/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #ifdef WIN32 #define _CRT_SECURE_NO_WARNINGS #endif #include "encoder.h" #include #include #include #include #include #include "config.h" #include "cabac.h" #include "picture.h" #include "nal.h" #include "context.h" #include "transform.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" int16_t g_lambda_cost[55]; uint32_t* g_sig_last_scan[3][7]; /* Local functions. */ static void add_checksum(encoder_control* encoder); void initSigLastScan(uint32_t* pBuffD, uint32_t* pBuffH, uint32_t* pBuffV, int32_t iWidth, int32_t iHeight) { uint32_t uiNumScanPos = iWidth * iWidth; uint32_t uiNextScanPos = 0; int32_t iX,iY,x,y; uint32_t uiScanLine; uint32_t blkY,blkX; uint32_t uiBlk; uint32_t uiCnt = 0; if( iWidth < 16 ) { uint32_t* pBuffTemp = pBuffD; if( iWidth == 8 ) { pBuffTemp = (uint32_t *)g_sig_last_scan_32x32; } for( uiScanLine = 0; uiNextScanPos < uiNumScanPos; uiScanLine++ ) { int iPrimDim = uiScanLine; int iScndDim = 0; while( iPrimDim >= iWidth ) { iScndDim++; iPrimDim--; } while( iPrimDim >= 0 && iScndDim < iWidth ) { pBuffTemp[ uiNextScanPos ] = iPrimDim * iWidth + iScndDim ; uiNextScanPos++; iScndDim++; iPrimDim--; } } } if( iWidth > 4 ) { uint32_t uiNumBlkSide = iWidth >> 2; uint32_t uiNumBlks = uiNumBlkSide * uiNumBlkSide; uint32_t log2Blk = g_convert_to_bit[ uiNumBlkSide ] + 1; for(uiBlk = 0; uiBlk < uiNumBlks; uiBlk++ ) { uint32_t initBlkPos = g_sig_last_scan[ SCAN_DIAG ][ log2Blk ][ uiBlk ]; uiNextScanPos = 0; if( iWidth == 32 ) { initBlkPos = g_sig_last_scan_32x32[ uiBlk ]; } { uint32_t offsetY = initBlkPos / uiNumBlkSide; uint32_t offsetX = initBlkPos - offsetY * uiNumBlkSide; uint32_t offsetD = 4 * ( offsetX + offsetY * iWidth ); uint32_t offsetScan = 16 * uiBlk; for( uiScanLine = 0; uiNextScanPos < 16; uiScanLine++ ) { int iPrimDim = uiScanLine; int iScndDim = 0; //TODO: optimize while( iPrimDim >= 4 ) { iScndDim++; iPrimDim--; } while( iPrimDim >= 0 && iScndDim < 4 ) { pBuffD[ uiNextScanPos + offsetScan ] = iPrimDim * iWidth + iScndDim + offsetD; uiNextScanPos++; iScndDim++; iPrimDim--; } } } } } if( iWidth > 2 ) { uint32_t numBlkSide = iWidth >> 2; for(blkY=0; blkY < numBlkSide; blkY++) { for(blkX=0; blkX < numBlkSide; blkX++) { uint32_t offset = blkY * 4 * iWidth + blkX * 4; for(y=0; y < 4; y++) { for(x=0; x < 4; x++) { pBuffH[uiCnt] = y*iWidth + x + offset; uiCnt ++; } } } } uiCnt = 0; for(blkX=0; blkX < numBlkSide; blkX++) { for(blkY=0; blkY < numBlkSide; blkY++) { uint32_t offset = blkY * 4 * iWidth + blkX * 4; for(x=0; x < 4; x++) { for(y=0; y < 4; y++) { pBuffV[uiCnt] = y*iWidth + x + offset; uiCnt ++; } } } } } else { for(iY=0; iY < iHeight; iY++) { for(iX=0; iX < iWidth; iX++) { pBuffH[uiCnt] = iY*iWidth + iX; uiCnt ++; } } uiCnt = 0; for(iX=0; iX < iWidth; iX++) { for(iY=0; iY < iHeight; iY++) { pBuffV[uiCnt] = iY*iWidth + iX; uiCnt ++; } } } } void init_tables(void) { int i; int c = 0; memset( g_convert_to_bit,-1, sizeof( g_convert_to_bit ) ); for ( i=4; i<(1<<7); i*=2 ) { g_convert_to_bit[i] = c; c++; } g_convert_to_bit[i] = c; c = 2; for ( i=0; i<7; i++ ) { g_sig_last_scan[0][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[1][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[2][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); initSigLastScan( g_sig_last_scan[0][i], g_sig_last_scan[1][i], g_sig_last_scan[2][i], c, c); c <<= 1; } /* Lambda cost */ /* TODO: cleanup */ //g_lambda_cost = (int16_t*)malloc(sizeof(int16_t)*55); for(i = 0; i < 55; i++) { if(i < 12) g_lambda_cost[i]= 0; else g_lambda_cost[i] = (int16_t)sqrt(0.57*pow(2.0,(i-12)/3)); //g_lambda_cost[i] = g_lambda_cost[i]*g_lambda_cost[i]; } } void init_encoder_control(encoder_control* control,bitstream* output) { control->stream = output; } void init_encoder_input(encoder_input* input,FILE* inputfile, int32_t width, int32_t height) { input->file = inputfile; input->width = width; input->height = height; input->real_width = width; input->real_height = height; // If input dimensions are not divisible by the smallest block size, add pixels to the dimensions, so that they are. // These extra pixels will be compressed along with the real ones but they will be cropped out before rendering. if (width % CU_MIN_SIZE_PIXELS) { input->width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS); } if (height % CU_MIN_SIZE_PIXELS) { input->height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS); } input->height_in_lcu = input->height / LCU_WIDTH; input->width_in_lcu = input->width / LCU_WIDTH; /* Add one extra LCU when image not divisible by LCU_WIDTH */ if(input->height_in_lcu * LCU_WIDTH < height) { input->height_in_lcu++; } if(input->width_in_lcu * LCU_WIDTH < width) { input->width_in_lcu++; } /* Allocate the picture and CU array */ input->cur_pic = picture_init(input->width, input->height, input->width_in_lcu,input->height_in_lcu); if(!input->cur_pic) { printf("Error allocating picture!\r\n"); exit(1); } #ifdef _DEBUG if (width != input->width || height != input->height) { printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n"); printf(" Width = %d (%d), Height = %d (%d)\r\n", width, input->width, height, input->height); } #endif } void encode_one_frame(encoder_control* encoder) { /* output parameters before first frame */ if(encoder->frame == 0) { /* Video Parameter Set (VPS) */ encode_vid_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_VPS_NUT, 0); bitstream_clear_buffer(encoder->stream); /* Sequence Parameter Set (SPS) */ encode_seq_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SPS_NUT, 0); bitstream_clear_buffer(encoder->stream); /* Picture Parameter Set (PPS) */ encode_pic_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_PPS_NUT, 0); bitstream_clear_buffer(encoder->stream); /* First slice is IDR */ cabac_start(&cabac); encoder->in.cur_pic->slicetype = SLICE_I; encoder->in.cur_pic->type = NAL_IDR_W_RADL; search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_IDR_W_RADL, 0); bitstream_clear_buffer(encoder->stream); } //else if(encoder->frame == 1) //{ // /* // cabac_start(&cabac); // encoder->in.cur_pic->slicetype = SLICE_P; // encoder->in.cur_pic->type = 1; // encode_slice_header(encoder); // bitstream_align(encoder->stream); // cabac_flush(&cabac); // bitstream_align(encoder->stream); // bitstream_flush(encoder->stream); // nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0,1,0); // bitstream_clear_buffer(encoder->stream);*/ // cabac_start(&cabac); // encoder->in.cur_pic->slicetype = SLICE_P; // encoder->in.cur_pic->type = 1; // search_slice_data(encoder); // encode_slice_header(encoder); // bitstream_align(encoder->stream); // encode_slice_data(encoder); // cabac_flush(&cabac); // bitstream_align(encoder->stream); // bitstream_flush(encoder->stream); // nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0,1,1); // bitstream_clear_buffer(encoder->stream); //} else { cabac_start(&cabac); encoder->in.cur_pic->slicetype = (encoder->frame==1)?SLICE_P:SLICE_I; encoder->in.cur_pic->type = NAL_TRAIL_R; search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0,NAL_TRAIL_R,0); bitstream_clear_buffer(encoder->stream); } #ifdef _DEBUG /* { int x,y; for(y = 0; y < encoder->in.height_in_LCU*2;y++) { for(x = 0;x < encoder->in.width_in_LCU*2;x++) { i = (x<<2)+(y<<2)*(encoder->in.width_in_LCU<in.cur_pic->CU[0][i].intra.mode); } } } */ #endif /* Filtering */ /* TODO: Check for correct deblock condition on inter blocks */ if(encoder->deblock_enable && encoder->in.cur_pic->slicetype == SLICE_I) { filter_deblock(encoder); } /* Calculate checksum */ add_checksum(encoder); } void fill_after_frame(FILE* file, unsigned height, unsigned array_width, unsigned array_height, unsigned char* data) { unsigned char* p = data + height * array_width; unsigned char* end = data + array_width * array_height; while (p < end) { // Fill the line by copying the line above. memcpy(p, p - array_width, array_width); p += array_width; } } void read_and_fill_frame_data(FILE* file, unsigned width, unsigned height, unsigned array_width, unsigned char* data) { unsigned char* p = data; unsigned char* end = data + array_width * height; unsigned char fill_char; unsigned i; while (p < end) { // Read the beginning of the line from input. fread(p, sizeof(unsigned char), width, file); // Fill the rest with the last pixel value. fill_char = p[width - 1]; for (i = width; i < array_width; ++i) { p[i] = fill_char; } p += array_width; } } void read_one_frame(FILE* file, encoder_control* encoder) { encoder_input* in = &encoder->in; unsigned width = in->real_width; unsigned height = in->real_height; unsigned array_width = in->cur_pic->width; unsigned array_height = in->cur_pic->height; if (width != array_width) { // In the case of frames not being aligned on 8 bit borders, bits need to be copied to fill them in. read_and_fill_frame_data(file, width, height, array_width, in->cur_pic->y_data); read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->u_data); read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->v_data); } else { // Otherwise the data can be read directly to the array. fread(in->cur_pic->y_data, sizeof(unsigned char), width * height, file); fread(in->cur_pic->u_data, sizeof(unsigned char), (width >> 1) * (height >> 1), file); fread(in->cur_pic->v_data, sizeof(unsigned char), (width >> 1) * (height >> 1), file); } if (height != array_height) { fill_after_frame(file, height, array_width, array_height, in->cur_pic->y_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->u_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->v_data); } } /*! \brief Add a checksum SEI message to the bitstream. \param encoder The encoder. \returns Void */ static void add_checksum(encoder_control* encoder) { unsigned char checksum[3][SEI_HASH_MAX_LENGTH]; uint32_t checksum_val; unsigned int i; picture_checksum(encoder->in.cur_pic, checksum); WRITE_U(encoder->stream, 132, 8, "sei_type"); WRITE_U(encoder->stream, 13, 8, "size"); WRITE_U(encoder->stream, 2, 8, "hash_type"); /* 2 = checksum*/ for (i = 0; i < 3; ++i) { /* Pack bits into a single 32 bit uint instead of pushing them one byte at a time. */ checksum_val = (checksum[i][0] << 24) + (checksum[i][1] << 16) + (checksum[i][2] << 8) + (checksum[i][3]); WRITE_U(encoder->stream, checksum_val, 32, "picture_checksum"); } bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SUFFIT_SEI_NUT, 0); bitstream_clear_buffer(encoder->stream); } void encode_pic_parameter_set(encoder_control* encoder) { #ifdef _DEBUG printf("=========== Picture Parameter Set ID: 0 ===========\n"); #endif WRITE_UE(encoder->stream, 0, "pic_parameter_set_id"); WRITE_UE(encoder->stream, 0, "seq_parameter_set_id"); WRITE_U(encoder->stream, 0, 1, "dependent_slice_segments_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "output_flag_present_flag"); WRITE_U(encoder->stream, 0, 3, "num_extra_slice_header_bits"); WRITE_U(encoder->stream, ENABLE_SIGN_HIDING, 1, "sign_data_hiding_flag"); WRITE_U(encoder->stream, 0, 1, "cabac_init_present_flag"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l0_default_active_minus1"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l1_default_active_minus1"); WRITE_SE(encoder->stream, ((int8_t)encoder->QP)-26, "pic_init_qp_minus26"); WRITE_U(encoder->stream, 0, 1, "constrained_intra_pred_flag"); WRITE_U(encoder->stream, 0, 1, "transform_skip_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "cu_qp_delta_enabled_flag"); //if cu_qp_delta_enabled_flag //WRITE_UE(encoder->stream, 0, "diff_cu_qp_delta_depth"); //TODO: add QP offsets WRITE_SE(encoder->stream, 0, "pps_cb_qp_offset"); WRITE_SE(encoder->stream, 0, "pps_cr_qp_offset"); WRITE_U(encoder->stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_pred_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_bipred_idc"); //WRITE_U(encoder->stream, 0, 