/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #ifndef REG_SAD_POW2_WIDTHS_SSE41_H_ #define REG_SAD_POW2_WIDTHS_SSE41_H_ #include #include "kvazaar.h" static INLINE uint32_t reg_sad_w0(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { return 0; } static INLINE uint32_t reg_sad_w4(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_cvtsi32_si128(*(uint32_t *)(data1 + y * stride1)); __m128i b = _mm_cvtsi32_si128(*(uint32_t *)(data2 + y * stride2)); a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 1) * stride1), 1); b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 1) * stride2), 1); a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 2) * stride1), 2); b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 2) * stride2), 2); a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 3) * stride1), 3); b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 3) * stride2), 3); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(data1 + y * stride1)); __m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(data2 + y * stride2)); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t reg_sad_w8(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128d a_d = _mm_setzero_pd(); __m128d b_d = _mm_setzero_pd(); __m128d c_d = _mm_setzero_pd(); __m128d d_d = _mm_setzero_pd(); a_d = _mm_loadl_pd(a_d, (const double *)(data1 + (y + 0) * stride1)); b_d = _mm_loadl_pd(b_d, (const double *)(data2 + (y + 0) * stride2)); a_d = _mm_loadh_pd(a_d, (const double *)(data1 + (y + 1) * stride1)); b_d = _mm_loadh_pd(b_d, (const double *)(data2 + (y + 1) * stride2)); c_d = _mm_loadl_pd(c_d, (const double *)(data1 + (y + 2) * stride1)); d_d = _mm_loadl_pd(d_d, (const double *)(data2 + (y + 2) * stride2)); c_d = _mm_loadh_pd(c_d, (const double *)(data1 + (y + 3) * stride1)); d_d = _mm_loadh_pd(d_d, (const double *)(data2 + (y + 3) * stride2)); __m128i a = _mm_castpd_si128(a_d); __m128i b = _mm_castpd_si128(b_d); __m128i c = _mm_castpd_si128(c_d); __m128i d = _mm_castpd_si128(d_d); __m128i curr_sads_ab = _mm_sad_epu8(a, b); __m128i curr_sads_cd = _mm_sad_epu8(c, d); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_cvtsi64_si128(*(int64_t *)(data1 + y * stride1)); __m128i b = _mm_cvtsi64_si128(*(int64_t *)(data2 + y * stride2)); __m128i curr_sads_ab = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t reg_sad_w12(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2)); __m128i b_masked = _mm_blend_epi16(a, b, 0x3f); __m128i curr_sads = _mm_sad_epu8 (a, b_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t reg_sad_w16(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2)); __m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1)); __m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2)); __m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1)); __m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2)); __m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1)); __m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2)); __m128i curr_sads_ab = _mm_sad_epu8(a, b); __m128i curr_sads_cd = _mm_sad_epu8(c, d); __m128i curr_sads_ef = _mm_sad_epu8(e, f); __m128i curr_sads_gh = _mm_sad_epu8(g, h); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2)); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t reg_sad_w24(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_doublelines = height & ~1; const int32_t height_parity = height & 1; for (y = 0; y < height_doublelines; y += 2) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2)); __m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1)); __m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2)); __m128d e_d = _mm_setzero_pd(); __m128d f_d = _mm_setzero_pd(); e_d = _mm_loadl_pd(e_d, (const double *)(data1 + (y + 0) * stride1 + 16)); f_d = _mm_loadl_pd(f_d, (const double *)(data2 + (y + 0) * stride2 + 16)); e_d = _mm_loadh_pd(e_d, (const double *)(data1 + (y + 1) * stride1 + 16)); f_d = _mm_loadh_pd(f_d, (const double *)(data2 + (y + 1) * stride2 + 16)); __m128i e = _mm_castpd_si128(e_d); __m128i f = _mm_castpd_si128(f_d); __m128i curr_sads_1 = _mm_sad_epu8(a, b); __m128i curr_sads_2 = _mm_sad_epu8(c, d); __m128i curr_sads_3 = _mm_sad_epu8(e, f); sse_inc = _mm_add_epi64(sse_inc, curr_sads_1); sse_inc = _mm_add_epi64(sse_inc, curr_sads_2); sse_inc = _mm_add_epi64(sse_inc, curr_sads_3); } if (height_parity) { __m128i a = _mm_loadu_si128 ((const __m128i *) (data1 + y * stride1)); __m128i b = _mm_loadu_si128 ((const __m128i *) (data2 + y * stride2)); __m128i c = _mm_cvtsi64_si128(*(const uint64_t *)(data1 + y * stride1 + 16)); __m128i d = _mm_cvtsi64_si128(*(const uint64_t *)(data2 + y * stride2 + 16)); __m128i curr_sads_1 = _mm_sad_epu8(a, b); __m128i curr_sads_2 = _mm_sad_epu8(c, d); sse_inc = _mm_add_epi64(sse_inc, curr_sads_1); sse_inc = _mm_add_epi64(sse_inc, curr_sads_2); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t reg_sad_arbitrary(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t width, const int32_t height, const uint32_t stride1, const uint32_t stride2) { int32_t y, x; __m128i sse_inc = _mm_setzero_si128(); // Bytes in block in 128-bit blocks per each scanline, and remainder const int32_t width_xmms = width & ~15; const int32_t width_residual_pixels = width & 15; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; const __m128i rds = _mm_set1_epi8 (width_residual_pixels); const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i rdmask = _mm_cmpgt_epi8(rds, ns); for (x = 0; x < width_xmms; x += 16) { for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1 + x)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2 + x)); __m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1 + x)); __m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2 + x)); __m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1 + x)); __m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2 + x)); __m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1 + x)); __m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2 + x)); __m128i curr_sads_ab = _mm_sad_epu8(a, b); __m128i curr_sads_cd = _mm_sad_epu8(c, d); __m128i curr_sads_ef = _mm_sad_epu8(e, f); __m128i curr_sads_gh = _mm_sad_epu8(g, h); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x)); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } } if (width_residual_pixels) { for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1 + x)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2 + x)); __m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1 + x)); __m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2 + x)); __m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1 + x)); __m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2 + x)); __m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1 + x)); __m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2 + x)); __m128i b_masked = _mm_blendv_epi8(a, b, rdmask); __m128i d_masked = _mm_blendv_epi8(c, d, rdmask); __m128i f_masked = _mm_blendv_epi8(e, f, rdmask); __m128i h_masked = _mm_blendv_epi8(g, h, rdmask); __m128i curr_sads_ab = _mm_sad_epu8 (a, b_masked); __m128i curr_sads_cd = _mm_sad_epu8 (c, d_masked); __m128i curr_sads_ef = _mm_sad_epu8 (e, f_masked); __m128i curr_sads_gh = _mm_sad_epu8 (g, h_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x)); __m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x)); __m128i b_masked = _mm_blendv_epi8(a, b, rdmask); __m128i curr_sads = _mm_sad_epu8 (a, b_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t ver_sad_w4(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t stride) { __m128i ref_row = _mm_set1_epi32(*(const uint32_t *)ref_data); __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_cvtsi32_si128(*(uint32_t *)(pic_data + y * stride)); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 1) * stride), 1); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 2) * stride), 2); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 3) * stride), 3); __m128i curr_sads = _mm_sad_epu8(a, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } if (height_residual_lines) { // Only pick the last dword, because we're comparing single dwords (lines) ref_row = _mm_bsrli_si128(ref_row, 12); for (; y < height; y++) { __m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * stride)); __m128i curr_sads = _mm_sad_epu8(a, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t ver_sad_w8(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t stride) { const __m128i ref_row = _mm_set1_epi64x(*(const uint64_t *)ref_data); __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128d a_d = _mm_setzero_pd(); __m128d c_d = _mm_setzero_pd(); a_d = _mm_loadl_pd(a_d, (const double *)(pic_data + (y + 0) * stride)); a_d = _mm_loadh_pd(a_d, (const double *)(pic_data + (y + 1) * stride)); c_d = _mm_loadl_pd(c_d, (const double *)(pic_data + (y + 2) * stride)); c_d = _mm_loadh_pd(c_d, (const double *)(pic_data + (y + 3) * stride)); __m128i a = _mm_castpd_si128(a_d); __m128i c = _mm_castpd_si128(c_d); __m128i curr_sads_ab = _mm_sad_epu8(a, ref_row); __m128i curr_sads_cd = _mm_sad_epu8(c, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); } if (height_residual_lines) { __m128i b = _mm_move_epi64(ref_row); for (; y < height; y++) { __m128i a = _mm_cvtsi64_si128(*(int64_t *)(pic_data + y * stride)); __m128i curr_sads_ab = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t ver_sad_w12(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t stride) { const __m128i ref_row = _mm_loadu_si128((__m128i *)ref_data); __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride)); __m128i a_masked = _mm_blend_epi16(ref_row, a, 0x3f); __m128i curr_sads = _mm_sad_epu8 (ref_row, a_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t ver_sad_w16(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t stride) { const __m128i ref_row = _mm_loadu_si128((__m128i *)ref_data); __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; for (y = 0; y < height_fourline_groups; y += 4) { __m128i pic_row_1 = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * stride)); __m128i pic_row_2 = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * stride)); __m128i pic_row_3 = _mm_loadu_si128((__m128i *)(pic_data + (y + 2) * stride)); __m128i pic_row_4 = _mm_loadu_si128((__m128i *)(pic_data + (y + 3) * stride)); __m128i curr_sads_1 = _mm_sad_epu8 (pic_row_1, ref_row); __m128i curr_sads_2 = _mm_sad_epu8 (pic_row_2, ref_row); __m128i curr_sads_3 = _mm_sad_epu8 (pic_row_3, ref_row); __m128i curr_sads_4 = _mm_sad_epu8 (pic_row_4, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads_1); sse_inc = _mm_add_epi64(sse_inc, curr_sads_2); sse_inc = _mm_add_epi64(sse_inc, curr_sads_3); sse_inc = _mm_add_epi64(sse_inc, curr_sads_4); } if (height_residual_lines) { for (; y < height; y++) { __m128i pic_row = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * stride)); __m128i curr_sads = _mm_sad_epu8 (pic_row, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t ver_sad_arbitrary(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t width, int32_t height, uint32_t stride) { int32_t y, x; __m128i sse_inc = _mm_setzero_si128(); // Bytes in block in 128-bit blocks per each scanline, and remainder const int32_t width_xmms = width & ~15; const int32_t width_residual_pixels = width & 15; const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; const __m128i rds = _mm_set1_epi8 (width_residual_pixels); const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i rdmask = _mm_cmpgt_epi8(rds, ns); for (x = 0; x < width_xmms; x += 16) { const __m128i ref_row = _mm_loadu_si128((__m128i *)(ref_data + x)); for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((const __m128i *)(pic_data + (y + 0) * stride + x)); __m128i c = _mm_loadu_si128((const __m128i *)(pic_data + (y + 1) * stride + x)); __m128i e = _mm_loadu_si128((const __m128i *)(pic_data + (y + 2) * stride + x)); __m128i g = _mm_loadu_si128((const __m128i *)(pic_data + (y + 3) * stride + x)); __m128i curr_sads_ab = _mm_sad_epu8(ref_row, a); __m128i curr_sads_cd = _mm_sad_epu8(ref_row, c); __m128i curr_sads_ef = _mm_sad_epu8(ref_row, e); __m128i curr_sads_gh = _mm_sad_epu8(ref_row, g); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride + x)); __m128i curr_sads = _mm_sad_epu8(a, ref_row); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } } if (width_residual_pixels) { const __m128i ref_row = _mm_loadu_si128((__m128i *)(ref_data + x)); for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((const __m128i *)(pic_data + (y + 0) * stride + x)); __m128i c = _mm_loadu_si128((const __m128i *)(pic_data + (y + 1) * stride + x)); __m128i e = _mm_loadu_si128((const __m128i *)(pic_data + (y + 2) * stride + x)); __m128i g = _mm_loadu_si128((const __m128i *)(pic_data + (y + 3) * stride + x)); __m128i a_masked = _mm_blendv_epi8(ref_row, a, rdmask); __m128i c_masked = _mm_blendv_epi8(ref_row, c, rdmask); __m128i e_masked = _mm_blendv_epi8(ref_row, e, rdmask); __m128i g_masked = _mm_blendv_epi8(ref_row, g, rdmask); __m128i curr_sads_ab = _mm_sad_epu8 (ref_row, a_masked); __m128i curr_sads_cd = _mm_sad_epu8 (ref_row, c_masked); __m128i curr_sads_ef = _mm_sad_epu8 (ref_row, e_masked); __m128i curr_sads_gh = _mm_sad_epu8 (ref_row, g_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride + x)); __m128i a_masked = _mm_blendv_epi8(ref_row, a, rdmask); __m128i curr_sads = _mm_sad_epu8 (ref_row, a_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t hor_sad_sse41_w4(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { const int32_t right_border_idx = 3 - right; const int32_t border_idx = left ? left : right_border_idx; const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const int32_t