/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "threads.h" #include "image.h" #include "strategyselector.h" #include #include #include #include #include #include "checkpoint.h" #include "sao.h" /** * \brief Allocate new image * \return image pointer */ image *image_alloc(const int32_t width, const int32_t height, const int32_t poc) { image *im = MALLOC(image, 1); unsigned int luma_size = width * height; unsigned int chroma_size = luma_size / 4; //Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); if (!im) return NULL; im->width = width; im->height = height; im->stride = width; im->base_image = im; im->refcount = 1; //We give a reference to caller im->poc = poc; //Allocate memory im->fulldata = MALLOC(pixel, (luma_size + 2*chroma_size)); im->y = im->data[COLOR_Y] = &im->fulldata[0]; im->u = im->data[COLOR_U] = &im->fulldata[luma_size]; im->v = im->data[COLOR_V] = &im->fulldata[luma_size + chroma_size]; return im; } /** * \brief Free memory allocated to picture (if we have no reference left) * \param pic picture pointer * \return 1 on success, 0 on failure */ int image_free(image * const im) { //Nothing to do if (!im) return 1; //Either we are the base image, or we should have no references assert(im->base_image == im || im->refcount == 0); int32_t new_refcount = ATOMIC_DEC(&(im->base_image->refcount)); //If we're freeing a subimage, then we must free the pointer //Base image may be stored in image_list, and should not be freed //FIXME I don't find this very clean... if (new_refcount > 0 && im->base_image != im) free(im); if (new_refcount > 0) return 1; FREE_POINTER(im->base_image->fulldata); //Just to make the program crash when using those values after the free im->y = im->u = im->v = im->data[COLOR_Y] = im->data[COLOR_U] = im->data[COLOR_V] = NULL; free(im); return 1; } image *image_make_subimage(image * const orig_image, const unsigned int x_offset, const unsigned int y_offset, const unsigned int width, const unsigned int height) { image *im = MALLOC(image, 1); if (!im) return NULL; im->base_image = orig_image->base_image; ATOMIC_INC(&(im->base_image->refcount)); assert(x_offset + width <= orig_image->width); assert(y_offset + height <= orig_image->height); //Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); assert((x_offset % 2) == 0); assert((y_offset % 2) == 0); im->stride = orig_image->stride; im->refcount = 0; //No references on subimages im->width = width; im->height = height; im->y = im->data[COLOR_Y] = &orig_image->y[x_offset + y_offset * orig_image->stride]; im->u = im->data[COLOR_U] = &orig_image->u[x_offset/2 + y_offset/2 * orig_image->stride/2]; im->v = im->data[COLOR_V] = &orig_image->v[x_offset/2 + y_offset/2 * orig_image->stride/2]; return im; } yuv_t * yuv_t_alloc(int luma_size) { // Get buffers with separate mallocs in order to take advantage of // automatic buffer overrun checks. yuv_t *yuv = (yuv_t *)malloc(sizeof(*yuv)); yuv->y = (pixel *)malloc(luma_size * sizeof(*yuv->y)); yuv->u = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->u)); yuv->v = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->v)); yuv->size = luma_size; return yuv; } void yuv_t_free(yuv_t * yuv) { free(yuv->y); free(yuv->u); free(yuv->v); free(yuv); } /** * \brief Diagonally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned cor_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_stride) { pixel ref = *ref_data; int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref); } } return sad; } /** * \brief Vertically interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned ver_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_stride) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref_data[x]); } } return sad; } /** * \brief Horizontally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned hor_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_stride, unsigned ref_stride) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref_data[y * ref_stride]); } } return sad; } /** * \brief Handle special cases of comparing blocks that are not completely * inside the frame. * * \param pic First frame. * \param ref Second frame. * \param pic_x X coordinate of the first block. * \param pic_y Y coordinate of the first block. * \param ref_x X coordinate of the second block. * \param ref_y Y coordinate of the second block. * \param block_width Width of the blocks. * \param block_height Height of the blocks. */ static unsigned image_interpolated_sad(const image *pic, const image *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height) { pixel *pic_data, *ref_data; int left, right, top, bottom; int result = 0; // Change the movement vector to point right next to the frame. This doesn't // affect the result but removes some special cases. if (ref_x > ref->width) ref_x = ref->width; if (ref_y > ref->height) ref_y = ref->height; if (ref_x + block_width < 0) ref_x = -block_width; if (ref_y + block_height < 0) ref_y = -block_height; // These are the number of pixels by how far the movement vector points // outside the frame. They are always >= 0. If all of them are 0, the // movement vector doesn't point outside the frame. left = (ref_x < 0) ? -ref_x : 0; top = (ref_y < 0) ? -ref_y : 0; right = (ref_x + block_width > ref->width) ? ref_x + block_width - ref->width : 0; bottom = (ref_y + block_height > ref->height) ? ref_y + block_height - ref->height : 0; // Center picture to the current block and reference to the point where // movement vector is pointing to. That point might be outside the buffer, // but that is ok because we project the movement vector to the buffer // before dereferencing the pointer. pic_data = &pic->y[pic_y * pic->stride + pic_x]; ref_data = &ref->y[ref_y * ref->stride + ref_x]; // The handling of movement vectors that point outside the picture is done // in the following way. // - Correct the index of ref_data so that it points to the top-left // of the area we want to compare against. // - Correct the index of pic_data to point inside the current block, so // that we compare the right part