num_non_zero > 0) { bool sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 /* SBH_THRESHOLD */ && !encoder->cfg.lossless; uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0; cabac_ctx_t *base_ctx_mod; int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2; if (c1 == 0) { ctx_set++; } c1 = 1; base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_one_model_luma[4 * ctx_set]) : &(cabac->ctx.cu_one_model_chroma[4 * ctx_set]); num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER); first_c2_flag_idx = -1; for (idx = 0; idx < num_c1_flag; idx++) { uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[c1]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater1_flag"); if (symbol) { c1 = 0; if (first_c2_flag_idx == -1) { first_c2_flag_idx = idx; } } else if ((c1 < 3) && (c1 > 0)) { c1++; } } if (c1 == 0) { base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_abs_model_luma[ctx_set]) : &(cabac->ctx.cu_abs_model_chroma[ctx_set]); if (first_c2_flag_idx != -1) { uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[0]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater2_flag"); } } if (be_valid && sign_hidden) { coeff_signs = coeff_signs >> 1; if (!cabac->only_count) if (encoder->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFF_SIGNS) { coeff_signs = coeff_signs ^ kvz_crypto_get_key(state->crypto_hdl, num_non_zero-1); } CABAC_BINS_EP(cabac, coeff_signs , (num_non_zero - 1), "coeff_sign_flag"); } else { if (!cabac->only_count) if (encoder->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFF_SIGNS) coeff_signs = coeff_signs ^ kvz_crypto_get_key(state->crypto_hdl, num_non_zero); CABAC_BINS_EP(cabac, coeff_signs, num_non_zero, "coeff_sign_flag"); } if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) { first_coeff2 = 1; for (idx = 0; idx < num_non_zero; idx++) { int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1; if (abs_coeff[idx] >= base_level) { if (!cabac->only_count) { if (encoder->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFFS) kvz_cabac_write_coeff_remain_encry(state, cabac, abs_coeff[idx] - base_level, go_rice_param, base_level); else kvz_cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param); } else kvz_cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param); if (abs_coeff[idx] > 3 * (1 << go_rice_param)) { go_rice_param = MIN(go_rice_param + 1, 4); } } if (abs_coeff[idx] >= 2) { first_coeff2 = 0; } } } } } } #endif static void encode_transform_unit(encoder_state_t * const state, int x, int y, int depth) { assert(depth >= 1 && depth <= MAX_PU_DEPTH); const videoframe_t * const frame = state->tile->frame; const uint8_t width = LCU_WIDTH >> depth; const uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); int8_t scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode, depth); if (state->encoder_control->chroma_format != KVZ_CSP_400) { // joint_cb_cr /* if (type == 2 && cbf_mask) { cabac->cur_ctx = &(cabac->ctx.joint_bc_br[0]); CABAC_BIN(cabac, 0, "joint_cb_cr"); } */ } int cbf_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); if (cbf_y) { int x_local = x % LCU_WIDTH; int y_local = y % LCU_WIDTH; const coeff_t *coeff_y = &state->coeff->y[xy_to_zorder(LCU_WIDTH, x_local, y_local)]; // CoeffNxN // Residual Coding kvz_encode_coeff_nxn(state, &state->cabac, coeff_y, width, 0, scan_idx, cur_pu->tr_skip, 0); } if (depth == MAX_DEPTH + 1) { // For size 4x4 luma transform the corresponding chroma transforms are // also of size 4x4 covering 8x8 luma pixels. The residual is coded in // the last transform unit. if (x % 8 == 0 || y % 8 == 0) { // Not the last luma transform block so there is nothing more to do. return; } else { // Time to to code the chroma transform blocks. Move to the top-left // corner of the block. x -= 4; y -= 4; cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); } } bool chroma_cbf_set = cbf_is_set(cur_pu->cbf, depth, COLOR_U) || cbf_is_set(cur_pu->cbf, depth, COLOR_V); if (chroma_cbf_set) { int x_local = (x >> 1) % LCU_WIDTH_C; int y_local = (y >> 1) % LCU_WIDTH_C; scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode_chroma, depth); const coeff_t *coeff_u = &state->coeff->u[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; const coeff_t *coeff_v = &state->coeff->v[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; if (cbf_is_set(cur_pu->cbf, depth, COLOR_U)) { kvz_encode_coeff_nxn(state, &state->cabac, coeff_u, width_c, 1, scan_idx, 0, 0); } if (cbf_is_set(cur_pu->cbf, depth, COLOR_V)) { kvz_encode_coeff_nxn(state, &state->cabac, coeff_v, width_c, 2, scan_idx, 0, cbf_is_set(cur_pu->cbf, depth, COLOR_U)); } } } /** * \param encoder * \param x_pu Prediction units' x coordinate. * \param y_pu Prediction units' y coordinate. * \param depth Depth from LCU. * \param tr_depth Depth from last CU. * \param parent_coeff_u What was signaled at previous level for cbf_cb. * \param parent_coeff_v What was signlaed at previous level for cbf_cr. */ static void encode_transform_coeff(encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v) { cabac_data_t * const cabac = &state->cabac; //const encoder_control_t *const ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y); // Round coordinates down to a multiple of 8 to get the location of the // containing CU. const int x_cu = 8 * (x / 8); const int y_cu = 8 * (y / 8); const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x_cu, y_cu); // NxN signifies implicit transform split at the first transform level. // There is a similar implicit split for inter, but it is only used when // transform hierarchy is not in use. //int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN); // The implicit split by intra NxN is not counted towards max_tr_depth. /* int max_tr_depth; if (cur_cu->type == CU_INTRA) { max_tr_depth = ctrl->cfg.tr_depth_intra + intra_split_flag; } else { max_tr_depth = ctrl->tr_depth_inter; } */ int8_t split = (LCU_WIDTH >> depth > TR_MAX_WIDTH); const int cb_flag_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); const int cb_flag_u = cbf_is_set(cur_cu->cbf, depth, COLOR_U); const int cb_flag_v = cbf_is_set(cur_cu->cbf, depth, COLOR_V); // The split_transform_flag is not signaled when: // - transform size is greater than 32 (depth == 0) // - transform size is 4 (depth == MAX_PU_DEPTH) // - transform depth is max // - cu is intra NxN and it's the first split //ToDo: check BMS transform split in QTBT /* if (depth > 0 && depth < MAX_PU_DEPTH && tr_depth < max_tr_depth && !(intra_split_flag && tr_depth == 0)) { cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]); CABAC_BIN(cabac, split, "split_transform_flag"); } */ // Chroma cb flags are not signaled when one of the following: // - transform size is 4 (2x2 chroma transform doesn't exist) // - they have already been signaled to 0 previously // When they are not present they are inferred to be 0, except for size 4 // when the flags from previous level are used. if (state->encoder_control->chroma_format != KVZ_CSP_400) { if (!split) { if (true) { assert(tr_depth < 5); cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_cb[0]); CABAC_BIN(cabac, cb_flag_u, "cbf_cb"); } if (true) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_cr[cb_flag_u ? 