/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "search_intra.h"
#include
#include "cabac.h"
#include "encoder.h"
#include "encoderstate.h"
#include "image.h"
#include "intra.h"
#include "kvazaar.h"
#include "rdo.h"
#include "search.h"
#include "strategies/strategies-picture.h"
#include "videoframe.h"
// Normalize SAD for comparison against SATD to estimate transform skip
// for 4x4 blocks.
#ifndef TRSKIP_RATIO
# define TRSKIP_RATIO 1.7
#endif
/**
* \brief Sort modes and costs to ascending order according to costs.
*/
static INLINE void sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length)
{
// Length is always between 5 and 23, and is either 21, 17, 9 or 8 about
// 60% of the time, so there should be no need for anything more complex
// than insertion sort.
for (uint8_t i = 1; i < length; ++i) {
const double cur_cost = costs[i];
const int8_t cur_mode = modes[i];
uint8_t j = i;
while (j > 0 && cur_cost < costs[j - 1]) {
costs[j] = costs[j - 1];
modes[j] = modes[j - 1];
--j;
}
costs[j] = cur_cost;
modes[j] = cur_mode;
}
}
/**
* \brief Select mode with the smallest cost.
*/
static INLINE uint8_t select_best_mode_index(const int8_t *modes, const double *costs, uint8_t length)
{
uint8_t best_index = 0;
double best_cost = costs[0];
for (uint8_t i = 1; i < length; ++i) {
if (costs[i] < best_cost) {
best_cost = costs[i];
best_index = i;
}
}
return best_index;
}
/**
* \brief Calculate quality of the reconstruction.
*
* \param pred Predicted pixels in continous memory.
* \param orig_block Orignal (target) pixels in continous memory.
* \param satd_func SATD function for this block size.
* \param sad_func SAD function this block size.
* \param width Pixel width of the block.
*
* \return Estimated RD cost of the reconstruction and signaling the
* coefficients of the residual.
*/
static double get_cost(encoder_state_t * const state,
kvz_pixel *pred, kvz_pixel *orig_block,
cost_pixel_nxn_func *satd_func,
cost_pixel_nxn_func *sad_func,
int width)
{
double satd_cost = satd_func(pred, orig_block);
if (TRSKIP_RATIO != 0 && width == 4 && state->encoder_control->trskip_enable) {
// If the mode looks better with SAD than SATD it might be a good
// candidate for transform skip. How much better SAD has to be is
// controlled by TRSKIP_RATIO.
// Add the offset bit costs of signaling 'luma and chroma use trskip',
// versus signaling 'luma and chroma don't use trskip' to the SAD cost.
const cabac_ctx_t *ctx = &state->cabac.ctx.transform_skip_model_luma;
double trskip_bits = CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0);
ctx = &state->cabac.ctx.transform_skip_model_chroma;
trskip_bits += 2.0 * (CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0));
double sad_cost = TRSKIP_RATIO * sad_func(pred, orig_block) + state->global->cur_lambda_cost_sqrt * trskip_bits;
if (sad_cost < satd_cost) {
return sad_cost;
}
}
return satd_cost;
}
/**
* \brief Calculate quality of the reconstruction.
*
* \param a bc
*
* \return
*/
static void get_cost_dual(encoder_state_t * const state,
const pred_buffer preds, const kvz_pixel *orig_block,
cost_pixel_nxn_multi_func *satd_twin_func,
cost_pixel_nxn_multi_func *sad_twin_func,
int width, double *costs_out)
{
#define PARALLEL_BLKS 2
unsigned satd_costs[PARALLEL_BLKS] = { 0 };
satd_twin_func(preds, orig_block, PARALLEL_BLKS, satd_costs);
costs_out[0] = (double)satd_costs[0];
costs_out[1] = (double)satd_costs[1];
if (TRSKIP_RATIO != 0 && width == 4 && state->encoder_control->trskip_enable) {
// If the mode looks better with SAD than SATD it might be a good
// candidate for transform skip. How much better SAD has to be is
// controlled by TRSKIP_RATIO.
