/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "encoderstate.h"
#include
#include
#include
#include
#include "cabac.h"
#include "context.h"
#include "encode_coding_tree.h"
#include "encoder_state-bitstream.h"
#include "filter.h"
#include "image.h"
#include "rate_control.h"
#include "sao.h"
#include "search.h"
#include "tables.h"
#include "threadqueue.h"
int kvz_encoder_state_match_children_of_previous_frame(encoder_state_t * const state) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
//Child should also exist for previous encoder
assert(state->previous_encoder_state->children[i].encoder_control);
state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i];
kvz_encoder_state_match_children_of_previous_frame(&state->children[i]);
}
return 1;
}
static void encoder_state_recdata_to_bufs(encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) {
videoframe_t* const frame = state->tile->frame;
if (hor_buf) {
//Copy the bottom row of this LCU to the horizontal buffer
vector2d_t bottom = { lcu->position_px.x, lcu->position_px.y + lcu->size.y - 1 };
const int lcu_row = lcu->position.y;
unsigned from_index = bottom.y * frame->rec->stride + bottom.x;
unsigned to_index = lcu->position_px.x + lcu_row * frame->width;
kvz_pixels_blit(&frame->rec->y[from_index],
&hor_buf->y[to_index],
lcu->size.x, 1,
frame->rec->stride, frame->width);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
unsigned from_index_c = (bottom.y / 2) * frame->rec->stride / 2 + (bottom.x / 2);
unsigned to_index_c = lcu->position_px.x / 2 + lcu_row * frame->width / 2;
kvz_pixels_blit(&frame->rec->u[from_index_c],
&hor_buf->u[to_index_c],
lcu->size.x / 2, 1,
frame->rec->stride / 2, frame->width / 2);
kvz_pixels_blit(&frame->rec->v[from_index_c],
&hor_buf->v[to_index_c],
lcu->size.x / 2, 1,
frame->rec->stride / 2, frame->width / 2);
}
}
if (ver_buf) {
//Copy the right row of this LCU to the vertical buffer.
const int lcu_col = lcu->position.x;
vector2d_t left = { lcu->position_px.x + lcu->size.x - 1, lcu->position_px.y };
kvz_pixels_blit(&frame->rec->y[left.y * frame->rec->stride + left.x],
&ver_buf->y[lcu->position_px.y + lcu_col * frame->height],
1, lcu->size.y,
frame->rec->stride, 1);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
unsigned from_index = (left.y / 2) * frame->rec->stride / 2 + (left.x / 2);
unsigned to_index = lcu->position_px.y / 2 + lcu_col * frame->height / 2;
kvz_pixels_blit(&frame->rec->u[from_index],
&ver_buf->u[to_index],
1, lcu->size.y / 2,
frame->rec->stride / 2, 1);
kvz_pixels_blit(&frame->rec->v[from_index],
&ver_buf->v[to_index],
1, lcu->size.y / 2,
frame->rec->stride / 2, 1);
}
}
}
static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao,
color_t color_i)
{
cabac_data_t * const cabac = &state->cabac;
sao_eo_cat i;
int offset_index = (color_i == COLOR_V) ? 5 : 0;
// Skip colors with no SAO.
//FIXME: for now, we always have SAO for all channels
if (color_i == COLOR_Y && 0) return;
if (color_i != COLOR_Y && 0) return;
/// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
/// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
// Encode sao_type_idx for Y and U+V.
if (color_i != COLOR_V) {
cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model);
CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx");
if (sao->type == SAO_TYPE_BAND) {
CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep");
} else if (sao->type == SAO_TYPE_EDGE) {
CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep");
}
}
if (sao->type == SAO_TYPE_NONE) return;
/// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1,
/// cRiceParam = 0, bins = {bypass x N}
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
kvz_cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX);
}
/// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass}
/// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N}
/// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3}
/// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3}
if (sao->type == SAO_TYPE_BAND) {
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
// Positive sign is coded as 0.
if (sao->offsets[i + offset_index] != 0) {
CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign");
}
}
// TODO: sao_band_position
// FL cMax=31 (5 bits)
CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position");
} else if (color_i != COLOR_V) {
CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class");
}
}
static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb)
{
cabac_data_t * const cabac = &state->cabac;
// SAO merge flags are not present for the first row and column.
if (x_ctb > 0) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag");
}
if (y_ctb > 0 && !sao->merge_left_flag) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag");
}
}
/**
* \brief Encode SAO information.
*/
static void encode_sao(encoder_state_t * const state,
unsigned x_lcu, uint16_t y_lcu,
sao_info_t *sao_luma, sao_info_t *sao_chroma)
{
// TODO: transmit merge flags outside sao_info
encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu);
// If SAO is merged, nothing else needs to be coded.
if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) {
encode_sao_color(state, sao_luma, COLOR_Y);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
encode_sao_color(state, sao_chroma, COLOR_U);
encode_sao_color(state, sao_chroma, COLOR_V);
}
}
}
/**
* \brief Sets the QP for each CU in state->tile->frame->cu_array.
*
* The QPs are used in deblocking.
