/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "rate_control.h" #include #include "encoder.h" #include "kvazaar.h" static const int SMOOTHING_WINDOW = 40; static const double MIN_LAMBDA = 0.1; static const double MAX_LAMBDA = 10000; /** * \brief Clip lambda value to a valid range. */ static double clip_lambda(double lambda) { if (isnan(lambda)) return MAX_LAMBDA; return CLIP(MIN_LAMBDA, MAX_LAMBDA, lambda); } /** * \brief Update alpha and beta parameters. * \param state the main encoder state * * Sets global->rc_alpha and global->rc_beta of the encoder state. */ static void update_rc_parameters(encoder_state_t * state) { const encoder_control_t * const encoder = state->encoder_control; const double pixels_per_picture = encoder->in.width * encoder->in.height; const double bpp = state->stats_bitstream_length * 8 / pixels_per_picture; const double log_bpp = log(bpp); const double alpha_old = state->frame->rc_alpha; const double beta_old = state->frame->rc_beta; // lambda computed from real bpp const double lambda_comp = clip_lambda(alpha_old * pow(bpp, beta_old)); // lambda used in encoding const double lambda_real = state->frame->lambda; const double lambda_log_ratio = log(lambda_real) - log(lambda_comp); const double alpha = alpha_old + 0.1 * lambda_log_ratio * alpha_old; state->frame->rc_alpha = CLIP(0.05, 20, alpha); const double beta = beta_old + 0.05 * lambda_log_ratio * CLIP(-5, 1, log_bpp); state->frame->rc_beta = CLIP(-3, -0.1, beta); } /** * \brief Allocate bits for the current GOP. * \param state the main encoder state * \return target number of bits */ static double gop_allocate_bits(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; // At this point, total_bits_coded of the current state contains the // number of bits written encoder->owf frames before the current frame. uint64_t bits_coded = state->frame->total_bits_coded; int pictures_coded = MAX(0, state->frame->num - encoder->owf); int gop_offset = (state->frame->gop_offset - encoder->owf) % MAX(1, encoder->cfg->gop_len); // Only take fully coded GOPs into account. if (encoder->cfg->gop_len > 0 && gop_offset != encoder->cfg->gop_len - 1) { // Subtract number of bits in the partially coded GOP. bits_coded -= state->frame->cur_gop_bits_coded; // Subtract number of pictures in the partially coded GOP. pictures_coded -= gop_offset + 1; } // Equation 12 from https://doi.org/10.1109/TIP.2014.2336550 double gop_target_bits = (encoder->target_avg_bppic * (pictures_coded + SMOOTHING_WINDOW) - bits_coded) * MAX(1, encoder->cfg->gop_len) / SMOOTHING_WINDOW; // Allocate at least 200 bits for each GOP like HM does. return MAX(200, gop_target_bits); } /** * Allocate bits for the current picture. * \param state the main encoder state * \return target number of bits */ static double pic_allocate_bits(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; if (encoder->cfg->gop_len == 0 || state->frame->gop_offset == 0 || state->frame->num == 0) { // A new GOP starts at this frame. state->frame->cur_gop_target_bits = gop_allocate_bits(state); state->frame->cur_gop_bits_coded = 0; } else { state->frame->cur_gop_target_bits = state->previous_encoder_state->frame->cur_gop_target_bits; } if (encoder->cfg->gop_len <= 0) { return state->frame->cur_gop_target_bits; } const double pic_weight = encoder->gop_layer_weights[ encoder->cfg->gop[state->frame->gop_offset].layer - 1]; double pic_target_bits = state->frame->cur_gop_target_bits * pic_weight; // Allocate at least 100 bits for each picture like HM does. return MAX(100, pic_target_bits); } int8_t