of the block to the ref_data. // - Reduce block_width and block_height so that the the size of the area // being compared is correct. if (top && left) { result += cor_sad(pic_data, &ref_data[top * ref->stride + left], left, top, pic->stride); result += ver_sad(&pic_data[left], &ref_data[top * ref->stride + left], block_width - left, top, pic->stride); result += hor_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride + left], left, block_height - top, pic->stride, ref->stride); result += reg_sad(&pic_data[top * pic->stride + left], &ref_data[top * ref->stride + left], block_width - left, block_height - top, pic->stride, ref->stride); } else if (top && right) { result += ver_sad(pic_data, &ref_data[top * ref->stride], block_width - right, top, pic->stride); result += cor_sad(&pic_data[block_width - right], &ref_data[top * ref->stride + (block_width - right - 1)], right, top, pic->stride); result += reg_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride], block_width - right, block_height - top, pic->stride, ref->stride); result += hor_sad(&pic_data[top * pic->stride + (block_width - right)], &ref_data[top * ref->stride + (block_width - right - 1)], right, block_height - top, pic->stride, ref->stride); } else if (bottom && left) { result += hor_sad(pic_data, &ref_data[left], left, block_height - bottom, pic->stride, ref->stride); result += reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height - bottom, pic->stride, ref->stride); result += cor_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride + left], left, bottom, pic->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride + left], &ref_data[(block_height - bottom - 1) * ref->stride + left], block_width - left, bottom, pic->stride); } else if (bottom && right) { result += reg_sad(pic_data, ref_data, block_width - right, block_height - bottom, pic->stride, ref->stride); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height - bottom, pic->stride, ref->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride], block_width - right, bottom, pic->stride); result += cor_sad(&pic_data[(block_height - bottom) * pic->stride + block_width - right], &ref_data[(block_height - bottom - 1) * ref->stride + block_width - right - 1], right, bottom, pic->stride); } else if (top) { result += ver_sad(pic_data, &ref_data[top * ref->stride], block_width, top, pic->stride); result += reg_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride], block_width, block_height - top, pic->stride, ref->stride); } else if (bottom) { result += reg_sad(pic_data, ref_data, block_width, block_height - bottom, pic->stride, ref->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride], block_width, bottom, pic->stride); } else if (left) { result += hor_sad(pic_data, &ref_data[left], left, block_height, pic->stride, ref->stride); result += reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height, pic->stride, ref->stride); } else if (right) { result += reg_sad(pic_data, ref_data, block_width - right, block_height, pic->stride, ref->stride); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height, pic->stride, ref->stride); } else { result += reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride); } return result; } unsigned image_calc_sad(const image *pic, const image *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height, int max_lcu_below) { assert(pic_x >= 0 && pic_x <= pic->width - block_width); assert(pic_y >= 0 && pic_y <= pic->height - block_height); if ((((ref_y + block_height)/LCU_WIDTH) > (pic_y/LCU_WIDTH) + max_lcu_below) && max_lcu_below >= 0) { //printf("OOB %d %d -> %d\n", ref_y + block_height, pic_y, ref_y + block_height - pic_y); return INT_MAX; } if (ref_x >= 0 && ref_x <= ref->width - block_width && ref_y >= 0 && ref_y <= ref->height - block_height) { // Reference block is completely inside the frame, so just calculate the // SAD directly. This is the most common case, which is why it's first. const pixel *pic_data = &pic->y[pic_y * pic->stride + pic_x]; const pixel *ref_data = &ref->y[ref_y * ref->stride + ref_x]; return reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride); } else { // Call a routine that knows how to interpolate pixels outside the frame. return image_interpolated_sad(pic, ref, pic_x, pic_y, ref_x, ref_y, block_width, block_height); } } unsigned pixels_calc_ssd(const pixel *const ref, const pixel *const rec, const int ref_stride, const int rec_stride, const int width) { int ssd = 0; int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { int diff = ref[x + y * ref_stride] - rec[x + y * rec_stride]; ssd += diff * diff; } } return ssd; } /** * \brief BLock Image Transfer from one buffer to another. * * It's a stupidly simple loop that copies pixels. * * \param orig Start of the originating buffer. * \param dst Start of the destination buffer. * \param width Width of the copied region. * \param height Height of the copied region. * \param orig_stride Width of a row in the originating buffer. * \param dst_stride Width of a row in the destination buffer. * * This should be inlined, but it's defined here for now to see if Visual * Studios LTCG will inline it. */ void pixels_blit(const pixel * const orig, pixel * const dst, const unsigned width, const unsigned height, const unsigned orig_stride, const unsigned dst_stride) { unsigned y; //There is absolutely no reason to have a width greater than the source or the destination stride. assert(width <= orig_stride); assert(width <= dst_stride); #ifdef CHECKPOINTS for (y = 0; y < height; ++y) { char buffer[3*width]; int p; for (p = 0; p < width; ++p) { sprintf((buffer + 3*p), "%02X ", orig[y*orig_stride]); } buffer[3*width] = 0; CHECKPOINT("pixels_blit: %04d: %s", y, buffer); } #endif //CHECKPOINTS if (orig == dst) { //If we have the same array, then we should have the same stride assert(orig_stride == dst_stride); return; } assert(orig != dst || orig_stride == dst_stride); for (y = 0; y < height; ++y) { memcpy(&dst[y*dst_stride], &orig[y*orig_stride], width * sizeof(pixel)); } }