// Add the offset bit costs of signaling 'luma and chroma use trskip',
// versus signaling 'luma and chroma don't use trskip' to the SAD cost.
const cabac_ctx_t *ctx = &state->cabac.ctx.transform_skip_model_luma;
double trskip_bits = CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0);
ctx = &state->cabac.ctx.transform_skip_model_chroma;
trskip_bits += 2.0 * (CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0));
unsigned unsigned_sad_costs[PARALLEL_BLKS] = { 0 };
double sad_costs[PARALLEL_BLKS] = { 0 };
sad_twin_func(preds, orig_block, PARALLEL_BLKS, unsigned_sad_costs);
for (int i = 0; i < PARALLEL_BLKS; ++i) {
sad_costs[i] = TRSKIP_RATIO * (double)unsigned_sad_costs[i] + state->global->cur_lambda_cost_sqrt * trskip_bits;
if (sad_costs[i] < (double)satd_costs[i]) {
costs_out[i] = sad_costs[i];
}
}
}
#undef PARALLEL_BLKS
}
/**
* \brief Perform search for best intra transform split configuration.
*
* This function does a recursive search for the best intra transform split
* configuration for a given intra prediction mode.
*
* \return RD cost of best transform split configuration. Splits in lcu->cu.
* \param depth Current transform depth.
* \param max_depth Depth to which TR split will be tried.
* \param intra_mode Intra prediction mode.
* \param cost_treshold RD cost at which search can be stopped.
*/
static double search_intra_trdepth(encoder_state_t * const state,
int x_px, int y_px, int depth, int max_depth,
int intra_mode, int cost_treshold,
cu_info_t *const pred_cu,
lcu_t *const lcu)
{
assert(depth >= 0 && depth <= MAX_PU_DEPTH);
const int width = LCU_WIDTH >> depth;
const int width_c = width > TR_MIN_WIDTH ? width / 2 : width;
const int offset = width / 2;
const vector2d_t lcu_px = { SUB_SCU(x_px), SUB_SCU(y_px) };
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y);
const bool reconstruct_chroma = !(x_px & 4 || y_px & 4);
struct {
kvz_pixel y[TR_MAX_WIDTH*TR_MAX_WIDTH];
kvz_pixel u[TR_MAX_WIDTH*TR_MAX_WIDTH];
kvz_pixel v[TR_MAX_WIDTH*TR_MAX_WIDTH];
} nosplit_pixels;
cu_cbf_t nosplit_cbf = { .y = 0, .u = 0, .v = 0 };
double split_cost = INT32_MAX;
double nosplit_cost = INT32_MAX;
if (depth > 0) {
tr_cu->tr_depth = depth;
pred_cu->tr_depth = depth;
nosplit_cost = 0.0;
cbf_clear(&pred_cu->cbf.y, depth + PU_INDEX(x_px / 4, y_px / 4));
kvz_intra_recon_lcu_luma(state, x_px, y_px, depth, intra_mode, pred_cu, lcu);
nosplit_cost += kvz_cu_rd_cost_luma(state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu);
if (reconstruct_chroma) {
cbf_clear(&pred_cu->cbf.u, depth);
cbf_clear(&pred_cu->cbf.v, depth);
kvz_intra_recon_lcu_chroma(state, x_px, y_px, depth, intra_mode, pred_cu, lcu);
nosplit_cost += kvz_cu_rd_cost_chroma(state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu);
}
// Early stop codition for the recursive search.
