/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "search.h" #include #include #include #include #include "intra.h" #include "inter.h" #include "rdo.h" #include "transform.h" #include "search_inter.h" #include "search_intra.h" #include "strategies/strategies-picture.h" #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) // Cost treshold for doing intra search in inter frames with --rd=0. #ifndef INTRA_TRESHOLD # define INTRA_TRESHOLD 20 #endif // Extra cost for CU split. // Compensates for missing or incorrect bit costs. Must be recalculated if // bits are added or removed from cu-tree search. #ifndef CU_COST # define CU_COST 3 #endif // Disable early cu-split pruning. #ifndef FULL_CU_SPLIT_SEARCH # define FULL_CU_SPLIT_SEARCH false #endif // Modify weight of luma SSD. #ifndef LUMA_MULT # define LUMA_MULT 0.8 #endif // Modify weight of chroma SSD. #ifndef CHROMA_MULT # define CHROMA_MULT 1.5 #endif /** * Copy all non-reference CU data from depth+1 to depth. */ static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { assert(depth >= 0 && depth < MAX_PU_DEPTH); // Copy non-reference CUs. { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info_t *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int width_px = LCU_WIDTH >> depth; const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); const lcu_yuv_t *from = &work_tree[depth + 1].rec; lcu_yuv_t *to = &work_tree[depth].rec; const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff; lcu_coeff_t *to_coeff = &work_tree[depth].coeff; kvz_pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); kvz_pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); kvz_pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); // Copy coefficients up. They do not have to be copied down because they // are not used for the search. kvz_coefficients_blit(&from_coeff->y[luma_index], &to_coeff->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); kvz_coefficients_blit(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); kvz_coefficients_blit(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } /** * Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH. */ static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { assert(depth >= 0 && depth < MAX_PU_DEPTH); // TODO: clean up to remove the copy pasta const int width_px = LCU_WIDTH >> depth; int d; for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = width_px >> MAX_DEPTH; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info_t *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); lcu_yuv_t *from = &work_tree[depth].rec; lcu_yuv_t *to = &work_tree[d].rec; kvz_pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); kvz_pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); kvz_pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } void kvz_lcu_set_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth) { const int width_cu = LCU_CU_WIDTH >> depth; const vector2d_t lcu_cu = { (x_px & (LCU_WIDTH - 1)) / 8, (y_px & (LCU_WIDTH - 1)) / 8 }; cu_info_t *const cur_cu = &lcu->cu[lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH + LCU_CU_OFFSET]; int x, y; // Depth 4 doesn't go inside the loop. Set the top-left CU. cur_cu->tr_depth = tr_depth; for (y = 0; y < width_cu; ++y) { for (x = 0; x < width_cu; ++x) { cu_info_t *cu = &cur_cu[x + y * LCU_T_CU_WIDTH]; cu->tr_depth = tr_depth; } } } static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int chroma_mode, int part_mode) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // NxN can only be applied to a single CU at a time. if (part_mode == SIZE_NxN) { cu_info_t *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH]; cu->depth = MAX_DEPTH; cu->type = CU_INTRA; cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode = pred_mode; cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode_chroma = chroma_mode; cu->part_size = part_mode; return; } // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu->depth = depth; cu->type = CU_INTRA; cu->intra[0].mode = pred_mode; cu->intra[1].mode = pred_mode; cu->intra[2].mode = pred_mode; cu->intra[3].mode = pred_mode; cu->intra[0].mode_chroma = chroma_mode; cu->part_size = part_mode; cu->coded = 1; } } } static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; //Check if this could be moved inside the if cu->coded = 1; if (cu != cur_cu) { cu->depth = cur_cu->depth; cu->type = CU_INTER; cu->tr_depth = cur_cu->tr_depth; cu->merged = cur_cu->merged; cu->skipped = cur_cu->skipped; memcpy(&cu->inter, &cur_cu->inter, sizeof(cur_cu->inter)); } } } } static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; int tr_split = cur_cu->tr_depth-cur_cu->depth; // Set coeff flags in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; // Use TU top-left CU to propagate coeff flags uint32_t mask = ~((width_cu>>tr_split)-1); cu_info_t *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH]; if (cu != cu_from) { // Chroma coeff data is not used, luma is needed for deblocking cu->cbf.y = cu_from->cbf.y; } } } } /** * Calculate RD cost for a Coding Unit. * \return Cost of block * \param ref_cu CU used for prediction parameters. * * Calculates the RDO cost of a single CU that will not be split further. * Takes into account SSD of reconstruction and the cost of encoding whatever * prediction unit data needs to be coded. */ double kvz_cu_rd_cost_luma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const int width = LCU_WIDTH >> depth; const uint8_t pu_index = PU_INDEX(x_px / 4, y_px / 4); // cur_cu is used for TU parameters. cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (x_px / 8) + (y_px / 8) * LCU_T_CU_WIDTH]; double coeff_bits = 0; double tr_tree_bits = 0; // Check that lcu is not in assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); const uint8_t tr_depth = tr_cu->tr_depth - depth; // Add transform_tree split_transform_flag bit cost. bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3; if (width <= TR_MAX_WIDTH && width > TR_MIN_WIDTH && !intra_split_flag) { const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0); } if (tr_depth > 0) { int offset = width / 2; double sum = 0; sum += kvz_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->global->cur_lambda_cost; } // Add transform_tree cbf_luma bit cost. if (pred_cu->type == CU_INTRA || tr_depth > 0 || cbf_is_set(tr_cu->cbf.u, depth) || cbf_is_set(tr_cu->cbf.v, depth)) { const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_luma[!tr_depth]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.y, depth + pu_index)); } unsigned ssd = 0; // SSD between reconstruction and original for (int y = y_px; y < y_px + width; ++y) { for (int x = x_px; x < x_px + width; ++x) { int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x]; ssd += diff*diff; } } { coeff_t coeff_temp[32 * 32]; int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode, depth); // Code coeffs using cabac to get a better estimate of real coding costs. kvz_coefficients_blit(&lcu->coeff.y[(y_px*LCU_WIDTH) + x_px], coeff_temp, width, width, LCU_WIDTH, width); coeff_bits += kvz_get_coeff_cost(state, coeff_temp, width, 0, luma_scan_mode); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * LUMA_MULT + bits * state->global->cur_lambda_cost; } double kvz_cu_rd_cost_chroma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const vector2d_t lcu_px = { x_px / 2, y_px / 2 }; const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth; cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x / 4) + (lcu_px.y / 4)*LCU_T_CU_WIDTH]; double tr_tree_bits = 0; double coeff_bits = 0; assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); if (PU_INDEX(x_px / 4, y_px / 4) != 0) { // For MAX_PU_DEPTH calculate chroma for previous depth for the first // block and return 0 cost for all others. return 0; } if (depth < MAX_PU_DEPTH) { const int tr_depth = depth - pred_cu->depth; const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth)); } if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth)); } } if (tr_cu->tr_depth > depth) { int offset = LCU_WIDTH >> (depth + 1); int sum = 0; sum += kvz_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->global->cur_lambda_cost; } // Chroma SSD int ssd = 0; for (int y = lcu_px.y; y < lcu_px.y + width; ++y) { for (int x = lcu_px.x; x < lcu_px.x + width; ++x) { int diff = (int)lcu->rec.u[y * LCU_WIDTH_C + x] - (int)lcu->ref.u[y * LCU_WIDTH_C + x]; ssd += diff * diff; } } for (int y = lcu_px.y; y < lcu_px.y + width; ++y) { for (int x = lcu_px.x; x < lcu_px.x + width; ++x) { int diff = (int)lcu->rec.v[y * LCU_WIDTH_C + x] - (int)lcu->ref.v[y * LCU_WIDTH_C + x]; ssd += diff * diff; } } { coeff_t coeff_temp[16 * 16]; int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra[0].mode_chroma, depth); kvz_coefficients_blit(&lcu->coeff.u[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x], coeff_temp, width, width, LCU_WIDTH_C, width); coeff_bits += kvz_get_coeff_cost(state, coeff_temp, width, 