*
* The delta QP for an LCU is coded when the first CU with coded block flag
* set is encountered. Hence, for the purposes of deblocking, all CUs
* before the first one with cbf set use state->ref_qp and all CUs after
* that use state->qp.
*
* \param state encoder state
* \param x x-coordinate of the left edge of the root CU
* \param y y-coordinate of the top edge of the root CU
* \param depth depth in the CU quadtree
* \param coeffs_coded Used for tracking whether a CU with a residual
* has been encountered. Should be set to false at
* the top level.
* \return Whether there were any CUs with residual or not.
*/
static bool set_cu_qps(encoder_state_t *state, int x, int y, int depth, bool coeffs_coded)
{
if (state->qp == state->ref_qp) {
// If the QPs are equal there is no need to care about the residuals.
coeffs_coded = true;
}
cu_info_t *cu = kvz_cu_array_at(state->tile->frame->cu_array, x, y);
const int cu_width = LCU_WIDTH >> depth;
coeffs_coded = coeffs_coded || cbf_is_set_any(cu->cbf, cu->depth);
if (!coeffs_coded && cu->depth > depth) {
// Recursively process sub-CUs.
const int d = cu_width >> 1;
coeffs_coded = set_cu_qps(state, x, y, depth + 1, coeffs_coded);
coeffs_coded = set_cu_qps(state, x + d, y, depth + 1, coeffs_coded);
coeffs_coded = set_cu_qps(state, x, y + d, depth + 1, coeffs_coded);
coeffs_coded = set_cu_qps(state, x + d, y + d, depth + 1, coeffs_coded);
} else {
if (!coeffs_coded && cu->tr_depth > depth) {
// The CU is split into smaller transform units. Check whether coded
// block flag is set for any of the TUs.
const int tu_width = LCU_WIDTH >> cu->tr_depth;
for (int y_scu = y; y_scu < y + cu_width; y_scu += tu_width) {
for (int x_scu = x; x_scu < x + cu_width; x_scu += tu_width) {
cu_info_t *tu = kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu);
if (cbf_is_set_any(tu->cbf, cu->depth)) {
coeffs_coded = true;
}
}
}
}
// Set the correct QP for all state->tile->frame->cu_array elements in
// the area covered by the CU.
const int8_t qp = coeffs_coded ? state->qp : state->ref_qp;
for (int y_scu = y; y_scu < y + cu_width; y_scu += SCU_WIDTH) {
for (int x_scu = x; x_scu < x + cu_width; x_scu += SCU_WIDTH) {
kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu)->qp = qp;
}
}
}
return coeffs_coded;
}
static void encoder_state_worker_encode_lcu(void * opaque)
{
const lcu_order_element_t * const lcu = opaque;
encoder_state_t *state = lcu->encoder_state;
const encoder_control_t * const encoder = state->encoder_control;
videoframe_t* const frame = state->tile->frame;
kvz_set_lcu_lambda_and_qp(state, lcu->position);
//This part doesn't write to bitstream, it's only search, deblock and sao
kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search);
encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search);
if (encoder->cfg.deblock_enable) {
if (encoder->cfg.target_bitrate > 0 || encoder->cfg.roi.dqps != NULL) {
set_cu_qps(state, lcu->position_px.x, lcu->position_px.y, 0, false);
}
kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y);
}
if (encoder->cfg.sao_enable) {
kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y);
}
// Copy LCU cu_array to main states cu_array, because that is the only one
// which is given to the next frame through image_list_t.
{
PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME);
encoder_state_t *main_state = state;
while (main_state->parent) main_state = main_state->parent;
assert(main_state != state);
const unsigned tile_x_px = state->tile->lcu_offset_x << LOG2_LCU_WIDTH;
const unsigned tile_y_px = state->tile->lcu_offset_y << LOG2_LCU_WIDTH;
const unsigned x_px = lcu->position_px.x;
const unsigned y_px = lcu->position_px.y;
kvz_cu_array_copy(main_state->tile->frame->cu_array,
x_px + tile_x_px, y_px + tile_y_px,
state->tile->frame->cu_array,
x_px, y_px,
LCU_WIDTH, LCU_WIDTH);
PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=copy_cuinfo,frame=%d,tile=%d", state->frame->num, state->tile->id);
}
//Now write data to bitstream (required to have a correct CABAC state)
const uint64_t existing_bits = kvz_bitstream_tell(&state->stream);
//Encode SAO
if (encoder->cfg.sao_enable) {
encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]);
}
// QP delta is not used when rate control is turned off.
state->must_code_qp_delta = (
state->encoder_control->cfg.target_bitrate > 0
|| state->encoder_control->cfg.roi.dqps != NULL);
//Encode coding tree
kvz_encode_coding_tree(state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0);
bool end_of_slice_segment_flag;
if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) {
// Slice segments end after each WPP row.
end_of_slice_segment_flag = lcu->last_column;
} else if (state->encoder_control->cfg.slices & KVZ_SLICES_TILES) {
// Slices end after each tile.
end_of_slice_segment_flag = lcu->last_column && lcu->last_row;
} else {
// Slice ends after the last row of the last tile.