1 : 0]); CABAC_BIN(cabac, cb_flag_v, "cbf_cr"); } } } if (split) { uint8_t offset = LCU_WIDTH >> (depth + 1); int x2 = x + offset; int y2 = y + offset; encode_transform_coeff(state, x, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x2, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x2, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); return; } // Luma coded block flag is signaled when one of the following: // - prediction mode is intra // - transform depth > 0 // - we have chroma coefficients at this level // When it is not present, it is inferred to be 1. if (cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[0]); CABAC_BIN(cabac, cb_flag_y, "cbf_luma"); } if (cb_flag_y | cb_flag_u | cb_flag_v) { if (state->must_code_qp_delta) { const int qp_pred = kvz_get_cu_ref_qp(state, x_cu, y_cu, state->last_qp); const int qp_delta = cur_cu->qp - qp_pred; const int qp_delta_abs = ABS(qp_delta); cabac_data_t* cabac = &state->cabac; // cu_qp_delta_abs prefix cabac->cur_ctx = &cabac->ctx.cu_qp_delta_abs[0]; kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.cu_qp_delta_abs, MIN(qp_delta_abs, 5), 1, 5); if (qp_delta_abs >= 5) { // cu_qp_delta_abs suffix kvz_cabac_write_ep_ex_golomb(state, cabac, qp_delta_abs - 5, 0); } if (qp_delta != 0) { CABAC_BIN_EP(cabac, (qp_delta >= 0 ? 0 : 1), "qp_delta_sign_flag"); } state->must_code_qp_delta = false; } encode_transform_unit(state, x, y, depth); } } static void encode_inter_prediction_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x, int y, int width, int height, int depth) { // Mergeflag int16_t num_cand = 0; cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model); CABAC_BIN(cabac, cur_cu->merged, "MergeFlag"); num_cand = MRG_MAX_NUM_CANDS; if (cur_cu->merged) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) break; } } } else { if (state->frame->slicetype == KVZ_SLICE_B) { // Code Inter Dir uint8_t inter_dir = cur_cu->inter.mv_dir-1; if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 8) { // ToDo: large CTU changes this inter_dir context selection cabac->cur_ctx = &(cabac->ctx.inter_dir[depth]); CABAC_BIN(cabac, (inter_dir == 2), "inter_pred_idc"); } if (inter_dir < 2) { cabac->cur_ctx = &(cabac->ctx.inter_dir[4]); CABAC_BIN(cabac, inter_dir, "inter_pred_idc"); } } for (uint32_t ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { if (!(cur_cu->inter.mv_dir & (1 << ref_list_idx))) { continue; } // size of the current reference index list (L0/L1) uint8_t ref_LX_size = state->frame->ref_LX_size[ref_list_idx]; if (ref_LX_size > 1) { // parseRefFrmIdx int32_t ref_frame = cur_cu->inter.mv_ref[ref_list_idx]; cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]); CABAC_BIN(cabac, (ref_frame != 0), "ref_idx_lX"); if (ref_frame > 0) { ref_frame--; int32_t ref_num = ref_LX_size - 2; for (int32_t i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { cabac->cur_ctx = &cabac->ctx.cu_ref_pic_model[1]; CABAC_BIN(cabac, symbol, "ref_idx_lX"); } else { CABAC_BIN_EP(cabac, symbol, "ref_idx_lX"); } if (symbol == 0) break; } } } if (state->frame->ref_list != REF_PIC_LIST_1 || cur_cu->inter.mv_dir != 3) { int16_t mv_cand[2][2]; kvz_inter_get_mv_cand_cua( state, x, y, width, height, mv_cand, cur_cu, ref_list_idx); uint8_t cu_mv_cand = CU_GET_MV_CAND(cur_cu, ref_list_idx); const int32_t mvd_hor = cur_cu->inter.mv[ref_list_idx][0] - mv_cand[cu_mv_cand][0]; const int32_t mvd_ver = cur_cu->inter.mv[ref_list_idx][1] - mv_cand[cu_mv_cand][1]; kvz_encode_mvd(state, cabac, mvd_hor, mvd_ver); } // Signal which candidate MV to use kvz_cabac_write_unary_max_symbol(cabac, &cabac->ctx.mvp_idx_model, CU_GET_MV_CAND(cur_cu, ref_list_idx), 1, AMVP_MAX_NUM_CANDS - 1); } // for ref_list } // if !merge } static void encode_intra_coding_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x, int y, int depth) { const videoframe_t * const frame = state->tile->frame; uint8_t intra_pred_mode_actual[4]; uint8_t *intra_pred_mode = intra_pred_mode_actual; uint8_t intra_pred_mode_chroma = cur_cu->intra.mode_chroma; int8_t intra_preds[4][INTRA_MPM_COUNT] = {{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; uint32_t flag[4]; /* if ((cur_cu->type == CU_INTRA && (LCU_WIDTH >> cur_cu->depth <= 32))) { cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[0]); CABAC_BIN(cabac, cur_cu->bdpcmMode > 0 ? 