/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "cabac.h" #include "encoder.h" #include "encoderstate.h" #include "extras/crypto.h" #include "kvazaar.h" #ifdef KVZ_DEBUG_PRINT_CABAC uint32_t kvz_cabac_bins_count = 0; bool kvz_cabac_bins_verbose = true; #endif const uint8_t kvz_g_auc_renorm_table[32] = { 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; /** * \brief Initialize struct cabac_data. */ void kvz_cabac_start(cabac_data_t * const data) { data->low = 0; data->range = 510; data->bits_left = 23; data->num_buffered_bytes = 0; data->buffered_byte = 0xff; data->only_count = 0; // By default, write bits out } /** * \brief */ void kvz_cabac_encode_bin(cabac_data_t * const data, const uint32_t bin_value) { uint32_t lps = CTX_LPS(data->cur_ctx, data->range); data->range -= lps; // Not the Most Probable Symbol? if ((bin_value ? 1 : 0) != CTX_MPS(data->cur_ctx)) { int num_bits = kvz_g_auc_renorm_table[lps >> 3]; data->low = (data->low + data->range) << num_bits; data->range = lps << num_bits; data->bits_left -= num_bits; if (data->bits_left < 12) { kvz_cabac_write(data); } } else { if (data->range < 256) { data->low <<= 1; data->range <<= 1; data->bits_left--; if (data->bits_left < 12) { kvz_cabac_write(data); } } } CTX_UPDATE(data->cur_ctx, bin_value); } /** * \brief */ void kvz_cabac_write(cabac_data_t * const data) { uint32_t lead_byte = data->low >> (24 - data->bits_left); data->bits_left += 8; data->low &= 0xffffffffu >> data->bits_left; // Binary counter mode if(data->only_count) { data->num_buffered_bytes++; return; } if (lead_byte == 0xff) { data->num_buffered_bytes++; } else { if (data->num_buffered_bytes > 0) { uint32_t carry = lead_byte >> 8; uint32_t byte = data->buffered_byte + carry; data->buffered_byte = lead_byte & 0xff; kvz_bitstream_put_byte(data->stream, byte); byte = (0xff + carry) & 0xff; while (data->num_buffered_bytes > 1) { kvz_bitstream_put_byte(data->stream, byte); data->num_buffered_bytes--; } } else { data->num_buffered_bytes = 1; data->buffered_byte = lead_byte; } } } /** * \brief */ void kvz_cabac_finish(cabac_data_t * const data) { assert(data->bits_left <= 32); if (data->low >> (32 - data->bits_left)) { kvz_bitstream_put_byte(data->stream, data->buffered_byte + 1); while (data->num_buffered_bytes > 1) { kvz_bitstream_put_byte(data->stream, 0); data->num_buffered_bytes--; } data->low -= 1 << (32 - data->bits_left); } else { if (data->num_buffered_bytes > 0) { kvz_bitstream_put_byte(data->stream, data->buffered_byte); } while (data->num_buffered_bytes > 1) { kvz_bitstream_put_byte(data->stream, 0xff); data->num_buffered_bytes--; } } { uint8_t bits = (uint8_t)(24 - data->bits_left); kvz_bitstream_put(data->stream, data->low >> 8, bits); } } /*! \brief Encode terminating bin \param binValue bin value */ void kvz_cabac_encode_bin_trm(cabac_data_t * const data, const uint8_t bin_value) { data->range -= 2; if(bin_value) { data->low += data->range; data->low <<= 7; data->range = 2 << 7; data->bits_left -= 7; } else if (data->range >= 256) { return; } else { data->low <<= 1; data->range <<= 1; data->bits_left--; } if (data->bits_left < 12) { kvz_cabac_write(data); } } /** * \brief encode truncated binary code */ void kvz_cabac_encode_trunc_bin(cabac_data_t * const data, const uint32_t bin_value, const uint32_t max_value) { int thresh; int symbol = bin_value; if (max_value > 256) { int threshVal = 1 << 8; thresh = 8; while (threshVal <= max_value) { thresh++; threshVal <<= 1; } thresh--; } else { thresh = kvz_tb_max[max_value]; } int val = 1 << thresh; int b = max_value - val; if (symbol < val - b) { CABAC_BINS_EP(data, symbol, thresh, "TruncSymbols"); } else { symbol += val - b; CABAC_BINS_EP(data, symbol, thresh + 1, "TruncSymbols"); } } /** * \brief */ void kvz_cabac_encode_bin_ep(cabac_data_t * const data, const uint32_t bin_value) { data->low <<= 1; if (bin_value) { data->low += data->range; } data->bits_left--; if (data->bits_left < 12) { kvz_cabac_write(data); } } // Import from VTM 4.0 void kvz_cabac_encode_aligned_bins_ep(cabac_data_t * const data, uint32_t bin_values, int num_bins) { uint32_t rem_bins = num_bins; while (rem_bins > 0) { //The process of encoding an EP bin is the same as that of coding a normal //bin where the symbol ranges for 1 and 0 are both half the range: // // low = (low + range/2) << 1 (to encode a 1) // low = low << 1 (to encode a 0) // // i.e. // low = (low + (bin * range/2)) << 1 // // which is equivalent to: // // low = (low << 1) + (bin * range) // // this can be generalised for multiple bins, producing the following expression: // unsigned bins_to_code = MIN(rem_bins, 8); //code bytes if able to take advantage of the system's byte-write function unsigned bin_mask = (1 << bins_to_code) - 1; unsigned new_bins = (bin_values >> (rem_bins - bins_to_code)) & bin_mask; data->low = (data->low << bins_to_code) + (new_bins << 8); //range is known to be 256 rem_bins -= bins_to_code; data->bits_left -= bins_to_code; if (data->bits_left < 12) { kvz_cabac_write(data); } } } /** * \brief */ void kvz_cabac_encode_bins_ep(cabac_data_t * const data, uint32_t bin_values, int num_bins) { uint32_t pattern; if (data->range == 256) { kvz_cabac_encode_aligned_bins_ep(data, bin_values, num_bins); return; } while (num_bins > 8) { num_bins -= 8; pattern = bin_values >> num_bins; data->low <<= 8; data->low += data->range * pattern; bin_values -= pattern << num_bins; data->bits_left -= 8; if(data->bits_left < 12) { kvz_cabac_write(data); } } data->low <<= num_bins; data->low += data->range * bin_values; data->bits_left -= num_bins; if (data->bits_left < 12) { kvz_cabac_write(data); } } /** * \brief Coding of remainder abs coeff value. * \param remainder Value of remaining abs coeff * \param rice_param Reference to Rice parameter. */ void kvz_cabac_write_coeff_remain(cabac_data_t * const cabac, const uint32_t remainder, const uint32_t rice_param, const unsigned int cutoff) { const unsigned threshold = cutoff << rice_param; uint32_t bins = remainder; if (bins < threshold) { uint32_t length = (bins >> rice_param) + 1; CABAC_BINS_EP(cabac, ((1 << (length)) - 2) , length, "coeff_abs_level_remaining"); CABAC_BINS_EP(cabac, bins & ((1 << rice_param) - 1), rice_param, "coeff_abs_level_remaining"); } else { const unsigned max_prefix_length = 32 - cutoff - 15/*max_log2_tr_dynamic_range*/; unsigned prefix_length = 0; unsigned code_value = (bins >> rice_param) - cutoff; unsigned suffix_length; if (code_value >= ((1 << max_prefix_length) - 1)) { prefix_length = max_prefix_length; suffix_length = 15 /*max_log2_tr_dynamic_range*/; } else { while (code_value > ((2 << prefix_length) - 2)) { prefix_length++; } suffix_length = prefix_length + rice_param + 1; } const unsigned total_prefix_length = prefix_length + cutoff; const unsigned bit_mask = (1 << rice_param) - 1; const unsigned prefix = (1 << total_prefix_length) - 1; const unsigned suffix = ((code_value - ((1 << prefix_length) - 1)) << rice_param) | (bins & bit_mask); CABAC_BINS_EP(cabac, prefix, total_prefix_length, "coeff_abs_level_remaining"); CABAC_BINS_EP(cabac, suffix, suffix_length, "coeff_abs_level_remaining"); } } /** * \brief */ void kvz_cabac_write_unary_max_symbol(cabac_data_t * const data, cabac_ctx_t * const ctx, uint32_t symbol, const int32_t offset, const uint32_t max_symbol) { int8_t code_last = max_symbol > symbol; assert(symbol <= max_symbol); if (!max_symbol) return; data->cur_ctx = ctx; CABAC_BIN(data, symbol, "ums"); if (!symbol) return; while (--symbol) { //data->cur_ctx = &ctx[offset]; CABAC_BIN(data, 1, "ums"); } if (code_last) { //data->cur_ctx = &ctx[offset]; CABAC_BIN(data, 0, "ums"); } } /** * This can be used for Truncated Rice binarization with cRiceParam=0. */ void kvz_cabac_write_unary_max_symbol_ep(cabac_data_t * const data, unsigned int symbol, const unsigned int max_symbol) { /*if (symbol == 0) { CABAC_BIN_EP(data, 0, "ums_ep"); } else { // Make a bit-string of (symbol) times 1 and a single 0, except when // symbol == max_symbol. unsigned bins = ((1 << symbol) - 1) << (symbol < max_symbol); CABAC_BINS_EP(data, bins, symbol + (symbol < max_symbol), "ums_ep"); }*/ int8_t code_last = max_symbol > symbol; assert(symbol <= max_symbol); CABAC_BIN_EP(data, symbol ? 1 : 0, "ums_ep"); if (!symbol) return; while (--symbol) { CABAC_BIN_EP(data, 1, "ums_ep"); } if (code_last) { CABAC_BIN_EP(data, 0, "ums_ep"); } } /** * \brief */ void kvz_cabac_write_ep_ex_golomb(encoder_state_t * const state, cabac_data_t * const data, uint32_t symbol, uint32_t count) { uint32_t bins = 0; int32_t num_bins = 0; while (symbol >= (uint32_t)(1 << count)) { bins = 2 * bins + 1; ++num_bins; symbol -= 1 << count; ++count; } bins = 2 * bins; ++num_bins; bins = (bins << count) | symbol; num_bins += count; CABAC_BINS_EP(data, bins, num_bins, "ep_ex_golomb"); }