int last_tile_id = -1 + encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count;
bool is_last_tile = state->tile->id == last_tile_id;
end_of_slice_segment_flag = is_last_tile && lcu->last_column && lcu->last_row;
}
kvz_cabac_encode_bin_trm(&state->cabac, end_of_slice_segment_flag);
{
const bool end_of_tile = lcu->last_column && lcu->last_row;
const bool end_of_wpp_row = encoder->cfg.wpp && lcu->last_column;
if (end_of_tile || end_of_wpp_row) {
if (!end_of_slice_segment_flag) {
// end_of_sub_stream_one_bit
kvz_cabac_encode_bin_trm(&state->cabac, 1);
}
// Finish the substream by writing out remaining state.
kvz_cabac_finish(&state->cabac);
// Write a rbsp_trailing_bits or a byte_alignment. The first one is used
// for ending a slice_segment_layer_rbsp and the second one for ending
// a substream. They are identical and align the byte stream.
kvz_bitstream_put(state->cabac.stream, 1, 1);
kvz_bitstream_align_zero(state->cabac.stream);
kvz_cabac_start(&state->cabac);
}
}
const uint32_t bits = kvz_bitstream_tell(&state->stream) - existing_bits;
kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->bits = bits;
//Wavefronts need the context to be copied to the next row
if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 1) {
int j;
//Find next encoder (next row)
for (j=0; state->parent->children[j].encoder_control; ++j) {
if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) {
//And copy context
kvz_context_copy(&state->parent->children[j], state);
}
}
}
if (encoder->cfg.sao_enable && lcu->above) {
// Add the post-deblocking but pre-SAO pixels of the LCU row above this
// row to a buffer so this row can use them on it's own SAO
// reconstruction.
// The pixels need to be taken to from the LCU to the top-left, because
// not all of the pixels could be deblocked before prediction of this
// LCU was reconstructed.
if (lcu->above->left) {
encoder_state_recdata_to_bufs(state, lcu->above->left, state->tile->hor_buf_before_sao, NULL);
}
// If this is the last LCU in the row, we can save the pixels from the top
// also, as they have been fully deblocked.
if (!lcu->right) {
encoder_state_recdata_to_bufs(state, lcu->above, state->tile->hor_buf_before_sao, NULL);
}
}
}
static void encoder_state_encode_leaf(encoder_state_t * const state) {
assert(state->is_leaf);
assert(state->lcu_order_count > 0);
const kvz_config *cfg = &state->encoder_control->cfg;
if (cfg->crypto_features) {
InitC(state->tile->dbs_g);
state->tile->m_prev_pos = 0;
}
state->ref_qp = state->frame->QP;
// Select whether to encode the frame/tile in current thread or to define
// wavefront jobs for other threads to handle.
bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW;
bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control);
if (!use_parallel_encoding) {
// Encode every LCU in order and perform SAO reconstruction after every
// frame is encoded. Deblocking and SAO search is done during LCU encoding.
for (int i = 0; i < state->lcu_order_count; ++i) {
PERFORMANCE_MEASURE_START(KVZ_PERF_LCU);
encoder_state_worker_encode_lcu(&state->lcu_order[i]);
#ifdef KVZ_DEBUG
{
const lcu_order_element_t * const lcu = &state->lcu_order[i];
PERFORMANCE_MEASURE_END(KVZ_PERF_LCU, state->encoder_control->threadqueue, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1);
}
#endif //KVZ_DEBUG
}
if (state->encoder_control->cfg.sao_enable) {
PERFORMANCE_MEASURE_START(KVZ_PERF_SAOREC);
kvz_sao_reconstruct_frame(state);
PERFORMANCE_MEASURE_END(KVZ_PERF_SAOREC, state->encoder_control->threadqueue, "type=kvz_sao_reconstruct_frame,frame=%d,tile=%d,slice=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, state->lcu_order[0].position.y + state->tile->lcu_offset_y, state->lcu_order[state->lcu_order_count - 1].position.y + state->tile->lcu_offset_y,
state->tile->lcu_offset_x * LCU_WIDTH, state->tile->frame->width + state->tile->lcu_offset_x * LCU_WIDTH - 1,
state->tile->lcu_offset_y * LCU_WIDTH, state->tile->frame->height + state->tile->lcu_offset_y * LCU_WIDTH - 1
);
}
} else {
// Add each LCU in the wavefront row as it's own job to the queue.
// Select which frame dependancies should be set to.
const encoder_state_t * ref_state = NULL;
if (cfg->gop_lowdelay &&
cfg->gop_len > 0 &&
state->previous_encoder_state != state)
{
// For LP-gop, depend on the state of the first reference.
int ref_neg = cfg->gop[(state->frame->poc - 1) % cfg->gop_len].ref_neg[0];
if (ref_neg > state->encoder_control->cfg.owf) {
// If frame is not within OWF range, it's already done.
ref_state = NULL;
} else {
ref_state = state->previous_encoder_state;
while (ref_neg > 1) {
ref_neg -= 1;
ref_state = ref_state->previous_encoder_state;
}
}
} else {
// Otherwise, depend on the previous frame.