lambda_to_qp(const double lambda) { const int8_t qp = 4.2005 * log(lambda) + 13.7223 + 0.5; return CLIP(0, 51, qp); } /** * \brief Allocate bits and set lambda and QP for the current picture. * \param state the main encoder state */ void kvz_set_picture_lambda_and_qp(encoder_state_t * const state) { const encoder_control_t * const ctrl = state->encoder_control; if (ctrl->cfg->target_bitrate > 0) { // Rate control enabled if (state->frame->num > ctrl->owf) { // At least one frame has been written. update_rc_parameters(state); } // TODO: take the picture headers into account const double pic_target_bits = pic_allocate_bits(state); const double target_bpp = pic_target_bits / ctrl->in.pixels_per_pic; double lambda = state->frame->rc_alpha * pow(target_bpp, state->frame->rc_beta); lambda = clip_lambda(lambda); state->frame->lambda = lambda; state->frame->QP = lambda_to_qp(lambda); state->frame->cur_pic_target_bits = pic_target_bits; } else { // Rate control disabled kvz_gop_config const * const gop = &ctrl->cfg->gop[state->frame->gop_offset]; const int gop_len = ctrl->cfg->gop_len; const int period = gop_len > 0 ? gop_len : ctrl->cfg->intra_period; state->frame->QP = ctrl->cfg->qp; if (gop_len > 0 && state->frame->slicetype != KVZ_SLICE_I) { state->frame->QP += gop->qp_offset; } double lambda = pow(2.0, (state->frame->QP - 12) / 3.0); if (state->frame->slicetype == KVZ_SLICE_I) { lambda *= 0.57; // Reduce lambda for I-frames according to the number of references. if (period == 0) { lambda *= 0.5; } else { lambda *= 1.0 - CLIP(0.0, 0.5, 0.05 * (period - 1)); } } else if (gop_len > 0) { lambda *= gop->qp_factor; } else { lambda *= 0.4624; } // Increase lambda if not key-frame. if (period > 0 && state->frame->poc % period != 0) { lambda *= CLIP(2.0, 4.0, (state->frame->QP - 12) / 6.0); } state->frame->lambda = lambda; } } /** * \brief Allocate bits for a LCU. * \param state the main encoder state * \param pos location of the LCU as number of LCUs from top left * \return number of bits allocated for the LCU */ static double lcu_allocate_bits(encoder_state_t * const state, vector2d_t pos) { double lcu_weight; if (state->frame->num > state->encoder_control->owf) { lcu_weight = kvz_get_lcu_stats(state, pos.x, pos.y)->weight; } else { const uint32_t num_lcus = state->encoder_control->in.width_in_lcu * state->encoder_control->in.height_in_lcu; lcu_weight = 1.0 / num_lcus; } // Target number of bits for the current LCU. const double lcu_target_bits = state->frame->cur_pic_target_bits * lcu_weight; // Allocate at least one bit for each LCU. return MAX(1, lcu_target_bits); } void kvz_set_lcu_lambda_and_qp(encoder_state_t * const state, vector2d_t pos) { const encoder_control_t * const ctrl = state->encoder_control; if (ctrl->cfg->target_bitrate > 0) { const int32_t pixels = MIN(LCU_WIDTH, state->tile->frame->width - LCU_WIDTH * pos.x) * MIN(LCU_WIDTH, state->tile->frame->height - LCU_WIDTH * pos.y); const double target_bits = lcu_allocate_bits(state, pos); const double target_bpp = target_bits / pixels; const double alpha = state->frame->rc_alpha; const double beta = state->frame->rc_beta; double lambda = alpha * pow(target_bpp, beta); lambda = clip_lambda(lambda); state->qp = lambda_to_qp(lambda); state->lambda = lambda; state->lambda_sqrt = sqrt(lambda); lcu_stats_t *lcu_stats = kvz_get_lcu_stats(state, pos.x, pos.y); lcu_stats->lambda = lambda; lcu_stats->rc_alpha = alpha; lcu_stats->rc_beta = beta; } else { state->qp = state->frame->QP; state->lambda = state->frame->lambda; state->lambda_sqrt = sqrt(state->frame->lambda); } }