// If the cost of any 1/4th of the transform is already larger than the
// whole transform, assume that splitting further is a bad idea.
if (nosplit_cost >= cost_treshold) {
return nosplit_cost;
}
nosplit_cbf = pred_cu->cbf;
kvz_pixels_blit(lcu->rec.y, nosplit_pixels.y, width, width, LCU_WIDTH, width);
if (reconstruct_chroma) {
kvz_pixels_blit(lcu->rec.u, nosplit_pixels.u, width_c, width_c, LCU_WIDTH_C, width_c);
kvz_pixels_blit(lcu->rec.v, nosplit_pixels.v, width_c, width_c, LCU_WIDTH_C, width_c);
}
}
// Recurse further if all of the following:
// - Current depth is less than maximum depth of the search (max_depth).
// - Maximum transform hierarchy depth is constrained by clipping
// max_depth.
// - Min transform size hasn't been reached (MAX_PU_DEPTH).
if (depth < max_depth && depth < MAX_PU_DEPTH) {
split_cost = 3 * state->global->cur_lambda_cost;
split_cost += search_intra_trdepth(state, x_px, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(state, x_px + offset, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(state, x_px, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(state, x_px + offset, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
double tr_split_bit = 0.0;
double cbf_bits = 0.0;
// Add bits for split_transform_flag = 1, because transform depth search bypasses
// the normal recursion in the cost functions.
if (depth >= 1 && depth <= 3) {
const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]);
tr_split_bit += CTX_ENTROPY_FBITS(ctx, 1);
}
// Add cost of cbf chroma bits on transform tree.
// All cbf bits are accumulated to pred_cu.cbf and cbf_is_set returns true
// if cbf is set at any level >= depth, so cbf chroma is assumed to be 0
// if this and any previous transform block has no chroma coefficients.
// When searching the first block we don't actually know the real values,
// so this will code cbf as 0 and not code the cbf at all for descendants.
{
const uint8_t tr_depth = depth - pred_cu->depth;
const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) {
cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth));
}
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) {
cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth));
}
}
double bits = tr_split_bit + cbf_bits;
split_cost += bits * state->global->cur_lambda_cost;
} else {
assert(width <= TR_MAX_WIDTH);
}
if (depth == 0 || split_cost < nosplit_cost) {
return split_cost;
} else {
kvz_lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
pred_cu->cbf = nosplit_cbf;
// We only restore the pixel data and not coefficients or cbf data.
// The only thing we really need are the border pixels.kvz_intra_get_dir_luma_predictor
kvz_pixels_blit(nosplit_pixels.y, lcu->rec.y, width, width, width, LCU_WIDTH);
if (reconstruct_chroma) {
kvz_pixels_blit(nosplit_pixels.u, lcu->rec.u, width_c, width_c, width_c, LCU_WIDTH_C);
kvz_pixels_blit(nosplit_pixels.v, lcu->rec.v, width_c, width_c, width_c, LCU_WIDTH_C);
}
return nosplit_cost;
}
}
static void search_intra_chroma_rough(encoder_state_t * const state,
int x_px, int y_px, int depth,
const kvz_pixel *orig_u, const kvz_pixel *orig_v, int16_t origstride,
kvz_intra_references *refs_u, kvz_intra_references *refs_v,
int8_t luma_mode,
int8_t modes[5], double costs[5])
{
assert(!(x_px & 4 || y_px & 4));
const unsigned width = MAX(LCU_WIDTH_C >> depth, TR_MIN_WIDTH);
const int_fast8_t log2_width_c = MAX(LOG2_LCU_WIDTH - (depth + 1), 2);
for (int i = 0; i < 5; ++i) {
costs[i] = 0;
}
cost_pixel_nxn_func *const satd_func = kvz_pixels_get_satd_func(width);
//cost_pixel_nxn_func *const sad_func = kvz_pixels_get_sad_func(width);
kvz_pixel _pred[32 * 32 + SIMD_ALIGNMENT];
kvz_pixel *pred = ALIGNED_POINTER(_pred, SIMD_ALIGNMENT);
kvz_pixel _orig_block[32 * 32 + SIMD_ALIGNMENT];
kvz_pixel *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT);
kvz_pixels_blit(orig_u, orig_block, width, width, origstride, width);
for (int i = 0; i < 5; ++i) {
if (modes[i] == luma_mode) continue;
kvz_intra_predict(refs_u, log2_width_c, modes[i], COLOR_U, pred);
//costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
costs[i] += satd_func(pred, orig_block);
}
kvz_pixels_blit(orig_v, orig_block, width, width, origstride, width);
for (int i = 0; i < 5; ++i) {
if (modes[i] == luma_mode) continue;
kvz_intra_predict(refs_v, log2_width_c, modes[i], COLOR_V, pred);
//costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
costs[i] += satd_func(pred, orig_block);
}
sort_modes(modes, costs, 5);
}
/**
* \brief Order the intra prediction modes according to a fast criteria.