2, scan_order); kvz_coefficients_blit(&lcu->coeff.v[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x], coeff_temp, width, width, LCU_WIDTH_C, width); coeff_bits += kvz_get_coeff_cost(state, coeff_temp, width, 2, scan_order); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * CHROMA_MULT + bits * state->global->cur_lambda_cost; } // Return estimate of bits used to code prediction mode of cur_cu. static double calc_mode_bits(const encoder_state_t *state, const cu_info_t * cur_cu, int x, int y) { double mode_bits; if (cur_cu->type == CU_INTER) { mode_bits = cur_cu->inter.bitcost; } else { int8_t candidate_modes[3]; { const cu_info_t *left_cu = ((x > 8) ? &cur_cu[-1] : NULL); const cu_info_t *above_cu = ((y > 8) ? &cur_cu[-LCU_T_CU_WIDTH] : NULL); kvz_intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu); } mode_bits = kvz_luma_mode_bits(state, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, candidate_modes); if (PU_INDEX(x >> 2, y >> 2) == 0) { mode_bits += kvz_chroma_mode_bits(state, cur_cu->intra[0].mode_chroma, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode); } } return mode_bits; } static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth) { vector2d_t lcu_cu = { (x & 0x3f) / 8, (y & 0x3f) / 8 }; const cu_info_t *cu_array = &(lcu)->cu[LCU_CU_OFFSET]; bool condA = x >= 8 && cu_array[(lcu_cu.x - 1) + lcu_cu.y * LCU_T_CU_WIDTH].depth > depth; bool condL = y >= 8 && cu_array[lcu_cu.x + (lcu_cu.y - 1) * LCU_T_CU_WIDTH].depth > depth; return condA + condL; } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { const encoder_control_t* ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; int cu_width = LCU_WIDTH >> depth; double cost = MAX_INT; cu_info_t *cur_cu; lcu_t *const lcu = &work_tree[depth]; int x_local = (x&0x3f), y_local = (y&0x3f); #ifdef KVZ_DEBUG int debug_split = 0; #endif PERFORMANCE_MEASURE_START(KVZ_PERF_SEARCHCU); // Stop recursion if the CU is completely outside the frame. if (x >= frame->width || y >= frame->height) { // Return zero cost because this CU does not have to be coded. return 0; } cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // Assign correct depth cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth; cur_cu->tr_depth = depth > 0 ? depth : 1; cur_cu->type = CU_NOTSET; cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= frame->width && y + cu_width <= frame->height) { if (state->global->slicetype != KVZ_SLICE_I && WITHIN(depth, ctrl->pu_depth_inter.min, ctrl->pu_depth_inter.max)) { int mode_cost = kvz_search_cu_inter(state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTER; } } // Try to skip intra search in rd==0 mode. // This can be quite severe on bdrate. It might be better to do this // decision after reconstructing the inter frame. bool skip_intra = state->encoder_control->rdo == 0 && cur_cu->type != CU_NOTSET && cost / (cu_width * cu_width) < INTRA_TRESHOLD; if (!skip_intra && WITHIN(depth, ctrl->pu_depth_intra.min, ctrl->pu_depth_intra.max)) { double mode_cost = kvz_search_cu_intra(state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTRA; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { int8_t intra_mode = cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode; lcu_set_intra_mode(&work_tree[depth], x, y, depth, intra_mode, intra_mode, cur_cu->part_size); kvz_intra_recon_lcu_luma(state, x, y, depth, intra_mode, NULL, &work_tree[depth]); if (PU_INDEX(x >> 2, y >> 2) == 0) { int8_t intra_mode_chroma = intra_mode; // There is almost no benefit to doing the chroma mode search for // rd2. Possibly because the luma mode search already takes chroma // into account, so there is less of a chanse of luma mode being // really bad for chroma. if (state->encoder_control->rdo == 3) { intra_mode_chroma = kvz_search_cu_intra_chroma(state, x, y, depth, &work_tree[depth]); lcu_set_intra_mode(&work_tree[depth], x, y, depth, intra_mode, intra_mode_chroma, cur_cu->part_size); } kvz_intra_recon_lcu_chroma(state, x, y, depth, intra_mode_chroma, NULL, &work_tree[depth]); } } else if (cur_cu->type == CU_INTER) { // Reset transform depth because intra messes with them. // This will no longer be necessary if the transform depths are not shared. int tr_depth = depth > 0 ? depth : 1; kvz_lcu_set_trdepth(&work_tree[depth], x, y, depth, tr_depth); if (cur_cu->inter.mv_dir == 3) { kvz_inter_recon_lcu_bipred(state, state->global->ref->images[cur_cu->inter.mv_ref[0]], state->global->ref->images[cur_cu->inter.mv_ref[1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv, &work_tree[depth]); } else { kvz_inter_recon_lcu(state, state->global->ref->images[cur_cu->inter.mv_ref[cur_cu->inter.mv_dir - 1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv[cur_cu->inter.mv_dir - 1], &work_tree[depth], 0); } kvz_quantize_lcu_luma_residual(state, x, y, depth, NULL, &work_tree[depth]); kvz_quantize_lcu_chroma_residual(state, x, y, depth, NULL, &work_tree[depth]); int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); if(cur_cu->merged && !cbf) { cur_cu->merged = 0; cur_cu->skipped = 1; // Selecting skip reduces bits needed to code the CU if (cur_cu->inter.bitcost > 1) { cur_cu->inter.bitcost -= 1; } } lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu); lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu); } } if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) { cost = kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); double mode_bits = calc_mode_bits(state, cur_cu, x, y); cost += mode_bits * state->global->cur_lambda_cost; } // Recursively split all the way to max search depth. if (depth < ctrl->pu_depth_intra.max || (depth < ctrl->pu_depth_inter.max && state->global->slicetype != KVZ_SLICE_I)) { int half_cu = cu_width / 2; // Using Cost = lambda * 9 to compensate on the price of the split double split_cost = state->global->cur_lambda_cost * CU_COST; int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); if (depth < MAX_DEPTH) { uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0); split_cost += CTX_ENTROPY_FBITS(ctx, 1); } if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) { const cabac_ctx_t *ctx = &(state->cabac.ctx.part_size_model[0]); cost += CTX_ENTROPY_FBITS(ctx, 1); // 2Nx2N split_cost += CTX_ENTROPY_FBITS(ctx, 0); // NxN } // If skip mode was selected for the block, skip further search. // Skip mode means there's no coefficients in the block, so splitting // might not give any better results but takes more time to do. if (cur_cu->type == CU_NOTSET || cbf || FULL_CU_SPLIT_SEARCH) { split_cost += search_cu(state, x, y, depth + 1, work_tree); split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree); split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree); split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree); } else { split_cost = INT_MAX; } // If no search is not performed for this depth, try just the best mode // of the top left CU from the next depth. This should ensure that 64x64 // gets used, at least in the most obvious cases, while avoiding any // searching. if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH && x + cu_width <= frame->width && y + cu_width <= frame->height) { vector2d_t lcu_cu = { x_local / 8, y_local / 8 }; cu_info_t *cu_array_d1 = &(&work_tree[depth + 1])->cu[LCU_CU_OFFSET]; cu_info_t *cu_d1 = &cu_array_d1[(lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH)]; // If the best CU in depth+1 is intra and the biggest it can be, try it. if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) { cost = 0; cur_cu->intra[0] = cu_d1->intra[0]; cur_cu->type = CU_INTRA; kvz_lcu_set_trdepth(&work_tree[depth], x, y, depth, cur_cu->tr_depth); lcu_set_intra_mode(&work_tree[depth], x, y, depth, cur_cu->intra[0].mode, cur_cu->intra[0].mode_chroma, cur_cu->part_size); kvz_intra_recon_lcu_luma(state, x, y, depth, cur_cu->intra[0].mode, NULL, &work_tree[depth]); kvz_intra_recon_lcu_chroma(state, x, y, depth, cur_cu->intra[0].mode_chroma, NULL, &work_tree[depth]); cost += kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0); double mode_bits = calc_mode_bits(state, cur_cu, x, y); cost += mode_bits * state->global->cur_lambda_cost; } } if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x, y, depth, work_tree); #if KVZ_DEBUG debug_split = 1; #endif } else if (depth > 0) { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. work_tree_copy_down(x, y, depth, work_tree); } } PERFORMANCE_MEASURE_END(KVZ_PERF_SEARCHCU, state->encoder_control->threadqueue, "type=search_cu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d,depth=%d,split=%d,cur_cu_is_intra=%d", state->global->frame, state->tile->id, state->slice->id, (state->tile->lcu_offset_x * LCU_WIDTH) + x, (state->tile->lcu_offset_x * LCU_WIDTH) + x + (LCU_WIDTH >> depth), (state->tile->lcu_offset_y * LCU_WIDTH) + y, (state->tile->lcu_offset_y * LCU_WIDTH) + y + (LCU_WIDTH >> depth), depth, debug_split, (cur_cu->type==CU_INTRA)?1:0); return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf) { const videoframe_t * const frame = state->tile->frame; // Copy reference cu_info structs from neighbouring LCUs. { const int x_cu = x >> MAX_DEPTH; const int y_cu = y >> MAX_DEPTH; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. cu_info_t *lcu_cu = &lcu->cu[LCU_CU_OFFSET]; // Copy top CU row. if (y_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info_t *from_cu = kvz_videoframe_get_cu_const(frame, x_cu + i, y_cu - 1); cu_info_t *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info_t *from_cu = kvz_videoframe_get_cu_const(frame, x_cu - 1, y_cu + i); cu_info_t *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x_cu > 0 && y_cu > 0) { const cu_info_t *from_cu = kvz_videoframe_get_cu_const(frame, x_cu - 1, y_cu - 1); cu_info_t *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy top-right CU. if (y_cu > 0 && x + LCU_WIDTH < frame->width) { const cu_info_t *from_cu = kvz_videoframe_get_cu_const(frame, x_cu + LCU_CU_WIDTH, y_cu - 1); cu_info_t *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy reference pixels. { const int pic_width = frame->width; // Copy top reference pixels. if (y > 0) { // hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH // number of allocated pixels left. int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x); int x_min_in_lcu = (x>0) ? 0 : 1; memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu-1)], (x_max + (1-x_min_in_lcu))*sizeof(kvz_pixel)); memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1)], (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel)); memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1)], (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel)); } // Copy left reference pixels. if (x > 0) { int y_min_in_lcu = (y>0) ? 0 : 1; memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1)], (LCU_WIDTH + (1 - y_min_in_lcu))*sizeof(kvz_pixel)); memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1)], (LCU_WIDTH / 2 + (1 - y_min_in_lcu))*sizeof(kvz_pixel)); memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1)], (LCU_WIDTH / 2 + (1 - y_min_in_lcu))*sizeof(kvz_pixel)); } } // Copy LCU pixels. { const videoframe_t * const frame = state->tile->frame; int x_max = MIN(x + LCU_WIDTH, frame->width) - x; int y_max = MIN(y + LCU_WIDTH, frame->height) - y; int x_c = x / 2; int y_c = y / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; kvz_pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y, x_max, y_max, frame->source->stride, LCU_WIDTH); kvz_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride/2], lcu->ref.u, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); kvz_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride/2], lcu->ref.v, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. { const int x_cu = x_px >> MAX_DEPTH; const int y_cu = y_px >> MAX_DEPTH; videoframe_t * const frame = state->tile->frame; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. const cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; for (y = 0; y < LCU_CU_WIDTH; ++y) { for (x = 0; x < LCU_CU_WIDTH; ++x) { const cu_info_t *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = kvz_videoframe_get_cu(frame, x_cu + x, y_cu + y); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy pixels to picture. { videoframe_t * const pic = state->tile->frame; const int pic_width = pic->width; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px; const int luma_index = x_px + y_px * pic_width; const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2); kvz_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); kvz_coefficients_blit(lcu->coeff.y, &pic->coeff_y[luma_index], x_max, y_max, LCU_WIDTH, pic_width); kvz_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); kvz_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); kvz_coefficients_blit(lcu->coeff.u, &pic->coeff_u[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); kvz_coefficients_blit(lcu->coeff.v, &pic->coeff_v[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ void kvz_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf) { lcu_t work_tree[MAX_PU_DEPTH + 1]; int depth; // Initialize work tree. for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) { FILL(work_tree[depth], 0); init_lcu_t(state, x, y, &work_tree[depth], hor_buf, ver_buf); } // Start search from depth 0. search_cu(state, x, y, 0, work_tree); copy_lcu_to_cu_data(state, x, y, &work_tree[0]); }