1, "dependent_slices_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "transquant_bypass_enable_flag"); WRITE_U(encoder->stream, 0, 1, "tiles_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "entropy_coding_sync_enabled_flag"); //TODO: enable tiles for concurrency //IF tiles //ENDIF WRITE_U(encoder->stream, 0, 1, "loop_filter_across_slice_flag"); WRITE_U(encoder->stream, 1, 1, "deblocking_filter_control_present_flag"); //IF deblocking_filter WRITE_U(encoder->stream, 0, 1, "deblocking_filter_override_enabled_flag"); WRITE_U(encoder->stream, encoder->deblock_enable?0:1, 1, "pps_disable_deblocking_filter_flag"); //IF !disabled if(encoder->deblock_enable) { WRITE_SE(encoder->stream, encoder->beta_offset_div2, "beta_offset_div2"); WRITE_SE(encoder->stream, encoder->tc_offset_div2, "tc_offset_div2"); } //ENDIF //ENDIF WRITE_U(encoder->stream, 0, 1, "pps_scaling_list_data_present_flag"); //IF scaling_list //ENDIF WRITE_U(encoder->stream, 0, 1, "lists_modification_present_flag"); WRITE_UE(encoder->stream, 0, "log2_parallel_merge_level_minus2"); WRITE_U(encoder->stream, 0, 1, "slice_segment_header_extension_present_flag"); WRITE_U(encoder->stream, 0, 1, "pps_extension_flag"); } void encode_PTL(encoder_control *encoder) { int i; /*PTL*/ /*Profile Tier*/ WRITE_U(encoder->stream, 0, 2, "XXX_profile_space[]"); WRITE_U(encoder->stream, 0, 1, "XXX_tier_flag[]"); WRITE_U(encoder->stream, 0, 5, "XXX_profile_idc[]"); WRITE_U(encoder->stream, 0, 32, "XXX_profile_compatibility_flag[][j]"); WRITE_U(encoder->stream, 1, 1, "general_progressive_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_interlaced_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_non_packed_constraint_flag"); WRITE_U(encoder->stream, 0, 1, "general_frame_only_constraint_flag"); WRITE_U(encoder->stream, 0, 32, "XXX_reserved_zero_44bits[0..31]"); WRITE_U(encoder->stream, 0, 12, "XXX_reserved_zero_44bits[32..43]"); /*end Profile Tier */ WRITE_U(encoder->stream, 0, 8, "general_level_idc"); WRITE_U(encoder->stream, 0, 1, "sub_layer_profile_present_flag"); WRITE_U(encoder->stream, 0, 1, "sub_layer_level_present_flag"); for(i = 1; i < 8; i++) { WRITE_U(encoder->stream, 0, 2, "reserved_zero_2bits"); } /*end PTL*/ } void encode_seq_parameter_set(encoder_control* encoder) { encoder_input* const in = &encoder->in; #ifdef _DEBUG printf("=========== Sequence Parameter Set ID: 0 ===========\n"); #endif /* TODO: profile IDC and level IDC should be defined later on */ WRITE_U(encoder->stream, 0, 4, "sps_video_parameter_set_id"); WRITE_U(encoder->stream, 1, 3, "sps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "sps_temporal_id_nesting_flag"); encode_PTL(encoder); WRITE_UE(encoder->stream, 0, "sps_seq_parameter_set_id"); WRITE_UE(encoder->stream, encoder->in.video_format, "chroma_format_idc"); /* 0 = 4:0:0, 1 = 4:2:0, 2 = 4:2:2, 3 = 4:4:4 */ if(encoder->in.video_format == 3) { WRITE_U(encoder->stream, 0, 1, "separate_colour_plane_flag"); } WRITE_UE(encoder->stream, encoder->in.width, "pic_width_in_luma_samples"); WRITE_UE(encoder->stream, encoder->in.height, "pic_height_in_luma_samples"); if (in->width != in->real_width || in->height != in->real_height) { // The standard does not seem to allow setting conf_win values such that the number of // luma samples is not a multiple of 2. Options are to either hide one line or show an // extra line of non-video. Neither seems like a very good option, so let's not even try. assert(!(in->width % 2)); WRITE_U(encoder->stream, 1, 1, "conformance_window_flag"); WRITE_UE(encoder->stream, 0, "conf_win_left_offset"); WRITE_UE(encoder->stream, (in->width - in->real_width) >> 1, "conf_win_right_offset"); WRITE_UE(encoder->stream, 0, "conf_win_top_offset"); WRITE_UE(encoder->stream, (in->height - in->real_height) >> 1, "conf_win_bottom_offset"); } else { WRITE_U(encoder->stream, 0, 1, "conformance_window_flag"); } //IF window flag //END IF WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_luma_minus8"); WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_chroma_minus8"); WRITE_UE(encoder->stream, 0, "log2_max_pic_order_cnt_lsb_minus4"); WRITE_U(encoder->stream, 0, 1, "sps_sub_layer_ordering_info_present_flag"); //for each layer WRITE_UE(encoder->stream, 0, "sps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "sps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "sps_max_latency_increase"); //end for WRITE_UE(encoder->stream, MIN_SIZE-3, "log2_min_coding_block_size_minus3"); WRITE_UE(encoder->stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size"); WRITE_UE(encoder->stream, 0, "log2_min_transform_block_size_minus2"); /* 4x4 */ WRITE_UE(encoder->stream, 3, "log2_diff_max_min_transform_block_size"); /* 4x4...32x32 */ WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_inter"); WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_intra"); /* Use default scaling list */ WRITE_U(encoder->stream, ENABLE_SCALING_LIST, 1, "scaling_list_enable_flag"); #if ENABLE_SCALING_LIST == 1 WRITE_U(encoder->stream, 0, 1, "sps_scaling_list_data_present_flag"); #endif WRITE_U(encoder->stream, 0, 1, "amp_enabled_flag"); WRITE_U(encoder->stream, encoder->sao_enable?1:0, 1, "sample_adaptive_offset_enabled_flag"); WRITE_U(encoder->stream, ENABLE_PCM, 1, "pcm_enabled_flag"); #if ENABLE_PCM == 1 WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_luma_minus1"); WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1"); WRITE_UE(encoder->stream, 0, "log2_min_pcm_coding_block_size_minus3"); WRITE_UE(encoder->stream, 2, "log2_diff_max_min_pcm_coding_block_size"); WRITE_U(encoder->stream, 1, 1, "pcm_loop_filter_disable_flag"); #endif WRITE_UE(encoder->stream, 0, "num_short_term_ref_pic_sets"); //IF num short term ref pic sets //ENDIF WRITE_U(encoder->stream, 0, 1, "long_term_ref_pics_present_flag"); //IF long_term_ref_pics_present //ENDIF WRITE_U(encoder->stream, ENABLE_TEMPORAL_MVP, 1, "sps_temporal_mvp_enable_flag"); WRITE_U(encoder->stream, 0, 