1 : 0, "bdpcm_mode"); if (cur_cu->bdpcmMode) { cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[1]); CABAC_BIN(cabac, cur_cu->bdpcmMode > 1 ? 1 : 0, "bdpcm_mode > 1"); } } */ #if ENABLE_PCM == 1 // Code must start after variable initialization kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0 #endif if (cur_cu->type == 1 && (LCU_WIDTH >> depth <= 32)) { cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[0]); CABAC_BIN(cabac, 0, "bdpcm_mode"); } const int num_pred_units = kvz_part_mode_num_parts[cur_cu->part_size]; //ToDo: update multi_ref_lines variable when it's something else than constant 3 int multi_ref_lines = 3; /* if(isp_enable_flag){ //ToDo: implement flag value to be something else than constant zero for (int i = 0; i < num_pred_units; i++) { if (multi_ref_lines > 1) { cabac->cur_ctx = &(cabac->ctx.multi_ref_line[0]); CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 0, "multi_ref_line_0"); if (multi_ref_lines > 2 && cur_cu->intra.multi_ref_idx != 0) { cabac->cur_ctx = &(cabac->ctx.multi_ref_line[1]); CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 1, "multi_ref_line_1"); if (multi_ref_lines > 3 && cur_cu->intra.multi_ref_idx != 1) { cabac->cur_ctx = &(cabac->ctx.multi_ref_line[2]); CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 3, "multi_ref_line_2"); } } } } } */ // Intra Subpartition mode uint32_t width = (LCU_WIDTH >> depth); uint32_t height = (LCU_WIDTH >> depth); bool enough_samples = kvz_g_convert_to_bit[width] + kvz_g_convert_to_bit[height] > (kvz_g_convert_to_bit[4 /* MIN_TB_SIZEY*/] << 1); uint8_t isp_mode = 0; // ToDo: add height comparison //isp_mode += ((width > TR_MAX_WIDTH) || !enough_samples) ? 1 : 0; //isp_mode += ((height > TR_MAX_WIDTH) || !enough_samples) ? 2 : 0; bool allow_isp = enough_samples; if (cur_cu->type == 1/*intra*/ && (y % LCU_WIDTH) != 0) { cabac->cur_ctx = &(cabac->ctx.multi_ref_line[0]); CABAC_BIN(cabac, 0, "multi_ref_line"); } // ToDo: update real usage, these if clauses as such don't make any sense if (isp_mode != 0) { if (isp_mode) { cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[0]); CABAC_BIN(cabac, 0, "intra_subPartitions"); } else { cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[0]); CABAC_BIN(cabac, 1, "intra_subPartitions"); // ToDo: complete this if-clause if (isp_mode == 3) { cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[1]); CABAC_BIN(cabac, allow_isp - 1, "intra_subPart_ver_hor"); } } } // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode // ToDo: fix comments for VVC const int cu_width = LCU_WIDTH >> depth; cabac->cur_ctx = &(cabac->ctx.intra_luma_mpm_flag_model); for (int j = 0; j < num_pred_units; ++j) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); const cu_info_t *left_pu = NULL; const cu_info_t *above_pu = NULL; if (pu_x > 0) { assert(pu_x >> 2 > 0); left_pu = kvz_cu_array_at_const(frame->cu_array, pu_x - 1, pu_y); } // Don't take the above PU across the LCU boundary. if (pu_y % LCU_WIDTH > 0 && pu_y > 0) { assert(pu_y >> 2 > 0); above_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y - 1); } kvz_intra_get_dir_luma_predictor(pu_x, pu_y, intra_preds[j], cur_pu, left_pu, above_pu); intra_pred_mode_actual[j] = cur_pu->intra.mode; for (int i = 0; i < INTRA_MPM_COUNT; i++) { if (intra_preds[j][i] == intra_pred_mode[j]) { mpm_preds[j] = (int8_t)i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; if (!(cur_pu->intra.multi_ref_idx || (isp_mode))) { CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag"); } } for (int j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); cabac->cur_ctx = &(cabac->ctx.luma_planar_model[(isp_mode ? 0 : 1)]); if (cur_pu->intra.multi_ref_idx == 0) { CABAC_BIN(cabac, (mpm_preds[j] > 0 ? 1 : 0), "mpm_idx_luma_planar"); } //CABAC_BIN_EP(cabac, (mpm_preds[j] > 0 ? 1 : 0), "mpm_idx"); if (mpm_preds[j] > 0) { CABAC_BIN_EP(cabac, (mpm_preds[j] > 1 ? 