/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "context.h" #include #include #include #include "config.h" // CONTEXTS cabac_ctx g_sao_merge_flag_model; cabac_ctx g_sao_type_idx_model; cabac_ctx g_split_flag_model[3]; //!< \brief split flag context models cabac_ctx g_intra_mode_model; //!< \brief intra mode context models cabac_ctx g_chroma_pred_model[2]; cabac_ctx g_trans_subdiv_model[3]; //!< \brief intra mode context models cabac_ctx g_qt_cbf_model_luma[3]; cabac_ctx g_qt_cbf_model_chroma[3]; cabac_ctx g_part_size_model[4]; cabac_ctx g_cu_sig_coeff_group_model[4]; cabac_ctx g_cu_sig_model_luma[27]; cabac_ctx g_cu_sig_model_chroma[15]; cabac_ctx g_cu_ctx_last_y_luma[15]; cabac_ctx g_cu_ctx_last_y_chroma[15]; cabac_ctx g_cu_ctx_last_x_luma[15]; cabac_ctx g_cu_ctx_last_x_chroma[15]; cabac_ctx g_cu_one_model_luma[16]; cabac_ctx g_cu_one_model_chroma[8]; cabac_ctx g_cu_abs_model_luma[4]; cabac_ctx g_cu_abs_model_chroma[2]; cabac_ctx g_cu_pred_mode_model; cabac_ctx g_cu_skip_flag_model[3]; cabac_ctx g_cu_merge_idx_ext_model; cabac_ctx g_cu_merge_flag_ext_model; cabac_ctx g_cu_mvd_model[2]; cabac_ctx g_cu_ref_pic_model[2]; cabac_ctx g_mvp_idx_model[2]; cabac_ctx g_cu_qt_root_cbf_model; /** * \brief Initialize struct cabac_ctx. */ void ctx_init(cabac_ctx *ctx, uint32_t qp, uint32_t init_value) { int slope = (init_value >> 4) * 5 - 45; int offset = ((init_value & 15) << 3) - 16; int init_state = MIN(MAX(1, ((slope * (int)qp) >> 4) + offset), 126); if (init_state >= 64) { ctx->uc_state = ((init_state - 64) << 1) + 1; } else { ctx->uc_state = (63 - init_state) << 1; } ctx->bins_coded = 0; } /** * \brief Initialize cabac context to be used for coding * \param encoder encoder control struct * \param slice type of slice we are coding (P/B/I) */ void init_contexts(encoder_control *encoder, int8_t slice) { uint16_t i; // Initialize contexts ctx_init(&g_sao_merge_flag_model, encoder->QP, INIT_SAO_MERGE_FLAG[slice]); ctx_init(&g_sao_type_idx_model, encoder->QP, INIT_SAO_TYPE_IDX[slice]); ctx_init(&g_cu_merge_flag_ext_model, encoder->QP, INIT_MERGE_FLAG_EXT[slice][0]); ctx_init(&g_cu_merge_idx_ext_model, encoder->QP, INIT_MERGE_IDX_EXT[slice][0]); ctx_init(&g_cu_pred_mode_model, encoder->QP, INIT_PRED_MODE[slice][0]); ctx_init(&g_cu_skip_flag_model[0], encoder->QP, INIT_SKIP_FLAG[slice][0]); ctx_init(&g_cu_skip_flag_model[1], encoder->QP, INIT_SKIP_FLAG[slice][1]); ctx_init(&g_cu_skip_flag_model[2], encoder->QP, INIT_SKIP_FLAG[slice][2]); ctx_init(&g_split_flag_model[0], encoder->QP, INIT_SPLIT_FLAG[slice][0]); ctx_init(&g_split_flag_model[1], encoder->QP, INIT_SPLIT_FLAG[slice][1]); ctx_init(&g_split_flag_model[2], encoder->QP, INIT_SPLIT_FLAG[slice][2]); ctx_init(&g_intra_mode_model, encoder->QP, INIT_INTRA_PRED_MODE[slice]); ctx_init(&g_chroma_pred_model[0], encoder->QP, INIT_CHROMA_PRED_MODE[slice][0]); ctx_init(&g_chroma_pred_model[1], encoder->QP, INIT_CHROMA_PRED_MODE[slice][1]); ctx_init(&g_cu_abs_model_chroma[0], encoder->QP, INIT_ABS_FLAG[slice][4]); ctx_init(&g_cu_abs_model_chroma[1], encoder->QP, INIT_ABS_FLAG[slice][5]); //TODO: ignore P/B contexts on intra frame ctx_init(&g_cu_qt_root_cbf_model, encoder->QP, INIT_QT_ROOT_CBF[slice][0]); ctx_init(&g_cu_mvd_model[0], encoder->QP, INIT_MVD[slice][0]); ctx_init(&g_cu_mvd_model[1], encoder->QP, INIT_MVD[slice][1]); ctx_init(&g_cu_ref_pic_model[0], encoder->QP, INIT_REF_PIC[slice][0]); ctx_init(&g_cu_ref_pic_model[1], encoder->QP, INIT_REF_PIC[slice][1]); ctx_init(&g_mvp_idx_model[0], encoder->QP, INIT_MVP_IDX[slice][0]); ctx_init(&g_mvp_idx_model[1], encoder->QP, INIT_MVP_IDX[slice][1]); for (i = 0; i < 4; i++) { ctx_init(&g_cu_sig_coeff_group_model[i], encoder->QP, INIT_SIG_CG_FLAG[slice][i]); ctx_init(&g_cu_abs_model_luma[i], encoder->QP, INIT_ABS_FLAG[slice][i]); ctx_init(&g_part_size_model[i], encoder->QP, INIT_PART_SIZE[slice][i]); } for (i = 0; i < 3; i++) { ctx_init(&g_trans_subdiv_model[i], encoder->QP, INIT_TRANS_SUBDIV_FLAG[slice][i]); ctx_init(&g_qt_cbf_model_luma[i], encoder->QP, INIT_QT_CBF[slice][i]); ctx_init(&g_qt_cbf_model_chroma[i], encoder->QP, INIT_QT_CBF[slice][i+3]); } for (i = 0; i < 8; i++) { ctx_init(&g_cu_one_model_chroma[i], encoder->QP, INIT_ONE_FLAG[slice][i+16]); } for (i = 0; i < 15; i++) { ctx_init(&g_cu_ctx_last_y_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_x_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_y_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_ctx_last_x_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_one_model_luma[i], encoder->QP, INIT_ONE_FLAG[slice][i]); } ctx_init(&g_cu_one_model_luma[15], encoder->QP, INIT_ONE_FLAG[slice][15]); for (i = 0; i < 27; i++) { ctx_init(&g_cu_sig_model_luma[i], encoder->QP, INIT_SIG_FLAG[slice][i]); if(i < 15) ctx_init(&g_cu_sig_model_chroma[i], encoder->QP, INIT_SIG_FLAG[slice][i+27]); } } uint32_t context_get_sig_coeff_group( uint32_t *sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { uint32_t uiRight = 0; uint32_t uiLower = 0; width >>= 2; if (pos_x < (uint32_t)width - 1) uiRight = (sig_coeff_group_flag[pos_y * width + pos_x + 1] != 0); if (pos_y < (uint32_t)width - 1) uiLower = (sig_coeff_group_flag[(pos_y + 1 ) * width + pos_x] != 0); return uiRight || uiLower; } /** * \brief Pattern decision for context derivation process of significant_coeff_flag * \param sig_coeff_group_flag pointer to prior coded significant coeff group * \param pos_x column of current coefficient group * \param pos_y row of current coefficient group * \param width width of the block * \returns pattern for current coefficient group */ int32_t context_calc_pattern_sig_ctx(const uint32_t *sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { uint32_t sigRight = 0; uint32_t sigLower = 0; if (width == 4) return -1; width >>= 2; if (pos_x < (uint32_t)width - 1) sigRight = (sig_coeff_group_flag[pos_y * width + pos_x + 1] != 0); if (pos_y < (uint32_t)width - 1) sigLower = (sig_coeff_group_flag[(pos_y + 1 ) * width + pos_x] != 0); return sigRight + (sigLower<<1); } /** * \brief Context derivation process of coeff_abs_significant_flag * \param pattern_sig_ctx pattern for current coefficient group * \param scan_idx pixel scan type in use * \param pos_x column of current scan position * \param pos_y row of current scan position * \param block_type log2 value of block size if square block, or 4 otherwise * \param width width of the block * \param texture_type texture type (TEXT_LUMA...) * \returns ctx_inc for current scan position */ int32_t context_get_sig_ctx_inc(int32_t pattern_sig_ctx, uint32_t scan_idx, int32_t pos_x, int32_t pos_y, int32_t block_type, int32_t width, int8_t texture_type) { const int32_t ctx_ind_map[16] = { 0, 1, 4, 5, 2, 3, 4, 5, 6, 6, 8, 8, 7, 7, 8, 8 }; int32_t cnt,offset,pos_x_in_subset,pos_y_in_subset; if (pos_x + pos_y == 0) return 0; if (block_type == 2) return ctx_ind_map[4 * pos_y + pos_x]; cnt = 0; offset = (block_type == 3) ? ((scan_idx == SCAN_DIAG) ? 9 : 15) : ((texture_type == 0) ? 21 : 12); pos_x_in_subset = pos_x - ((pos_x>>2)<<2); pos_y_in_subset = pos_y - ((pos_y>>2)<<2); if (pattern_sig_ctx == 0) { cnt = (pos_x_in_subset + pos_y_in_subset <= 2) ? ((pos_x_in_subset + pos_y_in_subset==0) ? 2 : 1) : 0; } else if (pattern_sig_ctx==1) { cnt = (pos_y_in_subset <= 1) ? ((pos_y_in_subset == 0) ? 2 : 1) : 0; } else if (pattern_sig_ctx==2) { cnt = (pos_x_in_subset <= 1) ? ((pos_x_in_subset == 0) ? 2 : 1) : 0; } else { cnt = 2; } return (( texture_type == 0 && ((pos_x>>2) + (pos_y>>2)) > 0 ) ? 3 : 0) + offset + cnt; } /* * Entropy bits to estimate coded bits in RDO / RDOQ (From HM 12.0) */ const uint32_t entropy_bits[128] = { 0x08000, 0x08000, 0x076da, 0x089a0, 0x06e92, 0x09340, 0x0670a, 0x09cdf, 0x06029, 0x0a67f, 0x059dd, 0x0b01f, 0x05413, 0x0b9bf, 0x04ebf, 0x0c35f, 0x049d3, 0x0ccff, 0x04546, 0x0d69e, 0x0410d, 0x0e03e, 0x03d22, 0x0e9de, 0x0397d, 0x0f37e, 0x03619, 0x0fd1e, 0x032ee, 0x106be, 0x02ffa, 0x1105d, 0x02d37, 0x119fd, 0x02aa2, 0x1239d, 0x02836, 0x12d3d, 0x025f2, 0x136dd, 0x023d1, 0x1407c, 0x021d2, 0x14a1c, 0x01ff2, 0x153bc, 0x01e2f, 0x15d5c, 0x01c87, 0x166fc, 0x01af7, 0x1709b, 0x0197f, 0x17a3b, 0x0181d, 0x183db, 0x016d0, 0x18d7b, 0x01595, 0x1971b, 0x0146c, 0x1a0bb, 0x01354, 0x1aa5a, 0x0124c, 0x1b3fa, 0x01153, 0x1bd9a, 0x01067, 0x1c73a, 0x00f89, 0x1d0da, 0x00eb7, 0x1da79, 0x00df0, 0x1e419, 0x00d34, 0x1edb9, 0x00c82, 0x1f759, 0x00bda, 0x200f9, 0x00b3c, 0x20a99, 0x00aa5, 0x21438, 0x00a17, 0x21dd8, 0x00990, 0x22778, 0x00911, 0x23118, 0x00898, 0x23ab8, 0x00826, 0x24458, 0x007ba, 0x24df7, 0x00753, 0x25797, 0x006f2, 0x26137, 0x00696, 0x26ad7, 0x0063f, 0x27477, 0x005ed, 0x27e17, 0x0059f, 0x287b6, 0x00554, 0x29156, 0x0050e, 0x29af6, 0x004cc, 0x2a497, 0x0048d, 0x2ae35, 0x00451, 0x2b7d6, 0x00418, 0x2c176, 0x003e2, 0x2cb15, 0x003af, 0x2d4b5, 0x0037f, 0x2de55 };