1, "sps_strong_intra_smoothing_enable_flag"); WRITE_U(encoder->stream, 0, 1, "vui_parameters_present_flag"); //TODO: VUI? //encode_VUI(encoder); WRITE_U(encoder->stream, 0, 1, "sps_extension_flag"); } void encode_vid_parameter_set(encoder_control* encoder) { int i; #ifdef _DEBUG printf("=========== Video Parameter Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 4, "vps_video_parameter_set_id"); WRITE_U(encoder->stream, 3, 2, "vps_reserved_three_2bits" ); WRITE_U(encoder->stream, 0, 6, "vps_reserved_zero_6bits" ); WRITE_U(encoder->stream, 1, 3, "vps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_temporal_id_nesting_flag"); WRITE_U(encoder->stream, 0xffff, 16, "vps_reserved_ffff_16bits"); encode_PTL(encoder); WRITE_U(encoder->stream, 0, 1, "vps_sub_layer_ordering_info_present_flag"); //for each layer for(i = 0; i < 1; i++) { WRITE_UE(encoder->stream, 1, "vps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "vps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "vps_max_latency_increase"); } //end for WRITE_U(encoder->stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id"); WRITE_UE(encoder->stream, 0, "vps_max_op_sets_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_timing_info_present_flag"); //IF timing info //END IF WRITE_U(encoder->stream, 0, 1, "vps_extension_flag"); } void encode_VUI(encoder_control* encoder) { #ifdef _DEBUG printf("=========== VUI Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 1, "aspect_ratio_info_present_flag"); //IF aspect ratio info //ENDIF WRITE_U(encoder->stream, 0, 1, "overscan_info_present_flag"); //IF overscan info //ENDIF WRITE_U(encoder->stream, 0, 1, "video_signal_type_present_flag"); //IF video type //ENDIF WRITE_U(encoder->stream, 0, 1, "chroma_loc_info_present_flag"); //IF chroma loc info //ENDIF WRITE_U(encoder->stream, 0, 1, "neutral_chroma_indication_flag"); WRITE_U(encoder->stream, 0, 1, "field_seq_flag"); WRITE_U(encoder->stream, 0, 1, "frame_field_info_present_flag"); WRITE_U(encoder->stream, 0, 1, "default_display_window_flag"); //IF default display window //ENDIF WRITE_U(encoder->stream, 0, 1, "vui_timing_info_present_flag"); //IF timing info //ENDIF WRITE_U(encoder->stream, 0, 1, "bitstream_restriction_flag"); //IF bitstream restriction //ENDIF } void encode_slice_header(encoder_control* encoder) { #ifdef _DEBUG printf("=========== Slice ===========\n"); #endif WRITE_U(encoder->stream, 1, 1, "first_slice_segment_in_pic_flag"); if(encoder->in.cur_pic->type >= NAL_BLA_W_LP && encoder->in.cur_pic->type <= NAL_RSV_IRAP_VCL23) { WRITE_U(encoder->stream, 1, 1, "no_output_of_prior_pics_flag"); } WRITE_UE(encoder->stream, 0, "slice_pic_parameter_set_id"); //WRITE_U(encoder->stream, 0, 1, "dependent_slice_segment_flag"); WRITE_UE(encoder->stream, encoder->in.cur_pic->slicetype, "slice_type"); // if !entropy_slice_flag //if output_flag_present_flag //WRITE_U(encoder->stream, 1, 1, "pic_output_flag"); //end if //if( IdrPicFlag ) <- nal_unit_type == 5 if(encoder->in.cur_pic->type != NAL_IDR_W_RADL && encoder->in.cur_pic->type != NAL_IDR_N_LP) { int j; int ref_negative = 1; int ref_positive = 0; WRITE_U(encoder->stream, encoder->frame&0xf, 4, "pic_order_cnt_lsb"); WRITE_U(encoder->stream, 0, 1, "short_term_ref_pic_set_sps_flag"); WRITE_UE(encoder->stream, ref_negative, "num_negative_pics"); WRITE_UE(encoder->stream, ref_positive, "num_positive_pics"); for(j=0; j stream, 0, "delta_poc_s0_minus1"); WRITE_U(encoder->stream,1,1, "used_by_curr_pic_s0_flag"); } //WRITE_UE(encoder->stream, 0, "short_term_ref_pic_set_idx"); } //end if //end if if(encoder->sao_enable) { WRITE_U(encoder->stream, 1,1, "slice_sao_luma_flag"); WRITE_U(encoder->stream, 0,1, "slice_sao_chroma_flag"); } if(encoder->in.cur_pic->slicetype != SLICE_I) { WRITE_U(encoder->stream, 0, 1, "num_ref_idx_active_override_flag"); WRITE_UE(encoder->stream, 0, "five_minus_max_num_merge_cand"); } if(encoder->in.cur_pic->slicetype == SLICE_B) { WRITE_U(encoder->stream, 0, 1, "mvd_l1_zero_flag"); } /* Skip flags that are not present */ // if !entropy_slice_flag WRITE_SE(encoder->stream, 0, "slice_qp_delta"); //WRITE_U(encoder->stream, 1, 1, "alignment"); } void encode_slice_data(encoder_control* encoder) { uint16_t xCtb,yCtb; scalinglist_process(); init_contexts(encoder,encoder->in.cur_pic->slicetype); /* Loop through every LCU in the slice */ for(yCtb = 0; yCtb < encoder->in.height_in_lcu; yCtb++) { uint8_t lastCUy = (yCtb == (encoder->in.height_in_lcu-1))?1:0; for(xCtb = 0; xCtb < encoder->in.width_in_lcu; xCtb++) { uint8_t lastCUx = (xCtb == (encoder->in.width_in_lcu-1))?1:0; uint8_t depth = 0; /* Recursive function for looping through all the sub-blocks */ encode_coding_tree(encoder, xCtb<in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_lcu<split; uint8_t split_model = 0; /* Check for slice border */ uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_split_x = ((encoder->in.width) < ( (xCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border_split_y = ((encoder->in.height) < ( (yCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ /* When not in MAX_DEPTH, insert split flag and split the blocks if needed */ if(depth != MAX_DEPTH) { /* Implisit split flag when on border */ if(!border) { /* Get left and top block split_flags and if they are present and true, increase model number */ if(xCtb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->CU[depth][xCtb-1+yCtb*(encoder->in.width_in_lcu< 0 && GET_SPLITDATA(&(encoder->in.cur_pic->CU[depth][xCtb+(yCtb-1)*(encoder->in.width_in_lcu<in.cur_pic->slicetype != SLICE_I) { int8_t uiCtxSkip = 0; /* uiCtxSkip = aboveskipped + leftskipped; */ cabac.ctx = &g_cu_skip_flag_model[uiCtxSkip]; CABAC_BIN(&cabac, (cur_CU->type == CU_SKIP)?1:0, "SkipFlag"); } /* IF SKIP */ if(cur_CU->type == CU_SKIP) { /* Encode merge index */ //TODO: calculate/fetch merge candidates int16_t unaryIdx = 0;//pcCU->getMergeIndex( uiAbsPartIdx ); int16_t numCand = 0;//pcCU->getSlice()->getMaxNumMergeCand(); int32_t ui; if ( numCand > 1 ) { for(ui = 0; ui < numCand - 1; ui++ ) { int32_t symbol = (ui == unaryIdx) ? 