border_idx_negative = border_idx >> 31; const int32_t leftoff = border_idx_negative | left; // Dualword (ie. line) base indexes, ie. the edges the lines read will be // clamped towards const __m128i dwbaseids = _mm_setr_epi8(0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12); __m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx); __m128i left_128 = _mm_set1_epi8((int8_t)left); right_border_idxs = _mm_add_epi8 (right_border_idxs, dwbaseids); __m128i mask_right = _mm_min_epi8 (ns, right_border_idxs); __m128i mask1 = _mm_sub_epi8 (mask_right, left_128); const __m128i epol_mask = _mm_max_epi8(mask1, dwbaseids); const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * pic_stride)); __m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(ref_data + y * ref_stride + leftoff)); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 1) * pic_stride), 1); b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 1) * ref_stride + leftoff), 1); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 2) * pic_stride), 2); b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 2) * ref_stride + leftoff), 2); a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 3) * pic_stride), 3); b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 3) * ref_stride + leftoff), 3); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i curr_sads = _mm_sad_epu8 (a, b_epol); sse_inc = _mm_add_epi64 (sse_inc, curr_sads); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * pic_stride)); __m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(ref_data + y * ref_stride + leftoff)); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i curr_sads = _mm_sad_epu8 (a, b_epol); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t hor_sad_sse41_w8(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { // right is the number of overhanging pixels in the vector, so it has to be // handled this way to produce the index of last valid (border) pixel const int32_t right_border_idx = 7 - right; const int32_t border_idx = left ? left : right_border_idx; const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); // Quadword (ie. line) base indexes, ie. the edges the lines read will be // clamped towards; higher qword (lower line) bytes tend towards 8 and lower // qword (higher line) bytes towards 0 const __m128i qwbaseids = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8); // Dirty hack alert! If right == block_width (ie. the entire vector is // outside the frame), move the block offset one pixel to the left (so // that the leftmost pixel in vector is actually the valid border pixel // from which we want to extrapolate), and use an epol mask that will // simply stretch the pixel all over the vector. // // To avoid a branch here: // The mask will be -1 (0xffffffff) for border_idx -1 and 0 for >= 0 const int32_t border_idx_negative = border_idx >> 31; const int32_t leftoff = border_idx_negative | left; __m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx); __m128i left_128 = _mm_set1_epi8((int8_t)left); right_border_idxs = _mm_add_epi8 (right_border_idxs, qwbaseids); // If we're straddling the left border, right_border_idx is 7 and the first // operation does nothing. If right border, left is 0 and the second // operation does nothing. __m128i mask_right = _mm_min_epi8 (ns, right_border_idxs); __m128i mask1 = _mm_sub_epi8 (mask_right, left_128); // If right == 8 (we're completely outside the frame), right_border_idx is // -1 and so is mask1. Clamp negative values to qwbaseid and as discussed // earlier, adjust the load offset instead to load the "-1'st" pixels and // using qwbaseids as the shuffle mask, broadcast it all over the rows. const __m128i epol_mask = _mm_max_epi8(mask1, qwbaseids); const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height_fourline_groups; y += 4) { __m128d a_d = _mm_setzero_pd(); __m128d b_d = _mm_setzero_pd(); __m128d c_d = _mm_setzero_pd(); __m128d d_d = _mm_setzero_pd(); a_d = _mm_loadl_pd(a_d, (const double *)(pic_data + (y + 0) * pic_stride)); b_d = _mm_loadl_pd(b_d, (const double *)(ref_data + (y + 0) * ref_stride + leftoff)); a_d = _mm_loadh_pd(a_d, (const double *)(pic_data + (y + 1) * pic_stride)); b_d = _mm_loadh_pd(b_d, (const double *)(ref_data + (y + 1) * ref_stride + leftoff)); c_d = _mm_loadl_pd(c_d, (const double *)(pic_data + (y + 2) * pic_stride)); d_d = _mm_loadl_pd(d_d, (const double *)(ref_data + (y + 2) * ref_stride + leftoff)); c_d = _mm_loadh_pd(c_d, (const double *)(pic_data + (y + 3) * pic_stride)); d_d = _mm_loadh_pd(d_d, (const double *)(ref_data + (y + 3) * ref_stride + leftoff)); __m128i a = _mm_castpd_si128(a_d); __m128i b = _mm_castpd_si128(b_d); __m128i c = _mm_castpd_si128(c_d); __m128i d = _mm_castpd_si128(d_d); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i d_epol = _mm_shuffle_epi8(d, epol_mask); __m128i curr_sads_ab = _mm_sad_epu8(a, b_epol); __m128i curr_sads_cd = _mm_sad_epu8(c, d_epol); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_cvtsi64_si128(*(int64_t *)(pic_data + y * pic_stride)); __m128i b = _mm_cvtsi64_si128(*(int64_t *)(ref_data + y * ref_stride + leftoff)); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i curr_sads_ab = _mm_sad_epu8(a, b_epol); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } /* * left and right measure how many pixels of one horizontal scanline will be * outside either the left or the right screen border. For blocks straddling * the left border, read the scanlines starting from the left border instead, * and use the extrapolation mask to essentially move the pixels right while * copying the left border pixel to the vector positions that logically point * outside of the buffer. * * For blocks straddling the right border, just read over the right border, * and extrapolate all pixels beyond the border idx to copy the value of the * border pixel. An exception is right == width (leftmost reference pixel is * one place right from the right border, it's ugly because the pixel to * extrapolate from is located at relative X offset -1), abuse the left border * aligning functionality instead to actually read starting from the valid * border pixel, and use a suitable mask to fill all the other pixels with * that value. */ static uint32_t hor_sad_sse41_w16(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t pic_stride, uint32_t ref_stride, const uint32_t left, const uint32_t right) { // right is the number of overhanging pixels in the vector, so it has to be // handled this way to produce the index of last valid (border) pixel const int32_t right_border_idx = 15 - right; const int32_t border_idx = left ? left : right_border_idx; const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i zero = _mm_setzero_si128(); // Dirty hack alert! If right == block_width (ie. the entire vector is // outside the frame), move the block offset one pixel to the left (so // that the leftmost pixel in vector is actually the valid border pixel // from which we want to extrapolate), and use an epol mask that will // simply stretch the pixel all over the vector. // // To avoid a branch here: // The mask will be -1 (0xffffffff) for border_idx -1 and 0 for >= 0 const int32_t border_idx_negative = border_idx >> 31; const int32_t leftoff = border_idx_negative | left; __m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx); __m128i left_128 = _mm_set1_epi8((int8_t)left); // If we're straddling the left border, right_border_idx is 15 and the first // operation does nothing. If right border, left is 0 and the second // operation does nothing. __m128i mask_right = _mm_min_epi8 (ns, right_border_idxs); __m128i mask1 = _mm_sub_epi8 (mask_right, left_128); // If right == 16 (we're completely outside the frame), right_border_idx is // -1 and so is mask1. Clamp negative values to zero and as discussed // earlier, adjust the load offset instead to load the "-1'st" pixel and // using an all-zero shuffle mask, broadcast it all over the vector. const __m128i epol_mask = _mm_max_epi8(mask1, zero); const int32_t height_fourline_groups = height & ~3; const int32_t height_residual_lines = height & 3; __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height_fourline_groups; y += 4) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride)); __m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + leftoff)); __m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride)); __m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + leftoff)); __m128i e = _mm_loadu_si128((__m128i *)(pic_data + (y + 2) * pic_stride)); __m128i f = _mm_loadu_si128((__m128i *)(ref_data + (y + 2) * ref_stride + leftoff)); __m128i g = _mm_loadu_si128((__m128i *)(pic_data + (y + 3) * pic_stride)); __m128i h = _mm_loadu_si128((__m128i *)(ref_data + (y + 3) * ref_stride + leftoff)); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i d_epol = _mm_shuffle_epi8(d, epol_mask); __m128i f_epol = _mm_shuffle_epi8(f, epol_mask); __m128i h_epol = _mm_shuffle_epi8(h, epol_mask); __m128i curr_sads_ab = _mm_sad_epu8(a, b_epol); __m128i curr_sads_cd = _mm_sad_epu8(c, d_epol); __m128i curr_sads_ef = _mm_sad_epu8(e, f_epol); __m128i