/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "context.h" #include #include #include #include "config.h" // CONTEXTS cabac_ctx g_sao_merge_flag_model; cabac_ctx g_sao_type_idx_model; cabac_ctx g_split_flag_model[3]; //!< \brief split flag context models cabac_ctx g_intra_mode_model; //!< \brief intra mode context models cabac_ctx g_chroma_pred_model[2]; cabac_ctx g_trans_subdiv_model[3]; //!< \brief intra mode context models cabac_ctx g_qt_cbf_model_luma[3]; cabac_ctx g_qt_cbf_model_chroma[3]; cabac_ctx g_part_size_model[4]; cabac_ctx g_cu_sig_coeff_group_model[4]; cabac_ctx g_cu_sig_model_luma[27]; cabac_ctx g_cu_sig_model_chroma[15]; cabac_ctx g_cu_ctx_last_y_luma[15]; cabac_ctx g_cu_ctx_last_y_chroma[15]; cabac_ctx g_cu_ctx_last_x_luma[15]; cabac_ctx g_cu_ctx_last_x_chroma[15]; cabac_ctx g_cu_one_model_luma[16]; cabac_ctx g_cu_one_model_chroma[8]; cabac_ctx g_cu_abs_model_luma[4]; cabac_ctx g_cu_abs_model_chroma[2]; cabac_ctx g_cu_pred_mode_model; cabac_ctx g_cu_skip_flag_model[3]; cabac_ctx g_cu_merge_idx_ext_model; cabac_ctx g_cu_merge_flag_ext_model; cabac_ctx g_cu_mvd_model[2]; cabac_ctx g_cu_ref_pic_model[2]; cabac_ctx g_mvp_idx_model[2]; cabac_ctx g_cu_qt_root_cbf_model; /** * \brief Initialize struct cabac_ctx. */ void ctx_init(cabac_ctx *ctx, uint32_t qp, uint32_t init_value) { int slope = (init_value >> 4) * 5 - 45; int offset = ((init_value & 15) << 3) - 16; int init_state = MIN(MAX(1, ((slope * (int)qp) >> 4) + offset), 126); if (init_state >= 64) { ctx->uc_state = ((init_state - 64) << 1) + 1; } else { ctx->uc_state = (63 - init_state) << 1; } ctx->bins_coded = 0; } /** * \brief Initialize cabac context to be used for coding * \param encoder encoder control struct * \param slice type of slice we are coding (P/B/I) */ void init_contexts(encoder_control *encoder, int8_t slice) { uint16_t i; // Initialize contexts ctx_init(&g_sao_merge_flag_model, encoder->QP, INIT_SAO_MERGE_FLAG[slice]); ctx_init(&g_sao_type_idx_model, encoder->QP, INIT_SAO_TYPE_IDX[slice]); ctx_init(&g_cu_merge_flag_ext_model, encoder->QP, INIT_MERGE_FLAG_EXT[slice][0]); ctx_init(&g_cu_merge_idx_ext_model, encoder->QP, INIT_MERGE_IDX_EXT[slice][0]); ctx_init(&g_cu_pred_mode_model, encoder->QP, INIT_PRED_MODE[slice][0]); ctx_init(&g_cu_skip_flag_model[0], encoder->QP, INIT_SKIP_FLAG[slice][0]); ctx_init(&g_cu_skip_flag_model[1], encoder->QP, INIT_SKIP_FLAG[slice][1]); ctx_init(&g_cu_skip_flag_model[2], encoder->QP, INIT_SKIP_FLAG[slice][2]); ctx_init(&g_split_flag_model[0], encoder->QP, INIT_SPLIT_FLAG[slice][0]); ctx_init(&g_split_flag_model[1], encoder->QP, INIT_SPLIT_FLAG[slice][1]); ctx_init(&g_split_flag_model[2], encoder->QP, INIT_SPLIT_FLAG[slice][2]); ctx_init(&g_intra_mode_model, encoder->QP, INIT_INTRA_PRED_MODE[slice]); ctx_init(&g_chroma_pred_model[0], encoder->QP, INIT_CHROMA_PRED_MODE[slice][0]); ctx_init(&g_chroma_pred_model[1], encoder->QP, INIT_CHROMA_PRED_MODE[slice][1]); ctx_init(&g_cu_abs_model_chroma[0], encoder->QP, INIT_ABS_FLAG[slice][4]); ctx_init(&g_cu_abs_model_chroma[1], encoder->QP, INIT_ABS_FLAG[slice][5]); //TODO: ignore P/B contexts on intra frame ctx_init(&g_cu_qt_root_cbf_model, encoder->QP, INIT_QT_ROOT_CBF[slice][0]); ctx_init(&g_cu_mvd_model[0], encoder->QP, INIT_MVD[slice][0]); ctx_init(&g_cu_mvd_model[1], encoder->QP, INIT_MVD[slice][1]); ctx_init(&g_cu_ref_pic_model[0], encoder->QP, INIT_REF_PIC[slice][0]); ctx_init(&g_cu_ref_pic_model[1], encoder->QP, INIT_REF_PIC[slice][1]); ctx_init(&g_mvp_idx_model[0], encoder->QP, INIT_MVP_IDX[slice][0]); ctx_init(&g_mvp_idx_model[1], encoder->QP, INIT_MVP_IDX[slice][1]); for (i = 0; i < 4; i++) { ctx_init(&g_cu_sig_coeff_group_model[i], encoder->QP, INIT_SIG_CG_FLAG[slice][i]); ctx_init(&g_cu_abs_model_luma[i], encoder->QP, INIT_ABS_FLAG[slice][i]); ctx_init(&g_part_size_model[i], encoder->QP, INIT_PART_SIZE[slice][i]); } for (i = 0; i < 3; i++) { ctx_init(&g_trans_subdiv_model[i], encoder->QP, INIT_TRANS_SUBDIV_FLAG[slice][i]); ctx_init(&g_qt_cbf_model_luma[i], encoder->QP, INIT_QT_CBF[slice][i]); ctx_init(&g_qt_cbf_model_chroma[i], encoder->QP, INIT_QT_CBF[slice][i+3]); } for (i = 0; i < 8; i++) { ctx_init(&g_cu_one_model_chroma[i], encoder->QP, INIT_ONE_FLAG[slice][i+16]); } for (i = 0; i < 15; i++) { ctx_init(&g_cu_ctx_last_y_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_x_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_y_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_ctx_last_x_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_one_model_luma[i], encoder->QP, INIT_ONE_FLAG[slice][i]); } ctx_init(&g_cu_one_model_luma[15], encoder->QP, INIT_ONE_FLAG[slice][15]); for (i = 0; i < 27; i++) { ctx_init(&g_cu_sig_model_luma[i], encoder->QP, INIT_SIG_FLAG[slice][i]); if(i < 15) ctx_init(&g_cu_sig_model_chroma[i], encoder->QP, INIT_SIG_FLAG[slice][i+27]); } } uint32_t context_get_sig_coeff_group( uint32_t *sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { uint32_t uiRight = 0; uint32_t uiLower = 0; width >>= 2; if (pos_x < (uint32_t)width - 1) uiRight = (sig_coeff_group_flag[pos_y * width + pos_x + 1] != 0); if (pos_y < (uint32_t)width - 1) uiLower = (sig_coeff_group_flag[(pos_y + 1 ) * width + pos_x] != 0); return uiRight || uiLower; } /** * \brief Pattern decision for context derivation process of significant_coeff_flag * \param sig_coeff_group_flag pointer to prior coded significant coeff group * \param pos_x column of current coefficient group * \param pos_y row of current coefficient group * \param width width of the block * \returns pattern for current coefficient group */ int32_t context_calc_pattern_sig_ctx(const uint32_t *sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { uint32_t sigRight = 0; uint32_t sigLower = 0; if (width == 4) return -1; width >>= 2; if (pos_x < (uint32_t)width - 1) sigRight = (sig_coeff_group_flag[pos_y * width + pos_x + 1] != 0); if (pos_y < (uint32_t)width - 1) sigLower = (sig_coeff_group_flag[(pos_y + 1 ) * width + pos_x] != 0); return sigRight + (sigLower<<1); } /** * \brief Context derivation process of coeff_abs_significant_flag * \param pattern_sig_ctx pattern for current coefficient group * \param scan_idx pixel scan type in use * \param pos_x column of current scan position * \param pos_y row of current scan position * \param block_type log2 value of block size if square block, or 4 otherwise * \param width width of the block * \param texture_type texture type (TEXT_LUMA...) * \returns ctx_inc for current scan position */ int32_t context_get_sig_ctx_inc(int32_t pattern_sig_ctx, uint32_t scan_idx, int32_t pos_x, int32_t pos_y, int32_t block_type, int32_t width, int8_t texture_type) { const int32_t ctx_ind_map[16] = { 0, 1, 4, 5, 2, 3, 4, 5, 6, 6, 8, 8, 7, 7, 8, 8 }; int32_t cnt,offset,pos_x_in_subset,pos_y_in_subset; if (pos_x + pos_y == 0) return 0; if (block_type == 2) return ctx_ind_map[4 * pos_y + pos_x]; cnt = 0; offset = (block_type == 3) ? ((scan_idx == SCAN_DIAG) ? 9 : 15) : ((texture_type == 0) ? 21 : 12); pos_x_in_subset = pos_x - ((pos_x>>2)<<2); pos_y_in_subset = pos_y - ((pos_y>>2)<<2); if (pattern_sig_ctx == 0) { cnt = (pos_x_in_subset + pos_y_in_subset <= 2) ? ((pos_x_in_subset + pos_y_in_subset==0) ? 2 : 1) : 0; } else if (pattern_sig_ctx==1) { cnt = (pos_y_in_subset <= 1) ? ((pos_y_in_subset == 0) ? 2 : 1) : 0; } else if (pattern_sig_ctx==2) { cnt = (pos_x_in_subset <= 1) ? ((pos_x_in_subset == 0) ? 2 : 1) : 0; } else { cnt = 2; } return (( texture_type == 0 && ((pos_x>>2) + (pos_y>>2)) > 0 ) ? 3 : 0) + offset + cnt; }