*
* This function uses SATD to order the intra prediction modes. For 4x4 modes
* SAD might be used instead, if the cost given by SAD is much better than the
* one given by SATD, to take into account that 4x4 modes can be coded with
* transform skip. This version of the function calculates two costs
* simultaneously to better utilize large SIMD registers with AVX and newer
* extensions.
*
* The modes are searched using halving search and the total number of modes
* that are tried is dependent on size of the predicted block. More modes
* are tried for smaller blocks.
*
* \param orig Pointer to the top-left corner of current CU in the picture
* being encoded.
* \param orig_stride Stride of param orig..
* \param rec Pointer to the top-left corner of current CU in the picture
* being encoded.
* \param rec_stride Stride of param rec.
* \param width Width of the prediction block.
* \param intra_preds Array of the 3 predicted intra modes.
*
* \param[out] modes The modes ordered according to their RD costs, from best
* to worst. The number of modes and costs output is given by parameter
* modes_to_check.
* \param[out] costs The RD costs of corresponding modes in param modes.
*
* \return Number of prediction modes in param modes.
*/
static int8_t search_intra_rough(encoder_state_t * const state,
kvz_pixel *orig, int32_t origstride,
kvz_intra_references *refs,
int log2_width, int8_t *intra_preds,
int8_t modes[35], double costs[35])
{
#define PARALLEL_BLKS 2 // TODO: use 4 for AVX-512 in the future?
assert(log2_width >= 2 && log2_width <= 5);
int_fast8_t width = 1 << log2_width;
cost_pixel_nxn_func *satd_func = kvz_pixels_get_satd_func(width);
cost_pixel_nxn_func *sad_func = kvz_pixels_get_sad_func(width);
cost_pixel_nxn_multi_func *satd_dual_func = kvz_pixels_get_satd_dual_func(width);
cost_pixel_nxn_multi_func *sad_dual_func = kvz_pixels_get_sad_dual_func(width);
// Temporary block arrays
kvz_pixel _preds[PARALLEL_BLKS * 32 * 32 + SIMD_ALIGNMENT];
pred_buffer preds = ALIGNED_POINTER(_preds, SIMD_ALIGNMENT);
kvz_pixel _orig_block[32 * 32 + SIMD_ALIGNMENT];
kvz_pixel *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT);
// Store original block for SAD computation
kvz_pixels_blit(orig, orig_block, width, width, origstride, width);
int8_t modes_selected = 0;
unsigned min_cost = UINT_MAX;
unsigned max_cost = 0;
// Initial offset decides how many modes are tried before moving on to the
// recursive search.
int offset;
if (state->encoder_control->full_intra_search) {
offset = 1;
} else {
static const int8_t offsets[4] = { 2, 4, 8, 8 };
offset = offsets[log2_width - 2];
}
// Calculate SAD for evenly spaced modes to select the starting point for
// the recursive search.