1 : 0), "mpm_idx"); } if (mpm_preds[j] > 1) { CABAC_BIN_EP(cabac, (mpm_preds[j] > 2 ? 1 : 0), "mpm_idx"); } if (mpm_preds[j] > 2) { CABAC_BIN_EP(cabac, (mpm_preds[j] > 3 ? 1 : 0), "mpm_idx"); } if (mpm_preds[j] > 3) { CABAC_BIN_EP(cabac, (mpm_preds[j] > 4 ? 1 : 0), "mpm_idx"); } } else { // Signal the actual prediction mode. int32_t tmp_pred = intra_pred_mode[j]; uint8_t intra_preds_temp[INTRA_MPM_COUNT+2]; memcpy(intra_preds_temp, intra_preds[j], sizeof(int8_t)*3); memcpy(intra_preds_temp+4, &intra_preds[j][3], sizeof(int8_t)*3); intra_preds_temp[3] = 255; intra_preds_temp[7] = 255; // Improvised merge sort // Sort prediction list from lowest to highest. if (intra_preds_temp[0] > intra_preds_temp[1]) SWAP(intra_preds_temp[0], intra_preds_temp[1], int8_t); if (intra_preds_temp[0] > intra_preds_temp[2]) SWAP(intra_preds_temp[0], intra_preds_temp[2], int8_t); if (intra_preds_temp[1] > intra_preds_temp[2]) SWAP(intra_preds_temp[1], intra_preds_temp[2], int8_t); if (intra_preds_temp[4] > intra_preds_temp[5]) SWAP(intra_preds_temp[4], intra_preds_temp[5], int8_t); if (intra_preds_temp[4] > intra_preds_temp[6]) SWAP(intra_preds_temp[4], intra_preds_temp[6], int8_t); if (intra_preds_temp[5] > intra_preds_temp[6]) SWAP(intra_preds_temp[5], intra_preds_temp[6], int8_t); // Merge two subarrays int32_t array1 = 0; int32_t array2 = 4; for (int item = 0; item < INTRA_MPM_COUNT; item++) { if (intra_preds_temp[array1] < intra_preds_temp[array2]) { intra_preds[j][item] = intra_preds_temp[array1]; array1++; } else { intra_preds[j][item] = intra_preds_temp[array2]; array2++; } } // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (int i = INTRA_MPM_COUNT-1; i >= 0; i--) { if (tmp_pred > intra_preds[j][i]) { tmp_pred--; } } kvz_cabac_encode_trunc_bin(cabac, tmp_pred, 67 - INTRA_MPM_COUNT); } } // Code chroma prediction mode. if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned pred_mode = 0; unsigned chroma_pred_modes[8] = {0, 50, 18, 1, 67, 68, 69, 70}; const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, 0); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, 0); const cu_info_t *first_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); int8_t chroma_intra_dir = first_pu->intra.mode_chroma; int8_t luma_intra_dir = first_pu->intra.mode; bool derived_mode = 1;// chroma_intra_dir == 70; cabac->cur_ctx = &(cabac->ctx.chroma_pred_model); CABAC_BIN(cabac, derived_mode ? 0 : 1, "intra_chroma_pred_mode"); if (false/* !derived_mode*/) { /*for (int i = 0; i < 4; i++) { if (luma_intra_dir == chroma_pred_modes[i]) { chroma_pred_modes[i] = 66; break; } }*/ for (; pred_mode < 8; pred_mode++) { if (chroma_intra_dir == chroma_pred_modes[pred_mode]) { break; } } /*else if (intra_pred_mode_chroma == 66) { // Angular 66 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (int i = 0; i < 4; ++i) { if (intra_pred_mode_actual[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (int i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } // pred_mode == 67 mean intra_pred_mode_chroma is something that can't // be coded. assert(pred_mode != 67); */ /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ /*cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]); if (pred_mode == 68) { CABAC_BIN(cabac, 0, "intra_chroma_pred_mode"); } else { CABAC_BIN(cabac, 1, "intra_chroma_pred_mode");*/ CABAC_BINS_EP(cabac, 0/*pred_mode*/, 2, "intra_chroma_pred_mode"); //} } } encode_transform_coeff(state, x, y, depth, 0, 0, 0); } /** static void encode_part_mode(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int depth) { // Binarization from Table 9-34 of the HEVC spec: // // | log2CbSize > | log2CbSize == // | MinCbLog2SizeY | MinCbLog2SizeY // -------+-------+----------+---------+-----------+---------- // pred | part | AMP | AMP | | // mode | mode | disabled | enabled | size == 8 | size > 8 // -------+-------+----------+---------+-----------+---------- // intra | 2Nx2N | - - | 1 1 // | NxN | - - | 0 0 // -------+-------+--------------------+---------------------- // inter | 2Nx2N | 1 1 | 1 1 // | 2NxN | 01 011 | 01 01 // | Nx2N | 00 001 | 00 001 // | NxN | - - | - 000 // | 2NxnU | - 0100 | - - // | 2NxnD | - 0101 | - - // | nLx2N | - 0000 | - - // | nRx2N | - 0001 | - - // -------+-------+--------------------+---------------------- // // // Context indices from Table 9-37 of the HEVC spec: // // binIdx // | 0 1 2 3 // ------------------------------+------------------ // log2CbSize == MinCbLog2SizeY | 0 1 2 bypass // log2CbSize > MinCbLog2SizeY | 0 1 3 bypass // ------------------------------+------------------ if (cur_cu->type == CU_INTRA) { if (depth == MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); } else { CABAC_BIN(cabac, 0, "part_mode NxN"); } } } else { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); return; } CABAC_BIN(cabac, 0, "part_mode split"); cabac->cur_ctx = &(cabac->ctx.part_size_model[1]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_2NxnD) { CABAC_BIN(cabac, 1, "part_mode vertical"); } else { CABAC_BIN(cabac, 0, "part_mode horizontal"); } if (state->encoder_control->cfg.amp_enable && depth < MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[3]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_Nx2N) { CABAC_BIN(cabac, 1, "part_mode SMP"); return; } CABAC_BIN(cabac, 0, "part_mode AMP"); if (cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_nLx2N) { CABAC_BINS_EP(cabac, 0, 1, "part_mode AMP"); } else { CABAC_BINS_EP(cabac, 1, 1, "part_mode AMP"); } } } } **/ void kvz_encode_coding_tree(encoder_state_t * const state, uint16_t x, uint16_t y, uint8_t depth) { cabac_data_t * const cabac = &state->cabac; const encoder_control_t * const ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x, y); const int cu_width = LCU_WIDTH >> depth; const int half_cu = cu_width >> 1; const cu_info_t *left_cu = NULL; if (x > 0) { left_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y); } const cu_info_t *above_cu = NULL; if (y > 0) { above_cu = kvz_cu_array_at_const(frame->cu_array, x, y - 1); } uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; // Absolute coordinates uint16_t abs_x = x + state->tile->offset_x; uint16_t abs_y = y + state->tile->offset_y; // Check for slice border bool border_x = ctrl->in.width < abs_x + cu_width; bool border_y = ctrl->in.height < abs_y + cu_width; bool border_split_x = ctrl->in.width >= abs_x + (LCU_WIDTH >> MAX_DEPTH) + half_cu; bool border_split_y = ctrl->in.height >= abs_y + (LCU_WIDTH >> MAX_DEPTH) + half_cu; bool border = border_x || border_y; /*!< are we in any border CU */ if (depth <= ctrl->max_qp_delta_depth) { state->must_code_qp_delta = true; } // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border // Exception made in VVC with flag not being implicit if the BT can be used for // horizontal or vertical split, then this flag tells if QT or BT is used bool no_split, allow_qt, bh_split, bv_split, th_split, tv_split; no_split = allow_qt = bh_split = bv_split = th_split = tv_split = true; if(depth > MAX_DEPTH) allow_qt = false; // ToDo: update this when btt is actually used bool allow_btt = depth == MAX_DEPTH; if (!allow_btt) { bh_split = bv_split = th_split = tv_split = false; } uint8_t implicit_split_mode = KVZ_NO_SPLIT; //bool implicit_split = border; bool bottom_left_available = (abs_x >= 0) && ((abs_y + cu_width - 1) < ctrl->in.height); bool top_right_available = ((abs_x + cu_width - 1) < ctrl->in.width) && (abs_y >= 0); /* if((depth >= 1 && (border_x != border_y))) implicit_split = false; if (state->frame->slicetype != KVZ_SLICE_I) { if (border_x != border_y) implicit_split = false; if (!bottom_left_available && top_right_available) implicit_split = false; if (!top_right_available && bottom_left_available) implicit_split = false; } */ if (!bottom_left_available && !top_right_available && allow_qt) { implicit_split_mode = KVZ_QUAD_SPLIT; } else if (!bottom_left_available && allow_btt) { implicit_split_mode = KVZ_HORZ_SPLIT; } else if (!top_right_available && allow_btt) { implicit_split_mode = KVZ_VERT_SPLIT; } else if (!bottom_left_available || !top_right_available) { implicit_split_mode = KVZ_QUAD_SPLIT; } split_flag = implicit_split_mode != KVZ_NO_SPLIT; // Check split conditions if (implicit_split_mode != KVZ_NO_SPLIT) { no_split = th_split = tv_split = false; bh_split = (implicit_split_mode == KVZ_HORZ_SPLIT); bv_split = (implicit_split_mode == KVZ_VERT_SPLIT); } bool allow_split = allow_qt | bh_split | bv_split | th_split | tv_split; //ToDo: Change MAX_DEPTH to MAX_BT_DEPTH allow_btt = depth >= MAX_DEPTH; if (no_split && allow_split) { split_model = 0; // Get left and top block split_flags and if they are present and true, increase model number // ToDo: should use height and width to increase model, PU_GET_W() ? if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) { //split_model++; } if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) { //split_model++; } uint32_t split_num = 0; if (allow_qt) split_num+=2; if (bh_split) split_num++; if (bv_split) split_num++; if (th_split) split_num++; if (tv_split) split_num++; if (split_num > 0) split_num--; split_model += 3 * (split_num >> 1); cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]); CABAC_BIN(cabac, !(implicit_split_mode == KVZ_NO_SPLIT), "SplitFlag"); } bool qt_split = implicit_split_mode == KVZ_QUAD_SPLIT; if (!(implicit_split_mode == KVZ_NO_SPLIT) && (allow_qt && allow_btt)) { split_model = (left_cu && GET_SPLITDATA(left_cu, depth)) + (above_cu && GET_SPLITDATA(above_cu, depth)) + (depth < 2 ? 0 : 3); cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]); CABAC_BIN(cabac, qt_split, "QT_SplitFlag"); } // Only signal split when it is not implicit, currently only Qt split supported if (!(implicit_split_mode == KVZ_NO_SPLIT) && !qt_split && (bh_split | bv_split | th_split | tv_split)) { split_model = 0; // Get left and top block split_flags and if they are present and true, increase model number if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) { split_model++; } if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) { split_model++; } split_model += (depth > 2 ? 0 : 3); cabac->cur_ctx = &(cabac->ctx.qt_split_flag_model[split_model]); CABAC_BIN(cabac, split_flag, "split_cu_mode"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions kvz_encode_coding_tree(state, x, y, depth + 1); if (!border_x || border_split_x) { kvz_encode_coding_tree(state, x + half_cu, y, depth + 1); } if (!border_y || border_split_y) { kvz_encode_coding_tree(state, x, y + half_cu, depth + 1); } if (!border || (border_split_x && border_split_y)) { kvz_encode_coding_tree(state, x + half_cu, y + half_cu, depth + 1); } return; } } //ToDo: check if we can actually split //ToDo: Implement MT split if (depth < MAX_PU_DEPTH) { // cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]); // CABAC_BIN(cabac, 0, "split_transform_flag"); } if (ctrl->cfg.lossless) { cabac->cur_ctx = &cabac->ctx.cu_transquant_bypass; CABAC_BIN(cabac, 1, "cu_transquant_bypass_flag"); } // Encode skip flag if (state->frame->slicetype != KVZ_SLICE_I) { int8_t ctx_skip = 0; if (left_cu && left_cu->skipped) { ctx_skip++; } if (above_cu && above_cu->skipped) { ctx_skip++; } cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]); CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag"); if (cur_cu->skipped) { int16_t num_cand = MRG_MAX_NUM_CANDS; if (num_cand > 1) { for (int ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } goto end; } } // Prediction mode if (state->frame->slicetype != KVZ_SLICE_I) { cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model); CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode"); } // part_mode //encode_part_mode(state, cabac, cur_cu, depth); #if ENABLE_PCM // Code IPCM block if (FORCE_PCM || cur_cu->type == CU_PCM) { kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1 kvz_cabac_finish(cabac); kvz_bitstream_add_rbsp_trailing_bits(cabac->stream); // PCM sample kvz_pixel *base_y = &frame->source->y[x + y * ctrl->in.width]; kvz_pixel *base_u = &frame->source->u[x / 2 + y / 2 * ctrl->in.width / 2]; kvz_pixel *base_v = &frame->source->v[x / 2 + y / 2 * ctrl->in.width / 2]; kvz_pixel *rec_base_y = &frame->rec->y[x + y * ctrl->in.width]; kvz_pixel *rec_base_u = &frame->rec->u[x / 2 + y / 2 * ctrl->in.width / 2]; kvz_pixel *rec_base_v = &frame->rec->v[x / 2 + y / 2 * ctrl->in.width / 2]; // Luma for (unsigned y_px = 0; y_px < LCU_WIDTH >> depth; y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> depth; x_px++) { kvz_bitstream_put(cabac->stream, base_y[x_px + y_px * ctrl->in.width], 8); rec_base_y[x_px + y_px * ctrl->in.width] = base_y[x_px + y_px * ctrl->in.width]; } } // Chroma if (ctrl->chroma_format != KVZ_CSP_400) { for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) { kvz_bitstream_put(cabac->stream, base_u[x_px + y_px * (ctrl->in.width >> 1)], 8); rec_base_u[x_px + y_px * (ctrl->in.width >> 1)] = base_u[x_px + y_px * (ctrl->in.width >> 1)]; } } for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) { for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) { kvz_bitstream_put(cabac->stream, base_v[x_px + y_px * (ctrl->in.width >> 1)], 8); rec_base_v[x_px + y_px * (ctrl->in.width >> 1)] = base_v[x_px + y_px * (ctrl->in.width >> 1)]; } } } kvz_cabac_start(cabac); } else #endif if (cur_cu->type == CU_INTER) { const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size]; for (int i = 0; i < num_pu; ++i) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, i); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, i); const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i); const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); encode_inter_prediction_unit(state, cabac, cur_pu, pu_x, pu_y, pu_w, pu_h, depth); } { int cbf = cbf_is_set_any(cur_cu->cbf, depth); // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (cur_cu->part_size != SIZE_2Nx2N || !cur_cu->merged) { cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model); CABAC_BIN(cabac, cbf, "rqt_root_cbf"); } // Code (possible) coeffs to bitstream if (cbf) { encode_transform_coeff(state, x, y, depth, 0, 0, 0); } } } else if (cur_cu->type == CU_INTRA) { encode_intra_coding_unit(state, cabac, cur_cu, x, y, depth); } else { // CU type not set. Should not happen. assert(0); exit(1); } end: if (is_last_cu_in_qg(state, x, y, depth)) { state->last_qp = cur_cu->qp; } } void kvz_encode_mvd(encoder_state_t * const state, cabac_data_t *cabac, int32_t mvd_hor, int32_t mvd_ver) { const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac->cur_ctx = &cabac->ctx.cu_mvd_model[0]; CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor"); CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver"); cabac->cur_ctx = &cabac->ctx.cu_mvd_model[1]; if (hor_abs_gr0) { CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_hor_abs - 2, 1); } uint32_t mvd_hor_sign = (mvd_hor > 0) ? 0 : 1; if (!state->cabac.only_count && state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) { mvd_hor_sign = mvd_hor_sign ^ kvz_crypto_get_key(state->crypto_hdl, 1); } CABAC_BIN_EP(cabac, mvd_hor_sign, "mvd_sign_flag_hor"); } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_ver_abs - 2, 1); } uint32_t mvd_ver_sign = mvd_ver > 0 ? 0 : 1; if (!state->cabac.only_count && state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) { mvd_ver_sign = mvd_ver_sign^kvz_crypto_get_key(state->crypto_hdl, 1); } CABAC_BIN_EP(cabac, mvd_ver_sign, "mvd_sign_flag_ver"); } }