ref_state = state->previous_encoder_state;
}
for (int i = 0; i < state->lcu_order_count; ++i) {
const lcu_order_element_t * const lcu = &state->lcu_order[i];
#ifdef KVZ_DEBUG
char job_description[256];
sprintf(job_description, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1);
#else
char* job_description = NULL;
#endif
kvz_threadqueue_free_job(&state->tile->wf_jobs[lcu->id]);
state->tile->wf_jobs[lcu->id] = kvz_threadqueue_submit(state->encoder_control->threadqueue, encoder_state_worker_encode_lcu, (void*)lcu, 1, job_description);
// If job object was returned, add dependancies and allow it to run.
if (state->tile->wf_jobs[lcu->id]) {
// Add inter frame dependancies when ecoding more than one frame at
// once. The added dependancy is for the first LCU of each wavefront
// row to depend on the reconstruction status of the row below in the
// previous frame.
if (ref_state != NULL &&
state->previous_encoder_state->tqj_recon_done &&
state->frame->slicetype != KVZ_SLICE_I)
{
if (!lcu->left) {
const lcu_order_element_t * const ref_lcu = &ref_state->lcu_order[i];
if (lcu->below) {
kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->below->encoder_state->tqj_recon_done);
} else {
kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->encoder_state->tqj_recon_done);
}
}
}
// Add local WPP dependancy to the LCU on the left.
if (lcu->left) {
kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - 1]);
}
// Add local WPP dependancy to the LCU on the top right.
if (lcu->above) {
if (lcu->above->right) {
kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu + 1]);
} else {
kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu]);
}
}
kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]);
// In the case where SAO is not enabled, the wavefront row is
// done when the last LCU in the row is done.
if (!state->encoder_control->cfg.sao_enable && i + 1 == state->lcu_order_count) {
assert(!state->tqj_recon_done);
state->tqj_recon_done =
kvz_threadqueue_copy_ref(state->tile->wf_jobs[lcu->id]);
}
}
}
}
}
static void encoder_state_encode(encoder_state_t * const main_state);
static void encoder_state_worker_encode_children(void * opaque)
{
encoder_state_t *sub_state = opaque;
encoder_state_encode(sub_state);
if (sub_state->is_leaf && sub_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
// Set the last wavefront job of this row as the job that completes
// the bitstream for this wavefront row state.
int wpp_row = sub_state->wfrow->lcu_offset_y;
int tile_width = sub_state->tile->frame->width_in_lcu;
int end_of_row = (wpp_row + 1) * tile_width - 1;
assert(!sub_state->tqj_bitstream_written);
if (sub_state->tile->wf_jobs[end_of_row]) {
sub_state->tqj_bitstream_written =
kvz_threadqueue_copy_ref(sub_state->tile->wf_jobs[end_of_row]);
}
}
}
typedef struct {
int y;
const encoder_state_t * encoder_state;
} worker_sao_reconstruct_lcu_data;
static void encoder_state_worker_sao_reconstruct_lcu(void *opaque) {
worker_sao_reconstruct_lcu_data *data = opaque;
videoframe_t * const frame = data->encoder_state->tile->frame;
unsigned stride = frame->width_in_lcu;
int x;
//TODO: copy only needed data
kvz_pixel *new_y_data = MALLOC(kvz_pixel, frame->width * frame->height);
kvz_pixel *new_u_data = NULL;
kvz_pixel *new_v_data = NULL;
if (frame->rec->chroma_format != KVZ_CSP_400) {
new_u_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2);
new_v_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2);
}
const int offset = frame->width * (data->y*LCU_WIDTH);
const int offset_c = frame->width/2 * (data->y*LCU_WIDTH_C);
int num_pixels = frame->width * (LCU_WIDTH + 2);
if (num_pixels + offset > frame->width * frame->height) {
num_pixels = frame->width * frame->height - offset;
}
memcpy(&new_y_data[offset], &frame->rec->y[offset], sizeof(kvz_pixel) * num_pixels);
if (frame->rec->chroma_format != KVZ_CSP_400) {
memcpy(&new_u_data[offset_c], &frame->rec->u[offset_c], sizeof(kvz_pixel) * num_pixels >> 2);
memcpy(&new_v_data[offset_c], &frame->rec->v[offset_c], sizeof(kvz_pixel) * num_pixels >> 2);
}
if (data->y>0) {
//copy first row from buffer
memcpy(&new_y_data[frame->width * (data->y*LCU_WIDTH-1)], &data->encoder_state->tile->hor_buf_before_sao->y[frame->width * (data->y-1)], frame->width * sizeof(kvz_pixel));
if (frame->rec->chroma_format != KVZ_CSP_400) {
memcpy(&new_u_data[frame->width / 2 * (data->y*LCU_WIDTH_C - 1)], &data->encoder_state->tile->hor_buf_before_sao->u[frame->width / 2 * (data->y - 1)], frame->width / 2 * sizeof(kvz_pixel));
memcpy(&new_v_data[frame->width / 2 * (data->y*LCU_WIDTH_C - 1)], &data->encoder_state->tile->hor_buf_before_sao->v[frame->width / 2 * (data->y - 1)], frame->width / 2 * sizeof(kvz_pixel));
}
}
for (x = 0; x < frame->width_in_lcu; x++) {
// sao_do_rdo(encoder, lcu.x, lcu.y, sao_luma, sao_chroma);
sao_info_t *sao_luma = &frame->sao_luma[data->y * stride + x];
sao_info_t *sao_chroma = &frame->sao_chroma[data->y * stride + x];
kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_y_data, x, data->y, sao_luma, COLOR_Y);