for (int mode = 2; mode <= 34; mode += PARALLEL_BLKS * offset) {
double costs_out[PARALLEL_BLKS] = { 0 };
for (int i = 0; i < PARALLEL_BLKS; ++i) {
if (mode + i * offset <= 34) kvz_intra_predict(refs, log2_width, mode + i * offset, COLOR_Y, preds[i]);
}
//TODO: add generic version of get cost multi
get_cost_dual(state, preds, orig_block, satd_dual_func, sad_dual_func, width, costs_out);
for (int i = 0; i < PARALLEL_BLKS; ++i) {
if (mode + i * offset <= 34) {
costs[modes_selected] = costs_out[i];
modes[modes_selected] = mode + i * offset;
min_cost = MIN(min_cost, costs[modes_selected]);
max_cost = MAX(max_cost, costs[modes_selected]);
++modes_selected;
}
}
}
int8_t best_mode = modes[select_best_mode_index(modes, costs, modes_selected)];
double best_cost = min_cost;
// Skip recursive search if all modes have the same cost.
if (min_cost != max_cost) {
// Do a recursive search to find the best mode, always centering on the
// current best mode.
while (offset > 1) {
offset >>= 1;
int8_t center_node = best_mode;
int8_t test_modes[] = { center_node - offset, center_node + offset };
double costs_out[PARALLEL_BLKS] = { 0 };
char mode_in_range = 0;
for (int i = 0; i < PARALLEL_BLKS; ++i) mode_in_range |= (test_modes[i] >= 2 && test_modes[i] <= 34);
if (mode_in_range) {
for (int i = 0; i < PARALLEL_BLKS; ++i) {
if (test_modes[i] >= 2 && test_modes[i] <= 34) kvz_intra_predict(refs, log2_width, test_modes[i], COLOR_Y, preds[i]);
}
//TODO: add generic version of get cost multi
get_cost_dual(state, preds, orig_block, satd_dual_func, sad_dual_func, width, costs_out);
for (int i = 0; i < PARALLEL_BLKS; ++i) {
if (test_modes[i] >= 2 && test_modes[i] <= 34) {
costs[modes_selected] = costs_out[i];
modes[modes_selected] = test_modes[i];
if (costs[modes_selected] < best_cost) {
best_cost = costs[modes_selected];
best_mode = modes[modes_selected];
}
++modes_selected;
}
}
}
}
}
int8_t add_modes[5] = {intra_preds[0], intra_preds[1], intra_preds[2], 0, 1};
// Add DC, planar and missing predicted modes.
for (int8_t pred_i = 0; pred_i < 5; ++pred_i) {
bool has_mode = false;
int8_t mode = add_modes[pred_i];
for (int mode_i = 0; mode_i < modes_selected; ++mode_i) {
if (modes[mode_i] == add_modes[pred_i]) {
has_mode = true;
break;
}
}
if (!has_mode) {
kvz_intra_predict(refs, log2_width, mode, COLOR_Y, preds[0]);
costs[modes_selected] = get_cost(state, preds[0], orig_block, satd_func, sad_func, width);
modes[modes_selected] = mode;
++modes_selected;
}
}
// Add prediction mode coding cost as the last thing. We don't want this
// affecting the halving search.
int lambda_cost = (int)(state->global->cur_lambda_cost_sqrt + 0.5);
for (int mode_i = 0; mode_i < modes_selected; ++mode_i) {
costs[mode_i] += lambda_cost * kvz_luma_mode_bits(state, modes[mode_i], intra_preds);
}
#undef PARALLEL_BLKS
return modes_selected;
}
/**
* \brief Find best intra mode out of the ones listed in parameter modes.
*
* This function perform intra search by doing full quantization,
* reconstruction and CABAC coding of coefficients. It is very slow
* but results in better RD quality than using just the rough search.
*
* \param x_px Luma picture coordinate.
* \param y_px Luma picture coordinate.
* \param orig Pointer to the top-left corner of current CU in the picture
* being encoded.
* \param orig_stride Stride of param orig.
* \param rec Pointer to the top-left corner of current CU in the picture
* being encoded.
* \param rec_stride Stride of param rec.
* \param intra_preds Array of the 3 predicted intra modes.
* \param modes_to_check How many of the modes in param modes are checked.
* \param[in] modes The intra prediction modes that are to be checked.