0 : 1; if ( ui==0 ) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if( symbol == 0 ) { break; } } } return; } /* ENDIF SKIP */ /* Prediction mode */ if(encoder->in.cur_pic->slicetype != SLICE_I) { cabac.ctx = &g_cu_pred_mode_model; CABAC_BIN(&cabac, (cur_CU->type == CU_INTRA)?1:0, "PredMode"); } /* Signal PartSize on max depth */ if(depth == MAX_DEPTH || cur_CU->type != CU_INTRA) { /* TODO: Handle inter sizes other than 2Nx2N */ cabac.ctx = &g_part_size_model[0]; CABAC_BIN(&cabac, 1, "PartSize"); /* TODO: add AMP modes */ } /*end partsize*/ if(cur_CU->type == CU_INTER) { /* FOR each part */ /* Mergeflag */ uint8_t mergeFlag = 0; cabac.ctx = &g_cu_merge_flag_ext_model; CABAC_BIN(&cabac, mergeFlag, "MergeFlag"); if(mergeFlag) //merge { /* MergeIndex */ int16_t unaryIdx = 0;//pcCU->getMergeIndex( uiAbsPartIdx ); int16_t numCand = 0;//pcCU->getSlice()->getMaxNumMergeCand(); int32_t ui; if (numCand > 1) { for(ui = 0; ui < numCand - 1; ui++ ) { int32_t symbol = (ui == unaryIdx) ? 0 : 1; if (ui == 0) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if(symbol == 0) { break; } } } } else { uint32_t uiRefListIdx; int16_t mv_cand[2][2]; /* // Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx ) if(encoder->in.cur_pic->slicetype == SLICE_B) { // Code Inter Dir const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1; const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx ); ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 ); if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 ) { m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) ); } if (uiInterDir < 2) { m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) ); } } */ for(uiRefListIdx = 0; uiRefListIdx < 2; uiRefListIdx++) { //if(encoder->ref_idx_num[uiRefListIdx] > 0) { if(cur_CU->inter.mv_dir & (1 << uiRefListIdx)) { if(0)//encoder->ref_idx_num[uiRefListIdx] != 1)//NumRefIdx != 1) { /* parseRefFrmIdx */ int32_t iRefFrame = cur_CU->inter.mv_ref; cabac.ctx = &g_cu_ref_pic_model[0]; CABAC_BIN(&cabac, (iRefFrame==0)?0:1, "ref_frame_flag"); if(iRefFrame > 0) { uint32_t ui; uint32_t uiRefNum = encoder->ref_idx_num[uiRefListIdx]-2; cabac.ctx = &g_cu_ref_pic_model[1]; iRefFrame--; for(ui = 0; ui < uiRefNum; ++ui) { const uint32_t uiSymbol = (ui==iRefFrame)?0:1; if(ui == 0) { CABAC_BIN(&cabac, uiSymbol, "ref_frame_flag2"); } else { CABAC_BIN_EP(&cabac,uiSymbol,"ref_frame_flag2"); } if(uiSymbol == 0) { break; } } } } /* Get MV candidates */ inter_get_mv_cand(encoder, xCtb, yCtb, depth, mv_cand); /* Select better candidate */ cur_CU->inter.mv_ref = 0; /* Default to candidate 0 */ /* Only check when candidates are different */ if (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1]) { uint16_t cand_1_diff = abs(cur_CU->inter.mv[0]-mv_cand[0][0]) + abs(cur_CU->inter.mv[1]-mv_cand[0][1]); uint16_t cand_2_diff = abs(cur_CU->inter.mv[0]-mv_cand[1][0]) + abs(cur_CU->inter.mv[1]-mv_cand[1][1]); /* Select candidate 1 if it's closer */ if (cand_2_diff < cand_1_diff) { cur_CU->inter.mv_ref = 1; } } if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ encoder->ref_list == REF_PIC_LIST_1 && cur_CU->inter.mv_dir==3)) { const int32_t mvd_hor = cur_CU->inter.mv[0]-mv_cand[cur_CU->inter.mv_ref][0]; const int32_t mvd_ver = cur_CU->inter.mv[1]-mv_cand[cur_CU->inter.mv_ref][1]; const int8_t bHorAbsGr0 = mvd_hor != 0; const int8_t bVerAbsGr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac.ctx = &g_cu_mvd_model[0]; CABAC_BIN(&cabac, (mvd_hor!=0)?1:0, "abs_mvd_greater0_flag_hor"); CABAC_BIN(&cabac, (mvd_ver!=0)?1:0, "abs_mvd_greater0_flag_ver"); cabac.ctx = &g_cu_mvd_model[1]; if(bHorAbsGr0) { CABAC_BIN(&cabac, (mvd_hor_abs>1)?1:0, "abs_mvd_greater1_flag_hor"); } if(bVerAbsGr0) { CABAC_BIN(&cabac, (mvd_ver_abs>1)?1:0, "abs_mvd_greater1_flag_ver"); } if(bHorAbsGr0) { if(mvd_hor_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_hor_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor"); } if(bVerAbsGr0) { if(mvd_ver_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_ver_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver"); } /* Inter reconstruction */ inter_recon(encoder->ref->pics[0],xCtb*CU_MIN_SIZE_PIXELS,yCtb*CU_MIN_SIZE_PIXELS,LCU_WIDTH>>depth,cur_CU->inter.mv,encoder->in.cur_pic); /* Mark this block as "coded" (can be used for predictions..) */ picture_set_block_coded(encoder->in.cur_pic,xCtb, yCtb, depth, 1); } /* Signal which candidate MV to use */ cabac_write_unary_max_symbol(&cabac,g_mvp_idx_model, cur_CU->inter.mv_ref,1,AMVP_MAX_NUM_CANDS-1); } } } cabac.ctx = &g_cu_qt_root_cbf_model; CABAC_BIN(&cabac, 0, "rqt_root_cbf"); if(0) { transform_info ti; memset(&ti, 0, sizeof(transform_info)); ti.x_ctb = xCtb; ti.y_ctb = yCtb; /* Coded block pattern */ ti.cb_top[0] = 0; ti.cb_top[1] = 0; ti.cb_top[2] = 0; ti.split[0] = 0; /* Code (possible) coeffs to bitstream */ ti.idx = 0; encode_transform_coeff(encoder, &ti,depth, 0); } } /* END for each part */ } else if(cur_CU->type == CU_INTRA) { uint8_t intraPredMode = cur_CU->intra.mode; uint8_t intraPredModeChroma = 36; /* 36 = Chroma derived from luma */ int8_t intraPreds[3] = {-1, -1, -1}; int8_t mpmPred = -1; int i; uint32_t flag; uint8_t *base = &encoder->in.cur_pic->y_data[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; uint8_t *baseU = &encoder->in.cur_pic->u_data[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; uint8_t *baseV = &encoder->in.cur_pic->v_data[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; uint32_t width = LCU_WIDTH>>depth; /* INTRAPREDICTION VARIABLES */ int16_t pred[LCU_WIDTH*LCU_WIDTH+1]; int16_t predU[LCU_WIDTH*LCU_WIDTH>>2]; int16_t predV[LCU_WIDTH*LCU_WIDTH>>2]; uint8_t *recbase = &encoder->in.cur_pic->y_recdata[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; uint8_t *recbaseU = &encoder->in.cur_pic->u_recdata[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; uint8_t *recbaseV = &encoder->in.cur_pic->v_recdata[xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; /* SEARCH BEST INTRA MODE (AGAIN) */ int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1]; intra_build_reference_border(encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0); cur_CU->intra.mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost); intraPredMode = cur_CU->intra.mode; intra_set_block_mode(encoder->in.cur_pic,xCtb, yCtb, depth, intraPredMode); #if ENABLE_PCM == 1 /* Code must start after variable initialization */ cabac_encode_bin_trm(&cabac, 0); /* IPCMFlag == 0 */ #endif /* PREDINFO CODING If intra prediction mode is found from the predictors, it can be signaled with two EP's. Otherwise we can send 5 EP bins with the full predmode TODO: split to a function */ intra_get_dir_luma_predictor(encoder->in.cur_pic, xCtb, yCtb, depth, intraPreds); for(i = 0; i < 3; i++) { if(intraPreds[i] == intraPredMode) { mpmPred = i; break; } } /* For each part { */ flag = (mpmPred==-1)?0:1; cabac.ctx = &g_intra_mode_model; CABAC_BIN(&cabac,flag,"IntraPred"); /*} End for each part */ /* Intrapredmode signaling If found from predictors, we can simplify signaling */ if(flag) { flag = (mpmPred==0)?0:1; CABAC_BIN_EP(&cabac, flag, "intraPredMode"); if(mpmPred!=0) { flag = (mpmPred==1)?0:1; CABAC_BIN_EP(&cabac, flag, "intraPredMode"); } } else /* Else we signal the "full" predmode */ { int32_t intraPredModeTemp = intraPredMode; if (intraPreds[0] > intraPreds[1]) { SWAP(intraPreds[0], intraPreds[1], int8_t); } if (intraPreds[0] > intraPreds[2]) { SWAP(intraPreds[0], intraPreds[2], int8_t); } if (intraPreds[1] > intraPreds[2]) { SWAP(intraPreds[1], intraPreds[2], int8_t); } for(i = 2; i >= 0; i--) { intraPredModeTemp = intraPredModeTemp > intraPreds[i] ? intraPredModeTemp - 1 : intraPredModeTemp; } CABAC_BINS_EP(&cabac, intraPredModeTemp, 5, "intraPredMode"); } /* If we have chroma, signal it */ if(encoder->in.video_format != FORMAT_400) { /* Chroma intra prediction */ cabac.ctx = &g_chroma_pred_model[0]; CABAC_BIN(&cabac,((intraPredModeChroma!=36)?1:0),"IntraPredChroma"); /* If not copied from luma, signal it */ if(intraPredModeChroma!=36) { int8_t intraPredModeChromaTemp = intraPredModeChroma; /* Default chroma predictors */ uint32_t allowedChromaDir[ 5 ] = { 0, 26, 10, 1, 36 }; /* If intra is the same as one of the default predictors, replace it */ for(i = 0; i < 4; i++ ) { if( intraPredMode == allowedChromaDir[i] ) { allowedChromaDir[i] = 34; /* VER+8 mode */ break; } } for(i = 0; i < 4; i++ ) { if( intraPredModeChromaTemp == allowedChromaDir[i] ) { intraPredModeChromaTemp = i; break; } } CABAC_BINS_EP(&cabac, intraPredModeChromaTemp, 2, "intraPredModeChroma"); } } /* END OF PREDINFO CODING */ /* Coeff */ /* Transform tree */ { /* TODO: dynamic memory allocation */ int16_t coeff[LCU_WIDTH*LCU_WIDTH*2]; int16_t coeffU[LCU_WIDTH*LCU_WIDTH>>1]; int16_t coeffV[LCU_WIDTH*LCU_WIDTH>>1]; /* Initialize helper structure for transform */ transform_info ti; memset(&ti, 0, sizeof(transform_info)); ti.x_ctb = xCtb; ti.y_ctb = yCtb; /* Base pointers */ ti.base = base; ti.base_u = baseU; ti.base_v = baseV; ti.base_stride = encoder->in.width; /* Prediction pointers */ ti.pred = pred; ti.pred_u = predU; ti.pred_v = predV; ti.pred_stride = (LCU_WIDTH>>depth); /* Reconstruction pointers */ ti.recbase = recbase; ti.recbase_u = recbaseU; ti.recbase_v = recbaseV; ti.recbase_stride = encoder->in.width; /* Coeff pointers */ ti.coeff[0] = coeff; ti.coeff[1] = coeffU; ti.coeff[2] = coeffV; /* Prediction info */ ti.intra_pred_mode = intraPredMode; ti.intra_pred_mode_chroma = intraPredModeChroma; /* Handle transforms, quant and reconstruction */ ti.idx = 0; encode_transform_tree(encoder,&ti, depth); /* Coded block pattern */ ti.cb_top[0] = (ti.cb[0] & 0x1 || ti.cb[1] & 0x1 || ti.cb[2] & 0x1 || ti.cb[3] & 0x1)?1:0; ti.cb_top[1] = (ti.cb[0] & 0x2 || ti.cb[1] & 0x2 || ti.cb[2] & 0x2 || ti.cb[3] & 0x2)?1:0; ti.cb_top[2] = (ti.cb[0] & 0x4 || ti.cb[1] & 0x4 || ti.cb[2] & 0x4 || ti.cb[3] & 0x4)?1:0; /* Code (possible) coeffs to bitstream */ ti.idx = 0; encode_transform_coeff(encoder, &ti,depth, 0); } /* end Transform tree */ /* end Coeff */ } #if ENABLE_PCM == 1 /* Code IPCM block */ else if(cur_CU->type == CU_PCM) { cabac_encode_bin_trm(&cabac, 1); /* IPCMFlag == 1 */ cabac_finish(&cabac); bitstream_align(cabac.stream); /* PCM sample */ { uint8_t *base = &encoder->in.cur_pic->y_data[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH)))*encoder->in.width]; uint8_t *baseCb = &encoder->in.cur_pic->u_data[(xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*encoder->in.width/2)]; uint8_t *baseCr = &encoder->in.cur_pic->v_data[(xCtb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH+1)))*encoder->in.width/2)]; for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { bitstream_put(cabac.stream, base[x+y*encoder->in.width], 8); } } if(encoder->in.video_format != FORMAT_400) { /* Cb */ for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { bitstream_put(cabac.stream, baseCb[x+y*(encoder->in.width>>1)], 8); } } /* Cr */ for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { bitstream_put(cabac.stream, baseCr[x+y*(encoder->in.width>>1)], 8); } } } } /* end PCM sample */ cabac_start(&cabac); } /* end Code IPCM block */ #endif /* END ENABLE_PCM */ else /* Should not happend */ { printf("UNHANDLED TYPE!