if (frame->rec->chroma_format != KVZ_CSP_400) {
kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_u_data, x, data->y, sao_chroma, COLOR_U);
kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_v_data, x, data->y, sao_chroma, COLOR_V);
}
}
free(new_y_data);
free(new_u_data);
free(new_v_data);
free(opaque);
}
static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) {
if (!state->children[0].encoder_control) return 1;
if (state->children[1].encoder_control) return 0;
return encoder_state_tree_is_a_chain(&state->children[0]);
}
static void encoder_state_encode(encoder_state_t * const main_state) {
//If we have children, encode at child level
if (main_state->children[0].encoder_control) {
int i=0;
//If we have only one child, than it cannot be the last split in tree
int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0);
for (i=0; main_state->children[i].encoder_control; ++i) {
encoder_state_t *sub_state = &(main_state->children[i]);
if (sub_state->tile != main_state->tile) {
const int offset_x = sub_state->tile->lcu_offset_x * LCU_WIDTH;
const int offset_y = sub_state->tile->lcu_offset_y * LCU_WIDTH;
const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x);
const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y);
if (sub_state->tile->frame->source) {
kvz_image_free(sub_state->tile->frame->source);
sub_state->tile->frame->source = NULL;
}
if (sub_state->tile->frame->rec) {
kvz_image_free(sub_state->tile->frame->rec);
sub_state->tile->frame->rec = NULL;
}
assert(!sub_state->tile->frame->source);
assert(!sub_state->tile->frame->rec);
sub_state->tile->frame->source = kvz_image_make_subimage(main_state->tile->frame->source, offset_x, offset_y, width, height);
sub_state->tile->frame->rec = kvz_image_make_subimage(main_state->tile->frame->rec, offset_x, offset_y, width, height);
}
//To be the last split, we require that every child is a chain
node_is_the_last_split_in_tree = node_is_the_last_split_in_tree && encoder_state_tree_is_a_chain(&main_state->children[i]);
}
//If it's the latest split point
if (node_is_the_last_split_in_tree) {
for (i=0; main_state->children[i].encoder_control; ++i) {
//If we don't have wavefronts, parallelize encoding of children.
if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
#ifdef KVZ_DEBUG
char job_description[256];
switch (main_state->children[i].type) {
case ENCODER_STATE_TYPE_TILE:
sprintf(job_description, "type=encode_child,frame=%d,tile=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", main_state->children[i].frame->num, main_state->children[i].tile->id, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y,
main_state->children[i].lcu_order[0].position_px.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.x + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH - 1,
main_state->children[i].lcu_order[0].position_px.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.y + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH - 1);
break;
case ENCODER_STATE_TYPE_SLICE:
sprintf(job_description, "type=encode_child,frame=%d,slice=%d,start_in_ts=%d", main_state->children[i].frame->num, main_state->children[i].slice->id, main_state->children[i].slice->start_in_ts);
break;
default:
sprintf(job_description, "type=encode_child,frame=%d,invalid", main_state->children[i].frame->num);
break;
}
#else
char* job_description = NULL;
#endif
kvz_threadqueue_free_job(&main_state->children[i].tqj_recon_done);
main_state->children[i].tqj_recon_done = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_encode_children, &(main_state->children[i]), 1, job_description);
if (main_state->children[i].previous_encoder_state != &main_state->children[i] && main_state->children[i].previous_encoder_state->tqj_recon_done && !main_state->children[i].frame->is_idr_frame) {
#if 0
// Disabled due to non-determinism.
if (main_state->encoder_control->cfg->mv_constraint == KVZ_MV_CONSTRAIN_FRAME_AND_TILE_MARGIN)
{
// When MV's don't cross tile boundaries, add dependancy only to the same tile.
kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[i].previous_encoder_state->tqj_recon_done);
} else
#endif
{
// Add dependancy to each child in the previous frame.
for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) {
kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done);
}
}
}
kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done);
} else {
//Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here!
//FIXME: add an assert: we can only have wavefront children
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
// Add SAO reconstruction jobs and their dependancies when using WPP coding.
if (main_state->encoder_control->cfg.sao_enable &&
main_state->children[0].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW)
{
videoframe_t * const frame = main_state->tile->frame;
threadqueue_job_t *previous_job = NULL;
for (int y = 0; y < frame->height_in_lcu; ++y) {
// Queue a single job performing SAO reconstruction for the whole wavefront row.