*
* \param[out] modes The modes ordered according to their RD costs, from best
* to worst. The number of modes and costs output is given by parameter
* modes_to_check.
* \param[out] costs The RD costs of corresponding modes in param modes.
* \param[out] lcu If transform split searching is used, the transform split
* information for the best mode is saved in lcu.cu structure.
*/
static int8_t search_intra_rdo(encoder_state_t * const state,
int x_px, int y_px, int depth,
kvz_pixel *orig, int32_t origstride,
int8_t *intra_preds,
int modes_to_check,
int8_t modes[35], double costs[35],
lcu_t *lcu)
{
const int tr_depth = CLIP(1, MAX_PU_DEPTH, depth + state->encoder_control->tr_depth_intra);
const int width = LCU_WIDTH >> depth;
kvz_pixel orig_block[LCU_WIDTH * LCU_WIDTH + 1];
kvz_pixels_blit(orig, orig_block, width, width, origstride, width);
// Check that the predicted modes are in the RDO mode list
if (modes_to_check < 35) {
for (int pred_mode = 0; pred_mode < 3; pred_mode++) {
int mode_found = 0;
for (int rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode++) {
if (intra_preds[pred_mode] == modes[rdo_mode]) {
mode_found = 1;
break;
}
}
// Add this prediction mode to RDO checking
if (!mode_found) {
modes[modes_to_check] = intra_preds[pred_mode];
modes_to_check++;
}
}
}
for(int rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) {
int rdo_bitcost = kvz_luma_mode_bits(state, modes[rdo_mode], intra_preds);
costs[rdo_mode] = rdo_bitcost * (int)(state->global->cur_lambda_cost + 0.5);
// Perform transform split search and save mode RD cost for the best one.
cu_info_t pred_cu;
pred_cu.depth = depth;
pred_cu.type = CU_INTRA;
pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N);
pred_cu.intra[0].mode = modes[rdo_mode];
pred_cu.intra[1].mode = modes[rdo_mode];
pred_cu.intra[2].mode = modes[rdo_mode];
pred_cu.intra[3].mode = modes[rdo_mode];
pred_cu.intra[0].mode_chroma = modes[rdo_mode];
FILL(pred_cu.cbf, 0);
// Reset transform split data in lcu.cu for this area.
kvz_lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
double mode_cost = search_intra_trdepth(state, x_px, y_px, depth, tr_depth, modes[rdo_mode], MAX_INT, &pred_cu, lcu);
costs[rdo_mode] += mode_cost;
}
// The best transform split hierarchy is not saved anywhere, so to get the
// transform split hierarchy the search has to be performed again with the
// best mode.
if (tr_depth != depth) {
cu_info_t pred_cu;
pred_cu.depth = depth;
pred_cu.type = CU_INTRA;
pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N);
pred_cu.intra[0].mode = modes[0];
pred_cu.intra[1].mode = modes[0];
pred_cu.intra[2].mode = modes[0];
pred_cu.intra[3].mode = modes[0];
pred_cu.intra[0].mode_chroma = modes[0];
FILL(pred_cu.cbf, 0);
search_intra_trdepth(state, x_px, y_px, depth, tr_depth, modes[0], MAX_INT, &pred_cu, lcu);
}
return modes_to_check;
}
double kvz_luma_mode_bits(const encoder_state_t *state, int8_t luma_mode, const int8_t *intra_preds)
{
double mode_bits;
bool mode_in_preds = false;
for (int i = 0; i < 3; ++i) {
if (luma_mode == intra_preds[i]) {
mode_in_preds = true;
}
}
const cabac_ctx_t *ctx = &(state->cabac.ctx.intra_mode_model);
mode_bits = CTX_ENTROPY_FBITS(ctx, mode_in_preds);
if (mode_in_preds) {
mode_bits += ((luma_mode == intra_preds[0]) ? 1 : 2);
} else {
mode_bits += 5;
}
return mode_bits;
}
double kvz_chroma_mode_bits(const encoder_state_t *state, int8_t chroma_mode, int8_t luma_mode)