curr_sads_gh = _mm_sad_epu8(g, h_epol); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { for (; y < height; y++) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride)); __m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + leftoff)); __m128i b_epol = _mm_shuffle_epi8(b, epol_mask); __m128i curr_sads = _mm_sad_epu8(a, b_epol); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static INLINE uint32_t hor_sad_sse41_arbitrary(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t width, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { __m128i sse_inc = _mm_setzero_si128(); const size_t vec_width = 16; const size_t vecwid_bitmask = 15; const size_t vec_width_log2 = 4; const __m128i rights = _mm_set1_epi8((uint8_t)right); const __m128i blk_widths = _mm_set1_epi8((uint8_t)width); const __m128i vec_widths = _mm_set1_epi8((uint8_t)vec_width); const __m128i nslo = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); uint32_t outside_vecs, inside_vecs, left_offset, is_left_bm; int32_t outside_width, inside_width, border_off, invec_lstart, invec_lend, invec_linc; if (left) { outside_vecs = left >> vec_width_log2; inside_vecs = (( width + vecwid_bitmask) >> vec_width_log2) - outside_vecs; outside_width = outside_vecs * vec_width; inside_width = inside_vecs * vec_width; left_offset = left; border_off = left; invec_lstart = 0; invec_lend = inside_vecs; invec_linc = 1; is_left_bm = -1; } else { inside_vecs = ((width - right) + vecwid_bitmask) >> vec_width_log2; outside_vecs = (( width + vecwid_bitmask) >> vec_width_log2) - inside_vecs; outside_width = outside_vecs * vec_width; inside_width = inside_vecs * vec_width; left_offset = right - width; border_off = width - 1 - right; invec_lstart = inside_vecs - 1; invec_lend = -1; invec_linc = -1; is_left_bm = 0; } left_offset &= vecwid_bitmask; const __m128i left_offsets = _mm_set1_epi8 ((uint8_t)left_offset); const __m128i is_left = _mm_cmpeq_epi8(rights, _mm_setzero_si128()); const __m128i vw_for_left = _mm_and_si128 (is_left, vec_widths); // -x == (x ^ 0xff) + 1 = (x ^ 0xff) - 0xff. Also x == (x ^ 0x00) - 0x00. // in other words, calculate inverse of left_offsets if is_left is true. const __m128i offs_neg = _mm_xor_si128 (left_offsets, is_left); const __m128i offs_for_sm1 = _mm_sub_epi8 (offs_neg, is_left); const __m128i ns_for_sm1 = _mm_or_si128 (vw_for_left, nslo); const __m128i shufmask1 = _mm_add_epi8 (ns_for_sm1, offs_for_sm1); const __m128i mo2bmask_l = _mm_cmpgt_epi8(left_offsets, nslo); const __m128i mo2bimask_l = _mm_cmpeq_epi8(mo2bmask_l, _mm_setzero_si128()); const __m128i mo2bimask_r = _mm_cmpgt_epi8(vec_widths, shufmask1); const __m128i move_old_to_b_imask = _mm_blendv_epi8(mo2bimask_r, mo2bimask_l, is_left); const int32_t outvec_offset = (~is_left_bm) & inside_width; int32_t x, y; for (y = 0; y < height; y++) { __m128i borderpx_vec = _mm_set1_epi8(ref_data[(int32_t)((y + 0) * ref_stride + border_off)]); for (x = 0; x < outside_vecs; x++) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + outvec_offset)); __m128i startoffs = _mm_set1_epi8 ((x + inside_vecs) << vec_width_log2); __m128i ns = _mm_add_epi8 (startoffs, nslo); // Unread imask is (is_left NOR unrd_imask_for_right), do the maths etc __m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, ns); unrd_imask = _mm_or_si128 (unrd_imask, is_left); __m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128()); __m128i b_unread = _mm_blendv_epi8(borderpx_vec, a, unrd_mask); __m128i sad_ab = _mm_sad_epu8 (a, b_unread); sse_inc = _mm_add_epi64(sse_inc, sad_ab); } int32_t a_off = outside_width & is_left_bm; int32_t leftoff_with_sign_neg = (left_offset ^ is_left_bm) - is_left_bm; __m128i old_b = borderpx_vec; for (x = invec_lstart; x != invec_lend; x += invec_linc) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + a_off)); __m128i b = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 0) * ref_stride + a_off - leftoff_with_sign_neg)); __m128i b_shifted = _mm_shuffle_epi8(b, shufmask1); __m128i b_with_old = _mm_blendv_epi8 (old_b, b_shifted, move_old_to_b_imask); uint8_t startoff = (x << vec_width_log2) + a_off; __m128i startoffs = _mm_set1_epi8 (startoff); __m128i curr_ns = _mm_add_epi8 (startoffs, nslo); __m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, curr_ns); __m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128()); __m128i b_unread = _mm_blendv_epi8 (b_with_old, a, unrd_mask); old_b = b_shifted; __m128i sad_ab = _mm_sad_epu8(a, b_unread); sse_inc = _mm_add_epi64(sse_inc, sad_ab); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } #endif