/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include
#include "strategyselector.h"
// Function to clip int16_t to pixel. (0-255 or 0-1023)
// Assumes PIXEL_MAX to be 2^n-1
pixel fast_clip_16bit_to_pixel(int16_t value)
{
// Ensure that compiler generates arithmetic shift from ">>"
#if defined(_MSC_VER) || defined(__GNUC__) || defined(__clang__)
if (value & ~PIXEL_MAX) {
int16_t temp = (-value) >> 15;
#if BITDEPTH == 10
temp &= PIXEL_MAX;
#endif
return temp;
}
else {
return value;
}
#else
CLIP(PIXEL_MIN, PIXEL_MAX, value);
#endif
}
// Function to clip int32_t to pixel. (0-255 or 0-1023)
// Assumes PIXEL_MAX to be 2^n-1
pixel fast_clip_32bit_to_pixel(int32_t value)
{
// Ensure that compiler generates arithmetic shift from ">>"
#if defined(_MSC_VER) || defined(__GNUC__) || defined(__clang__)
if (value & ~PIXEL_MAX) {
int32_t temp = (-value) >> 31;
#if BITDEPTH == 10
temp &= PIXEL_MAX;
#endif
return temp;
}
else {
return value;
}
#else
CLIP(PIXEL_MIN, PIXEL_MAX, value);
#endif
}
/**
* \brief Calculate Sum of Absolute Differences (SAD)
*
* Calculate Sum of Absolute Differences (SAD) between two rectangular regions
* located in arbitrary points in the picture.
*
* \param data1 Starting point of the first picture.
* \param data2 Starting point of the second picture.
* \param width Width of the region for which SAD is calculated.
* \param height Height of the region for which SAD is calculated.
* \param stride Width of the pixel array.
*
* \returns Sum of Absolute Differences
*/
static unsigned reg_sad_generic(const pixel * const data1, const pixel * const data2,
const int width, const int height, const unsigned stride1, const unsigned stride2)
{
int y, x;
unsigned sad = 0;
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
sad += abs(data1[y * stride1 + x] - data2[y * stride2 + x]);
}
}
return sad;
}
/**
* \brief Calculate SATD between two 4x4 blocks inside bigger arrays.
* From HM 13.0
*/
static unsigned satd_8bit_4x4_generic(const pixel *piOrg, const pixel *piCur)
{
int32_t k, satd = 0, diff[16], m[16], d[16];
for (k = 0; k < 16; ++k) {
diff[k] = piOrg[k] - piCur[k];
}
/*===== hadamard transform =====*/
m[0] = diff[0] + diff[12];
m[1] = diff[1] + diff[13];
m[2] = diff[2] + diff[14];
m[3] = diff[3] + diff[15];
m[4] = diff[4] + diff[8];
m[5] = diff[5] + diff[9];
m[6] = diff[6] + diff[10];
m[7] = diff[7] + diff[11];
m[8] = diff[4] - diff[8];
m[9] = diff[5] - diff[9];
m[10] = diff[6] - diff[10];
m[11] = diff[7] - diff[11];
m[12] = diff[0] - diff[12];
m[13] = diff[1] - diff[13];
m[14] = diff[2] - diff[14];
m[15] = diff[3] - diff[15];
d[0] = m[0] + m[4];
d[1] = m[1] + m[5];
d[2] = m[2] + m[6];
d[3] = m[3] + m[7];
d[4] = m[8] + m[12];
d[5] = m[9] + m[13];
d[6] = m[10] + m[14];
d[7] = m[11] + m[15];
d[8] = m[0] - m[4];
d[9] = m[1] - m[5];
d[10] = m[2] - m[6];
d[11] = m[3] - m[7];
d[12] = m[12] - m[8];
d[13] = m[13] - m[9];
d[14] = m[14] - m[10];
d[15] = m[15] - m[11];
m[0] = d[0] + d[3];
m[1] = d[1] + d[2];
m[2] = d[1] - d[2];
m[3] = d[0] - d[3];
m[4] = d[4] + d[7];
m[5] = d[5] + d[6];
m[6] = d[5] - d[6];
m[7] = d[4] - d[7];
m[8] = d[8] + d[11];
m[9] = d[9] + d[10];
m[10] = d[9] - d[10];
m[11] = d[8] - d[11];
m[12] = d[12] + d[15];
m[13] = d[13] + d[14];
m[14] = d[13] - d[14];
m[15] = d[12] - d[15];
d[0] = m[0] + m[1];
d[1] = m[0] - m[1];
d[2] = m[2] + m[3];
d[3] = m[3] - m[2];
d[4] = m[4] + m[5];
d[5] = m[4] - m[5];
d[6] = m[6] + m[7];
d[7] = m[7] - m[6];
d[8] = m[8] + m[9];
d[9] = m[8] - m[9];
d[10] = m[10] + m[11];
d[11] = m[11] - m[10];
d[12] = m[12] + m[13];
d[13] = m[12] - m[13];
d[14] = m[14] + m[15];
d[15] = m[15] - m[14];
for (k = 0; k<16; ++k) {
satd += abs(d[k]);
}
satd = ((satd + 1) >> 1);
return satd;
}
/**
* \brief Calculate SATD between two 8x8 blocks inside bigger arrays.