worker_sao_reconstruct_lcu_data *data = MALLOC(worker_sao_reconstruct_lcu_data, 1);
threadqueue_job_t *job;
#ifdef KVZ_DEBUG
char job_description[256];
sprintf(job_description, "type=sao,frame=%d,tile=%d,px_x=%d-%d,px_y=%d-%d", main_state->frame->num, main_state->tile->id, main_state->tile->lcu_offset_x * LCU_WIDTH, main_state->tile->lcu_offset_x * LCU_WIDTH + main_state->tile->frame->width - 1, (main_state->tile->lcu_offset_y + y) * LCU_WIDTH, MIN(main_state->tile->lcu_offset_y * LCU_WIDTH + main_state->tile->frame->height, (main_state->tile->lcu_offset_y + y + 1) * LCU_WIDTH)-1);
#else
char* job_description = NULL;
#endif
data->y = y;
data->encoder_state = main_state;
job = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_sao_reconstruct_lcu, data, 1, job_description);
// This dependancy is needed, because the pre-SAO pixels from the LCU row
// below this one are read straigh from the frame.
if (previous_job) {
kvz_threadqueue_job_dep_add(job, previous_job);
}
previous_job = job;
// This depepndancy ensures that the bottom edge of this LCU row
// has been fully deblocked.
if (y < frame->height_in_lcu - 1) {
// Not last row: depend on the last LCU of the row below.
kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 1) * frame->width_in_lcu + frame->width_in_lcu - 1]);
} else {
// Last row: depend on the last LCU of the row
kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 0) * frame->width_in_lcu + frame->width_in_lcu - 1]);
}
kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, job);
// The wavefront row is finished, when the SAO-reconstruction is
// finished.
kvz_threadqueue_free_job(&main_state->children[y].tqj_recon_done);
main_state->children[y].tqj_recon_done = job;
if (y == frame->height_in_lcu - 1) {
// This tile is finished, when the reconstruction of the last
// WPP-row is finished.
assert(!main_state->tqj_recon_done);
main_state->tqj_recon_done = kvz_threadqueue_copy_ref(job);
}
}
}
} else {
for (i=0; main_state->children[i].encoder_control; ++i) {
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
} else {
switch (main_state->type) {
case ENCODER_STATE_TYPE_TILE:
case ENCODER_STATE_TYPE_SLICE:
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
encoder_state_encode_leaf(main_state);
break;
default:
fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type);
assert(0);
}
}
}
static void encoder_ref_insertion_sort(int reflist[16], int length) {
for (uint8_t i = 1; i < length; ++i) {
const int16_t cur_poc = reflist[i];
int16_t j = i;
while (j > 0 && cur_poc < reflist[j - 1]) {
reflist[j] = reflist[j - 1];
--j;
}
reflist[j] = cur_poc;
}
}
/**
* \brief Return reference picture lists.
*
* \param state main encoder state
* \param ref_list_len_out Returns the lengths of the reference lists.
* \param ref_list_poc_out Returns two lists of POCs of the reference pictures.
*/
void kvz_encoder_get_ref_lists(const encoder_state_t *const state,
int ref_list_len_out[2],
int ref_list_poc_out[2][16])
{
FILL_ARRAY(ref_list_len_out, 0, 2);
// List all pocs of lists
int j = 0;
for (j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
ref_list_poc_out[0][ref_list_len_out[0]] = state->frame->ref->pocs[j];
ref_list_len_out[0]++;
} else {
ref_list_poc_out[1][ref_list_len_out[1]] = state->frame->ref->pocs[j];
ref_list_len_out[1]++;
}
}
// Fill the rest of ref_list_poc_out array with -1s.
for (; j < 16; j++) {
ref_list_poc_out[0][j] = -1;
ref_list_poc_out[1][j] = -1;
}
encoder_ref_insertion_sort(ref_list_poc_out[0], ref_list_len_out[0]);
encoder_ref_insertion_sort(ref_list_poc_out[1], ref_list_len_out[1]);
}
static void encoder_state_ref_sort(encoder_state_t *state) {
int ref_list_len[2];
int ref_list_poc[2][16];
kvz_encoder_get_ref_lists(state, ref_list_len, ref_list_poc);
for (int j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
for (int ref_idx = 0; ref_idx < ref_list_len[0]; ref_idx++) {
if (ref_list_poc[0][ref_idx] == state->frame->ref->pocs[j]) {
state->frame->refmap[j].idx = ref_list_len[0] - ref_idx - 1;
break;
}
}
state->frame->refmap[j].list = 1;
} else {
for (int ref_idx = 0; ref_idx < ref_list_len[1]; ref_idx++) {
if (ref_list_poc[1][ref_idx] == state->frame->ref->pocs[j]) {
state->frame->refmap[j].idx = ref_idx;
break;
}
}
state->frame->refmap[j].list = 2;
}
state->frame->refmap[j].poc = state->frame->ref->pocs[j];
}
}
/**
* \brief Remove any references that should no longer be used.