{
const cabac_ctx_t *ctx = &(state->cabac.ctx.chroma_pred_model[0]);
double mode_bits;
if (chroma_mode == luma_mode) {
mode_bits = CTX_ENTROPY_FBITS(ctx, 0);
} else {
mode_bits = 2.0 + CTX_ENTROPY_FBITS(ctx, 1);
}
return mode_bits;
}
int8_t kvz_search_intra_chroma_rdo(encoder_state_t * const state,
int x_px, int y_px, int depth,
int8_t intra_mode,
int8_t modes[5], int8_t num_modes,
lcu_t *const lcu)
{
const bool reconstruct_chroma = !(x_px & 4 || y_px & 4);
if (reconstruct_chroma) {
const vector2d_t lcu_px = { SUB_SCU(x_px), SUB_SCU(y_px) };
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y);
struct {
double cost;
int8_t mode;
} chroma, best_chroma;
best_chroma.mode = 0;
best_chroma.cost = MAX_INT;
for (int8_t chroma_mode_i = 0; chroma_mode_i < num_modes; ++chroma_mode_i) {
chroma.mode = modes[chroma_mode_i];
kvz_intra_recon_lcu_chroma(state, x_px, y_px, depth, chroma.mode, NULL, lcu);
chroma.cost = kvz_cu_rd_cost_chroma(state, lcu_px.x, lcu_px.y, depth, tr_cu, lcu);
double mode_bits = kvz_chroma_mode_bits(state, chroma.mode, intra_mode);
chroma.cost += mode_bits * state->global->cur_lambda_cost;
if (chroma.cost < best_chroma.cost) {
best_chroma = chroma;
}
}
return best_chroma.mode;
}
return 100;
}
int8_t kvz_search_cu_intra_chroma(encoder_state_t * const state,
const int x_px, const int y_px,
const int depth, lcu_t *lcu)
{
const vector2d_t lcu_px = { SUB_SCU(x_px), SUB_SCU(y_px) };
const vector2d_t lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 };
cu_info_t *cur_cu = LCU_GET_CU(lcu, lcu_cu.x, lcu_cu.y);
int8_t intra_mode = cur_cu->intra[PU_INDEX(x_px >> 2, y_px >> 2)].mode;
double costs[5];
int8_t modes[5] = { 0, 26, 10, 1, 34 };
if (intra_mode != 0 && intra_mode != 26 && intra_mode != 10 && intra_mode != 1) {
modes[4] = intra_mode;
}
// The number of modes to select for slower chroma search. Luma mode
// is always one of the modes, so 2 means the final decision is made
// between luma mode and one other mode that looks the best
// according to search_intra_chroma_rough.
const int8_t modes_in_depth[5] = { 1, 1, 1, 1, 2 };
int num_modes = modes_in_depth[depth];
if (state->encoder_control->rdo == 3) {
num_modes = 5;
}
// Don't do rough mode search if all modes are selected.
// FIXME: It might make more sense to only disable rough search if
// num_modes is 0.is 0.
if (num_modes != 1 && num_modes != 5) {
const int_fast8_t log2_width_c = MAX(LOG2_LCU_WIDTH - depth - 1, 2);
const vector2d_t pic_px = { state->tile->frame->width, state->tile->frame->height };
const vector2d_t luma_px = { x_px, y_px };
kvz_intra_references refs_u;
kvz_intra_build_reference(log2_width_c, COLOR_U, &luma_px, &pic_px, lcu, &refs_u);
kvz_intra_references refs_v;
kvz_intra_build_reference(log2_width_c, COLOR_V, &luma_px, &pic_px, lcu, &refs_v);
vector2d_t lcu_cpx = { lcu_px.x / 2, lcu_px.y / 2 };
kvz_pixel *ref_u = &lcu->ref.u[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C];
kvz_pixel *ref_v = &lcu->ref.v[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C];
search_intra_chroma_rough(state, x_px, y_px, depth,
ref_u, ref_v, LCU_WIDTH_C,
&refs_u, &refs_v,
intra_mode, modes, costs);
}
int8_t intra_mode_chroma = intra_mode;
if (num_modes > 1) {
intra_mode_chroma = kvz_search_intra_chroma_rdo(state, x_px, y_px, depth, intra_mode, modes, num_modes, lcu);
}
return intra_mode_chroma;
}
/**
* Update lcu to have best modes at this depth.