*/
unsigned satd_16bit_8x8_general(const pixel * piOrg, const int32_t iStrideOrg,
const pixel * piCur, const int32_t iStrideCur)
{
int32_t k, i, j, jj, sad = 0;
int32_t diff[64], m1[8][8], m2[8][8], m3[8][8];
for (k = 0; k < 64; k += 8) {
diff[k + 0] = piOrg[0] - piCur[0];
diff[k + 1] = piOrg[1] - piCur[1];
diff[k + 2] = piOrg[2] - piCur[2];
diff[k + 3] = piOrg[3] - piCur[3];
diff[k + 4] = piOrg[4] - piCur[4];
diff[k + 5] = piOrg[5] - piCur[5];
diff[k + 6] = piOrg[6] - piCur[6];
diff[k + 7] = piOrg[7] - piCur[7];
piCur += iStrideCur;
piOrg += iStrideOrg;
}
// horizontal
for (j = 0; j < 8; ++j) {
jj = j << 3;
m2[j][0] = diff[jj] + diff[jj + 4];
m2[j][1] = diff[jj + 1] + diff[jj + 5];
m2[j][2] = diff[jj + 2] + diff[jj + 6];
m2[j][3] = diff[jj + 3] + diff[jj + 7];
m2[j][4] = diff[jj] - diff[jj + 4];
m2[j][5] = diff[jj + 1] - diff[jj + 5];
m2[j][6] = diff[jj + 2] - diff[jj + 6];
m2[j][7] = diff[jj + 3] - diff[jj + 7];
m1[j][0] = m2[j][0] + m2[j][2];
m1[j][1] = m2[j][1] + m2[j][3];
m1[j][2] = m2[j][0] - m2[j][2];
m1[j][3] = m2[j][1] - m2[j][3];
m1[j][4] = m2[j][4] + m2[j][6];
m1[j][5] = m2[j][5] + m2[j][7];
m1[j][6] = m2[j][4] - m2[j][6];
m1[j][7] = m2[j][5] - m2[j][7];
m2[j][0] = m1[j][0] + m1[j][1];
m2[j][1] = m1[j][0] - m1[j][1];
m2[j][2] = m1[j][2] + m1[j][3];
m2[j][3] = m1[j][2] - m1[j][3];
m2[j][4] = m1[j][4] + m1[j][5];
m2[j][5] = m1[j][4] - m1[j][5];
m2[j][6] = m1[j][6] + m1[j][7];
m2[j][7] = m1[j][6] - m1[j][7];
}
// vertical
for (i = 0; i < 8; ++i) {
m3[0][i] = m2[0][i] + m2[4][i];
m3[1][i] = m2[1][i] + m2[5][i];
m3[2][i] = m2[2][i] + m2[6][i];
m3[3][i] = m2[3][i] + m2[7][i];
m3[4][i] = m2[0][i] - m2[4][i];
m3[5][i] = m2[1][i] - m2[5][i];
m3[6][i] = m2[2][i] - m2[6][i];
m3[7][i] = m2[3][i] - m2[7][i];
m1[0][i] = m3[0][i] + m3[2][i];
m1[1][i] = m3[1][i] + m3[3][i];
m1[2][i] = m3[0][i] - m3[2][i];
m1[3][i] = m3[1][i] - m3[3][i];
m1[4][i] = m3[4][i] + m3[6][i];
m1[5][i] = m3[5][i] + m3[7][i];
m1[6][i] = m3[4][i] - m3[6][i];
m1[7][i] = m3[5][i] - m3[7][i];
m2[0][i] = m1[0][i] + m1[1][i];
m2[1][i] = m1[0][i] - m1[1][i];
m2[2][i] = m1[2][i] + m1[3][i];
m2[3][i] = m1[2][i] - m1[3][i];
m2[4][i] = m1[4][i] + m1[5][i];
m2[5][i] = m1[4][i] - m1[5][i];
m2[6][i] = m1[6][i] + m1[7][i];
m2[7][i] = m1[6][i] - m1[7][i];
}
for (i = 0; i < 64; ++i) {
sad += abs(((int*)m2)[i]);
}
sad = (sad + 2) >> 2;
return sad;
}
// Function macro for defining hadamard calculating functions
// for fixed size blocks. They calculate hadamard for integer
// multiples of 8x8 with the 8x8 hadamard function.