*/
static void encoder_state_remove_refs(encoder_state_t *state) {
const encoder_control_t * const encoder = state->encoder_control;
int neg_refs = encoder->cfg.gop[state->frame->gop_offset].ref_neg_count;
int pos_refs = encoder->cfg.gop[state->frame->gop_offset].ref_pos_count;
unsigned target_ref_num;
if (encoder->cfg.gop_len) {
target_ref_num = neg_refs + pos_refs;
} else {
target_ref_num = encoder->cfg.ref_frames;
}
if (state->frame->slicetype == KVZ_SLICE_I) {
target_ref_num = 0;
}
if (encoder->cfg.gop_len && target_ref_num > 0) {
// With GOP in use, go through all the existing reference pictures and
// remove any picture that is not referenced by the current picture.
for (int ref = state->frame->ref->used_size - 1; ref >= 0; --ref) {
bool is_referenced = false;
int ref_poc = state->frame->ref->pocs[ref];
for (int i = 0; i < neg_refs; i++) {
int ref_relative_poc = -encoder->cfg.gop[state->frame->gop_offset].ref_neg[i];
if (ref_poc == state->frame->poc + ref_relative_poc) {
is_referenced = true;
break;
}
}
for (int i = 0; i < pos_refs; i++) {
int ref_relative_poc = encoder->cfg.gop[state->frame->gop_offset].ref_pos[i];
if (ref_poc == state->frame->poc + ref_relative_poc) {
is_referenced = true;
break;
}
}
if (!is_referenced) {
// This reference is not referred to by this frame, it must be removed.
kvz_image_list_rem(state->frame->ref, ref);
}
}
} else {
// Without GOP, remove the oldest picture.
while (state->frame->ref->used_size > target_ref_num) {
int8_t oldest_ref = state->frame->ref->used_size - 1;
kvz_image_list_rem(state->frame->ref, oldest_ref);
}
}
assert(state->frame->ref->used_size <= target_ref_num);
}
static void encoder_state_reset_poc(encoder_state_t *state) {
state->frame->poc = 0;
kvz_videoframe_set_poc(state->tile->frame, 0);
for (int i = 0; state->children[i].encoder_control; ++i) {
encoder_state_t *sub_state = &(state->children[i]);
encoder_state_reset_poc(sub_state);
}
}
static void encoder_set_source_picture(encoder_state_t * const state, kvz_picture* frame)
{
assert(!state->tile->frame->source);
assert(!state->tile->frame->rec);
state->tile->frame->source = frame;
if (state->encoder_control->cfg.lossless) {
// In lossless mode, the reconstruction is equal to the source frame.
state->tile->frame->rec = kvz_image_copy_ref(frame);
} else {
state->tile->frame->rec = kvz_image_alloc(state->encoder_control->chroma_format, frame->width, frame->height);
state->tile->frame->rec->dts = frame->dts;
state->tile->frame->rec->pts = frame->pts;
}
kvz_videoframe_set_poc(state->tile->frame, state->frame->poc);
}
static void encoder_state_init_children(encoder_state_t * const state) {
kvz_bitstream_clear(&state->stream);
if (state->is_leaf) {
//Leaf states have cabac and context
kvz_cabac_start(&state->cabac);
kvz_init_contexts(state, state->frame->QP, state->frame->slicetype);
}
//Clear the jobs
kvz_threadqueue_free_job(&state->tqj_bitstream_written);
kvz_threadqueue_free_job(&state->tqj_recon_done);
for (int i = 0; state->children[i].encoder_control; ++i) {
encoder_state_init_children(&state->children[i]);
}
}
static void normalize_lcu_weights(encoder_state_t * const state)
{
if (state->frame->num == 0) return;
const uint32_t num_lcus = state->encoder_control->in.width_in_lcu *
state->encoder_control->in.height_in_lcu;
double sum = 0.0;
for (uint32_t i = 0; i < num_lcus; i++) {
sum += state->frame->lcu_stats[i].weight;
}
for (uint32_t i = 0; i < num_lcus; i++) {
state->frame->lcu_stats[i].weight /= sum;
}
}
static void encoder_state_init_new_frame(encoder_state_t * const state, kvz_picture* frame) {
assert(state->type == ENCODER_STATE_TYPE_MAIN);
const kvz_config * const cfg = &state->encoder_control->cfg;
encoder_set_source_picture(state, frame);
if (state->frame->num == 0) {
state->frame->is_idr_frame = true;
} else if (cfg->gop_len) {
// Closed GOP / CRA is not yet supported.
state->frame->is_idr_frame = false;
// Calculate POC according to the global frame counter and GOP structure
int32_t poc = state->frame->num - 1;
int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset;
state->frame->poc = poc - poc % cfg->gop_len + poc_offset;
kvz_videoframe_set_poc(state->tile->frame, state->frame->poc);
} else {
bool is_i_idr = (cfg->intra_period == 1 && state->frame->num % 2 == 0);
bool is_p_idr = (cfg->intra_period > 1 && (state->frame->num % cfg->intra_period) == 0);
state->frame->is_idr_frame = is_i_idr || is_p_idr;
}
if (state->frame->is_idr_frame) {
encoder_state_reset_poc(state);
state->frame->slicetype = KVZ_SLICE_I;
state->frame->pictype = KVZ_NAL_IDR_W_RADL;
} else {
if (cfg->intra_period == 1) {
state->frame->slicetype = KVZ_SLICE_I;
} else if (cfg->gop_len != 0) {
state->frame->slicetype = KVZ_SLICE_B;
} else {
state->frame->slicetype = KVZ_SLICE_P;
}
// Use P-slice for lowdelay.