\r\n"); exit(1); } /* end prediction unit */ /* end coding_unit */ } void encode_transform_tree(encoder_control* encoder,transform_info* ti,uint8_t depth) { /* we have 64>>depth transform size */ int x,y,i; int32_t width = LCU_WIDTH>>depth; if(depth == 0) /* Split 64x64 */ { /* Prepare for multi-level splitting */ ti->split[ti->idx] = 1<split[ti->idx] & (1<idx = 0; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb += change; ti->idx = 1; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb -= change; ti->y_ctb += change; ti->idx = 2; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb += change; ti->idx = 3; encode_transform_tree(encoder,ti,depth+1); return; } { uint8_t CbY = 0,CbU = 0,CbV = 0; int32_t coeff_fourth = ((LCU_WIDTH>>(depth))*(LCU_WIDTH>>(depth)))+1; int32_t base_stride = ti->base_stride; int32_t recbase_stride = ti->recbase_stride; int32_t pred_stride = ti->pred_stride; int32_t recbase_offset[4] = {0, width , ti->recbase_stride*(width) , ti->recbase_stride*(width) +width }; int32_t base_offset[4] = {0, width , ti->base_stride*(width) , ti->base_stride*(width) +width }; int32_t pred_offset[4] = {0, width , ti->pred_stride*(width) , ti->pred_stride*(width) +width }; int32_t recbase_offset_c[4] = {0, width>>1, (ti->recbase_stride>>1)*(width>>1), (ti->recbase_stride>>1)*(width>>1)+(width>>1)}; int32_t base_offset_c[4] = {0, width>>1, (ti->base_stride>>1)*(width>>1) , (ti->base_stride>>1)*(width>>1) +(width>>1)}; int32_t pred_offset_c[4] = {0, width>>1, (ti->pred_stride>>1)*(width>>1) , (ti->pred_stride>>1)*(width>>1) +(width>>1)}; uint8_t* base = &ti->base[base_offset[ti->idx]]; uint8_t* baseU = &ti->base_u[base_offset_c[ti->idx]]; uint8_t* baseV = &ti->base_v[base_offset_c[ti->idx]]; uint8_t* recbase = &ti->recbase[recbase_offset[ti->idx]]; uint8_t* recbaseU = &ti->recbase_u[recbase_offset_c[ti->idx]]; uint8_t* recbaseV = &ti->recbase_v[recbase_offset_c[ti->idx]]; int16_t* pred = &ti->pred[pred_offset[ti->idx]]; int16_t* predU = &ti->pred_u[pred_offset_c[ti->idx]]; int16_t* predV = &ti->pred_v[pred_offset_c[ti->idx]]; int16_t* coeff = &ti->coeff[0][ti->idx*coeff_fourth]; int16_t* coeffU = &ti->coeff[1][ti->idx*coeff_fourth>>1]; int16_t* coeffV = &ti->coeff[2][ti->idx*coeff_fourth>>1]; /* Quant and transform here... */ int16_t block[LCU_WIDTH*LCU_WIDTH>>2]; int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2]; /* INTRA PREDICTION */ /* TODO: split to a function! */ int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1]; int16_t *recShiftU = &rec[(LCU_WIDTH>>(depth+1))*2+8+1]; uint32_t ac_sum = 0; /* Build reconstructed block to use in prediction with extrapolated borders */ intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0); intra_recon(recShift,(LCU_WIDTH>>(depth))*2+8,ti->x_ctb*(LCU_WIDTH>>(MAX_DEPTH)),ti->y_ctb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,pred_stride,ti->intra_pred_mode,0); /* Filter DC-prediction */ if(ti->intra_pred_mode == 1 && width < 32) { intra_dc_pred_filtering(recShift,(LCU_WIDTH>>(depth))*2+8,pred,width,LCU_WIDTH>>depth,LCU_WIDTH>>depth); } if(ti->intra_pred_mode_chroma != 36 && ti->intra_pred_mode_chroma == ti->intra_pred_mode) { ti->intra_pred_mode_chroma = 36; } intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,(LCU_WIDTH>>(depth+1))*2+8, rec, (LCU_WIDTH>>(depth+1))*2+8, 1); intra_recon(recShiftU,(LCU_WIDTH>>(depth+1))*2+8,ti->x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)),ti->y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)),width>>1,predU,pred_stride>>1,ti->intra_pred_mode_chroma!=36?ti->intra_pred_mode_chroma:ti->intra_pred_mode,1); intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,(LCU_WIDTH>>(depth+1))*2+8, rec, (LCU_WIDTH>>(depth+1))*2+8, 2); intra_recon(recShiftU,(LCU_WIDTH>>(depth+1))*2+8,ti->x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)),ti->y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)),width>>1,predV,pred_stride>>1,ti->intra_pred_mode_chroma!=36?ti->intra_pred_mode_chroma:ti->intra_pred_mode,1); /* This affects reconstruction, do after that */ picture_set_block_coded(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, depth, 1); /* INTRA PREDICTION ENDS HERE */ /* Get residual by subtracting prediction */ i = 0; ac_sum = 0; for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { block[i]=((int16_t)base[x+y*base_stride])-pred[x+y*pred_stride]; i++; } } /* Transform and quant residual to coeffs */ transform2d(block,pre_quant_coeff,width,0); quant(encoder,pre_quant_coeff,coeff,width, width,&ac_sum, 0, SCAN_DIAG); /* Check for non-zero coeffs */ for(i = 0; i < width*width; i++) { if(coeff[i] != 0) { /* Found one, we can break here */ CbY = 1; break; } } /* if non-zero coeffs */ if(CbY) { /* RECONSTRUCT for predictions */ dequant(encoder,coeff,pre_quant_coeff,width, width,0); itransform2d(block,pre_quant_coeff,width,0); i = 0; for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { int16_t val = block[i++]+pred[x+y*pred_stride]; //TODO: support 10+bits recbase[x+y*recbase_stride] = (uint8_t)/*(val&0xff);//*/CLIP(0,255,val); } } /* END RECONTRUCTION */ } /* without coeffs, we only use the prediction */ else { for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { recbase[x+y*recbase_stride] = (uint8_t)CLIP(0,255,pred[x+y*pred_stride]); } } } if(encoder->in.video_format != FORMAT_400) { /* U */ i = 0; ac_sum = 0; for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { block[i]=((int16_t)baseU[x+y*(base_stride>>1)])-predU[x+y*(pred_stride>>1)]; i++; } } transform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); quant(encoder,pre_quant_coeff,coeffU, width>>1, width>>1, &ac_sum,2,SCAN_DIAG); for(i = 0; i < width*width>>2; i++) { if(coeffU[i] != 0) { /* Found one, we can break here */ CbU = 1; break; } } /* V */ i = 0; ac_sum = 0; for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { block[i]=((int16_t)baseV[x+y*(base_stride>>1)])-predV[x+y*(pred_stride>>1)]; i++; } } transform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); quant(encoder,pre_quant_coeff,coeffV, width>>1, width>>1, &ac_sum,3,SCAN_DIAG); for(i = 0; i < width*width>>2; i++) { if(coeffV[i] != 0) { /* Found one, we can break here */ CbV = 1; break; } } if(CbU) { /* RECONSTRUCT for predictions */ dequant(encoder,coeffU,pre_quant_coeff,width>>1, width>>1,2); itransform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); i = 