#define SATD_NXN(n, pixel_type, suffix) \
unsigned satd_ ## suffix ## _ ## n ## x ## n ## _generic( \
const pixel_type * const block1, const pixel_type * const block2) \
{ \
unsigned x, y; \
unsigned sum = 0; \
for (y = 0; y < (n); y += 8) { \
unsigned row = y * (n); \
for (x = 0; x < (n); x += 8) { \
sum += satd_16bit_8x8_general(&block1[row + x], (n), &block2[row + x], (n)); \
} \
} \
return sum; \
}
// Declare these functions to make sure the signature of the macro matches.
cost_pixel_nxn_func satd_8bit_4x4_generic;
cost_pixel_nxn_func satd_8bit_8x8_generic;
cost_pixel_nxn_func satd_8bit_16x16_generic;
cost_pixel_nxn_func satd_8bit_32x32_generic;
cost_pixel_nxn_func satd_8bit_64x64_generic;
// These macros define sadt_16bit_NxN for N = 8, 16, 32, 64
SATD_NXN(8, pixel, 8bit)
SATD_NXN(16, pixel, 8bit)
SATD_NXN(32, pixel, 8bit)
SATD_NXN(64, pixel, 8bit)
// Function macro for defining SAD calculating functions
// for fixed size blocks.
#define SAD_NXN(n, pixel_type, suffix) \
static unsigned sad_ ## suffix ## _ ## n ## x ## n ## _generic( \
const pixel_type * const block1, const pixel_type * const block2) \
{ \
unsigned i; \
unsigned sum = 0; \
for (i = 0; i < (n)*(n); ++i) { \
sum += abs(block1[i] - block2[i]); \
} \
return sum; \
}
// Declare these functions to make sure the signature of the macro matches.
static cost_pixel_nxn_func sad_8bit_4x4_generic;
static cost_pixel_nxn_func sad_8bit_8x8_generic;
static cost_pixel_nxn_func sad_8bit_16x16_generic;
static cost_pixel_nxn_func sad_8bit_32x32_generic;
static cost_pixel_nxn_func sad_8bit_64x64_generic;
// These macros define sad_16bit_nxn functions for n = 4, 8, 16, 32, 64
// with function signatures of cost_16bit_nxn_func.
// They are used through get_pixel_sad_func.
SAD_NXN(4, pixel, 8bit)
SAD_NXN(8, pixel, 8bit)
SAD_NXN(16, pixel, 8bit)
SAD_NXN(32, pixel, 8bit)
SAD_NXN(64, pixel, 8bit)
int strategy_register_picture_generic(void* opaque)
{
bool success = true;
success &= strategyselector_register(opaque, "reg_sad", "generic", 0, ®_sad_generic);
success &= strategyselector_register(opaque, "sad_8bit_4x4", "generic", 0, &sad_8bit_4x4_generic);
success &= strategyselector_register(opaque, "sad_8bit_8x8", "generic", 0, &sad_8bit_8x8_generic);
success &= strategyselector_register(opaque, "sad_8bit_16x16", "generic", 0, &sad_8bit_16x16_generic);
success &= strategyselector_register(opaque, "sad_8bit_32x32", "generic", 0, &sad_8bit_32x32_generic);
success &= strategyselector_register(opaque, "sad_8bit_64x64", "generic", 0, &sad_8bit_64x64_generic);
success &= strategyselector_register(opaque, "satd_8bit_4x4", "generic", 0, &satd_8bit_4x4_generic);
success &= strategyselector_register(opaque, "satd_8bit_8x8", "generic", 0, &satd_8bit_8x8_generic);
success &= strategyselector_register(opaque, "satd_8bit_16x16", "generic", 0, &satd_8bit_16x16_generic);
success &= strategyselector_register(opaque, "satd_8bit_32x32", "generic", 0, &satd_8bit_32x32_generic);
success &= strategyselector_register(opaque, "satd_8bit_64x64", "generic", 0, &satd_8bit_64x64_generic);
return success;
}