if (state->frame->slicetype == KVZ_SLICE_B &&
cfg->gop_len > 0 &&
cfg->gop_lowdelay) {
state->frame->slicetype = KVZ_SLICE_P;
}
state->frame->pictype = KVZ_NAL_TRAIL_R;
if (state->encoder_control->cfg.gop_len) {
if (cfg->intra_period > 1 && (state->frame->poc % cfg->intra_period) == 0) {
state->frame->slicetype = KVZ_SLICE_I;
}
}
}
encoder_state_remove_refs(state);
encoder_state_ref_sort(state);
normalize_lcu_weights(state);
kvz_set_picture_lambda_and_qp(state);
encoder_state_init_children(state);
}
static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
_encode_one_frame_add_bitstream_deps(&state->children[i], job);
}
if (state->tqj_bitstream_written) {
kvz_threadqueue_job_dep_add(job, state->tqj_bitstream_written);
}
if (state->tqj_recon_done) {
kvz_threadqueue_job_dep_add(job, state->tqj_recon_done);
}
}
void kvz_encode_one_frame(encoder_state_t * const state, kvz_picture* frame)
{
{
PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME);
encoder_state_init_new_frame(state, frame);
PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=init_new_frame,frame=%d,poc=%d", state->frame->num, state->frame->poc);
}
{
PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME);
encoder_state_encode(state);
PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=encode,frame=%d", state->frame->num);
}
//kvz_threadqueue_flush(main_state->encoder_control->threadqueue);
{
threadqueue_job_t *job;
#ifdef KVZ_DEBUG
char job_description[256];
sprintf(job_description, "type=write_bitstream,frame=%d", state->frame->num);
#else
char* job_description = NULL;
#endif
job = kvz_threadqueue_submit(state->encoder_control->threadqueue, kvz_encoder_state_worker_write_bitstream, (void*) state, 1, job_description);
_encode_one_frame_add_bitstream_deps(state, job);
if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) {
//We need to depend on previous bitstream generation
kvz_threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written);
}
kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, job);
assert(!state->tqj_bitstream_written);
state->tqj_bitstream_written = job;
}
state->frame->done = 0;
//kvz_threadqueue_flush(main_state->encoder_control->threadqueue);
}
/**
* Prepare the encoder state for encoding the next frame.
*
* - Add the previous reconstructed picture as a reference, if needed.
* - Free the previous reconstructed and source pictures.
* - Create a new cu array, if needed.
* - Update frame count and POC.
*/
void kvz_encoder_prepare(encoder_state_t *state)
{
const encoder_control_t * const encoder = state->encoder_control;
// The previous frame must be done before the next one is started.
assert(state->frame->done);
if (state->frame->num == -1) {
// We're at the first frame, so don't care about all this stuff.
state->frame->num = 0;
state->frame->poc = 0;
assert(!state->tile->frame->source);
assert(!state->tile->frame->rec);
state->frame->prepared = 1;
return;
}
// NOTE: prev_state is equal to state when OWF is zero
encoder_state_t *prev_state = state->previous_encoder_state;
if (state->previous_encoder_state != state) {
kvz_cu_array_free(state->tile->frame->cu_array);
state->tile->frame->cu_array = NULL;
unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH;
unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH;
state->tile->frame->cu_array = kvz_cu_array_alloc(width, height);
kvz_image_list_copy_contents(state->frame->ref, prev_state->frame->ref);
}
if (!encoder->cfg.gop_len ||
!prev_state->frame->poc ||
encoder->cfg.gop[prev_state->frame->gop_offset].is_ref) {
// Store current list of POCs for use in TMVP derivation
memcpy(prev_state->tile->frame->rec->ref_pocs, state->frame->ref->pocs, sizeof(int32_t)*state->frame->ref->used_size);
// Add previous reconstructed picture as a reference
kvz_image_list_add(state->frame->ref,
prev_state->tile->frame->rec,
prev_state->tile->frame->cu_array,
prev_state->frame->poc);
kvz_cu_array_free(state->tile->frame->cu_array);
unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH;
unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH;
state->tile->frame->cu_array = kvz_cu_array_alloc(width, height);
}
// Remove source and reconstructed picture.
kvz_image_free(state->tile->frame->source);
state->tile->frame->source = NULL;
kvz_image_free(state->tile->frame->rec);
state->tile->frame->rec = NULL;
// Update POC and frame count.
state->frame->num = prev_state->frame->num + 1;
state->frame->poc = prev_state->frame->poc + 1;
state->frame->prepared = 1;
}
coeff_scan_order_t kvz_get_scan_order(int8_t cu_type, int intra_mode, int depth)
{
// Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
if (cu_type == CU_INTRA && depth >= 3) {
if (intra_mode >= 6 && intra_mode <= 14) {
return SCAN_VER;
} else if (intra_mode >= 22 && intra_mode <= 30) {
return SCAN_HOR;
}
}
return SCAN_DIAG;
}
lcu_stats_t* kvz_get_lcu_stats(encoder_state_t *state, int lcu_x, int lcu_y)
{
const int index = lcu_x + state->tile->lcu_offset_x +
(lcu_y + state->tile->lcu_offset_y) *
state->encoder_control->in.width_in_lcu;
return &state->frame->lcu_stats[index];
}