* \return Cost of best mode.
*/
void kvz_search_cu_intra(encoder_state_t * const state,
const int x_px, const int y_px,
const int depth, lcu_t *lcu,
int8_t *mode_out, double *cost_out)
{
const vector2d_t lcu_px = { SUB_SCU(x_px), SUB_SCU(y_px) };
const vector2d_t lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 };
const int8_t cu_width = (LCU_WIDTH >> (depth));
const int_fast8_t log2_width = LOG2_LCU_WIDTH - depth;
cu_info_t *cur_cu = LCU_GET_CU(lcu, lcu_cu.x, lcu_cu.y);
kvz_intra_references refs;
int8_t candidate_modes[3];
cu_info_t *left_cu = 0;
cu_info_t *above_cu = 0;
// Select left and top CUs if they are available.
// Top CU is not available across LCU boundary.
if ((x_px >> 3) > 0) {
left_cu = LCU_GET_CU(lcu, lcu_cu.x - 1, lcu_cu.y);
}
if ((y_px >> 3) > 0 && lcu_cu.y != 0) {
above_cu = LCU_GET_CU(lcu, lcu_cu.x, lcu_cu.y - 1);
}
kvz_intra_get_dir_luma_predictor(x_px, y_px, candidate_modes, cur_cu, left_cu, above_cu);
if (depth > 0) {
const vector2d_t luma_px = { x_px, y_px };
const vector2d_t pic_px = { state->tile->frame->width, state->tile->frame->height };
kvz_intra_build_reference(log2_width, COLOR_Y, &luma_px, &pic_px, lcu, &refs);
}
int8_t modes[35];
double costs[35];
// Find best intra mode for 2Nx2N.
kvz_pixel *ref_pixels = &lcu->ref.y[lcu_px.x + lcu_px.y * LCU_WIDTH];
int8_t number_of_modes;
bool skip_rough_search = (depth == 0 || state->encoder_control->rdo >= 3);
if (!skip_rough_search) {
number_of_modes = search_intra_rough(state,
ref_pixels, LCU_WIDTH,
&refs,
log2_width, candidate_modes,
modes, costs);
} else {
number_of_modes = 35;
for (int i = 0; i < number_of_modes; ++i) {
modes[i] = i;
costs[i] = MAX_INT;
}
}
// Set transform depth to current depth, meaning no transform splits.
kvz_lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
// Refine results with slower search or get some results if rough search was skipped.
if (state->encoder_control->rdo >= 2 || skip_rough_search) {
int number_of_modes_to_search;
if (state->encoder_control->rdo == 3) {
number_of_modes_to_search = 35;
} else if (state->encoder_control->rdo == 2) {
number_of_modes_to_search = (cu_width <= 8) ? 8 : 3;
} else {
// Check only the predicted modes.
number_of_modes_to_search = 0;
}
int num_modes_to_check = MIN(number_of_modes, number_of_modes_to_search);
sort_modes(modes, costs, number_of_modes);
number_of_modes = search_intra_rdo(state,
x_px, y_px, depth,
ref_pixels, LCU_WIDTH,
candidate_modes,
num_modes_to_check,
modes, costs, lcu);
}
uint8_t best_mode_i = select_best_mode_index(modes, costs, number_of_modes);
*mode_out = modes[best_mode_i];
*cost_out = costs[best_mode_i];
}