0; for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { int16_t val = block[i++]+predU[x+y*(pred_stride>>1)]; //TODO: support 10+bits recbaseU[x+y*(recbase_stride>>1)] = (uint8_t)CLIP(0,255,val); } } /* END RECONTRUCTION */ } /* without coeffs, we only use the prediction */ else { for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { recbaseU[x+y*(recbase_stride>>1)] = (uint8_t)CLIP(0,255,predU[x+y*(pred_stride>>1)]); } } } if(CbV) { /* RECONSTRUCT for predictions */ dequant(encoder,coeffV,pre_quant_coeff,width>>1, width>>1,3); itransform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); i = 0; for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { int16_t val = block[i++]+predV[x+y*(pred_stride>>1)]; //TODO: support 10+bits recbaseV[x+y*(recbase_stride>>1)] = (uint8_t)CLIP(0,255,val); } } /* END RECONTRUCTION */ } /* without coeffs, we only use the prediction */ else { for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { recbaseV[x+y*(recbase_stride>>1)] = (uint8_t)CLIP(0,255,predV[x+y*(pred_stride>>1)]); } } } } /* Store coded block pattern */ ti->cb[ti->idx] = CbY | (CbU<<1) | (CbV<<2); /* END INTRAPREDICTION */ return; } /* end Residual Coding */ } void encode_transform_coeff(encoder_control* encoder,transform_info* ti,int8_t depth, int8_t trDepth) { int8_t width = LCU_WIDTH>>depth; int8_t split = (ti->split[ti->idx]&(1<>(depth))*(LCU_WIDTH>>(depth)))+1; if(depth != 0 && depth != MAX_DEPTH+1) { cabac.ctx = &g_trans_subdiv_model[5-((g_convert_to_bit[LCU_WIDTH]+2)-depth)]; CABAC_BIN(&cabac,split,"TransformSubdivFlag"); } /* Signal if chroma data is present */ /* Chroma data is also signaled BEFORE transform split */ /* Chroma data is not signaled if it was set to 0 before split */ if(encoder->in.video_format != FORMAT_400) { /* Non-zero chroma U Tcoeffs */ int8_t Cb_flag = (trDepth==0)?ti->cb_top[1]:((ti->cb[ti->idx]&0x2)?1:0); cabac.ctx = &g_qt_cbf_model_chroma[trDepth]; if(trDepth == 0 || ti->cb_top[1]) { CABAC_BIN(&cabac,Cb_flag,"cbf_chroma_u"); } /* Non-zero chroma V Tcoeffs */ /* NOTE: Using the same ctx as before */ Cb_flag = (trDepth==0)?ti->cb_top[2]:((ti->cb[ti->idx]&0x4)?1:0); if(trDepth == 0 || ti->cb_top[2]) { CABAC_BIN(&cabac,Cb_flag,"cbf_chroma_v"); } } if(split) { ti->idx = 0; encode_transform_coeff(encoder,ti,depth+1,trDepth+1); ti->idx = 1; encode_transform_coeff(encoder,ti,depth+1,trDepth+1); ti->idx = 2; encode_transform_coeff(encoder,ti,depth+1,trDepth+1); ti->idx = 3; encode_transform_coeff(encoder,ti,depth+1,trDepth+1); return; } CbY = ti->cb[ti->idx]&0x1; CbU = (ti->cb[ti->idx]&0x2)?1:0; CbV = (ti->cb[ti->idx]&0x4)?1:0; /* Non-zero luma Tcoeffs */ cabac.ctx = &g_qt_cbf_model_luma[trDepth?0:1]; CABAC_BIN(&cabac,CbY,"cbf_luma"); { uint32_t uiCTXIdx; uint32_t uiScanIdx = SCAN_DIAG; uint32_t uiDirMode; switch(width) { case 2: uiCTXIdx = 6; break; case 4: uiCTXIdx = 5; break; case 8: uiCTXIdx = 4; break; case 16: uiCTXIdx = 3; break; case 32: uiCTXIdx = 2; break; case 64: uiCTXIdx = 1; break; default: uiCTXIdx = 0; break; } uiCTXIdx -= trDepth; /* CoeffNxN */ /* Residual Coding */ if(CbY) { /* Luma (Intra) scanmode */ uiDirMode = ti->intra_pred_mode; if (uiCTXIdx >3 && uiCTXIdx < 6) //if multiple scans supported for transform size { uiScanIdx = abs((int32_t) uiDirMode - 26) < 5 ? 1 : (abs((int32_t)uiDirMode - 10) < 5 ? 2 : 0); } encode_CoeffNxN(encoder,&ti->coeff[0][ti->idx*coeff_fourth], width, 0, uiScanIdx); } if(CbU||CbV) { int8_t chromaWidth = width>>1; /* Chroma scanmode */ uiCTXIdx++; uiDirMode = ti->intra_pred_mode_chroma; if(uiDirMode==36) { /* TODO: support NxN */ uiDirMode = ti->intra_pred_mode; } uiScanIdx = SCAN_DIAG; if (uiCTXIdx >4 && uiCTXIdx < 7) //if multiple scans supported for transform size { uiScanIdx = abs((int32_t) uiDirMode - 26) < 5 ? 1 : (abs((int32_t)uiDirMode - 10) < 5 ? 2 : 0); } if(CbU) { encode_CoeffNxN(encoder,&ti->coeff[1][ti->idx*coeff_fourth>>1], chromaWidth, 2, uiScanIdx); } if(CbV) { encode_CoeffNxN(encoder,&ti->coeff[2][ti->idx*coeff_fourth>>1], chromaWidth, 2, uiScanIdx); } } } } void encode_CoeffNxN(encoder_control* encoder,int16_t* coeff, uint8_t width, uint8_t type, int8_t scanMode) { int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[64]; uint32_t num_nonzero = 0; int32_t scanPosLast = -1; int32_t posLast = 0; int32_t shift = 4>>1; int8_t beValid = ENABLE_SIGN_HIDING; int32_t iScanPosSig; int32_t iLastScanSet; uint32_t uiGoRiceParam = 0; uint32_t uiBlkPos, uiPosY, uiPosX, uiSig, uiCtxSig; /* CONSTANTS */ const uint32_t uiNumBlkSide = width >> shift; const uint32_t uiLog2BlockSize = g_convert_to_bit[ width ] + 2; const uint32_t* scan = g_sig_last_scan[ scanMode ][ uiLog2BlockSize - 1 ]; const uint32_t* scanCG = NULL; /* Init base contexts according to block type */ cabac_ctx* baseCoeffGroupCtx = &g_cu_sig_coeff_group_model[type]; cabac_ctx* baseCtx = (type==0) ? &g_cu_sig_model_luma[0] :&g_cu_sig_model_chroma[0]; memset(sig_coeffgroup_flag,0,sizeof(uint32_t)*64); /* Count non-zero coeffs */ for(i = 0; i < width*width; i++) { if(coeff[i] != 0) { num_nonzero++; } } scanCG = g_sig_last_scan[ scanMode ][ uiLog2BlockSize > 3 ? uiLog2BlockSize-3 : 0 ]; if( uiLog2BlockSize == 3 ) { scanCG = g_sig_last_scan_8x8[ scanMode ]; } else if( uiLog2BlockSize == 5 ) { scanCG = g_sig_last_scan_32x32; } scanPosLast = -1; /* Significance mapping */ while(num_nonzero > 0) { posLast = scan[ ++scanPosLast ]; #define POSY (posLast >> uiLog2BlockSize) #define POSX (posLast - ( POSY << uiLog2BlockSize )) if( coeff[ posLast ] != 0 ) { sig_coeffgroup_flag[(uiNumBlkSide * (POSY >> shift) + (POSX >> shift))] = 1; } num_nonzero -= ( coeff[ posLast ] != 0 )?1:0; #undef POSY #undef POSX } last_coeff_x = posLast & (width-1); last_coeff_y = posLast>> uiLog2BlockSize; /* Code last_coeff_x and last_coeff_y */ encode_lastSignificantXY(encoder,last_coeff_x, last_coeff_y, width, width, type, scanMode); iScanPosSig = scanPosLast; iLastScanSet = (scanPosLast >> 4); /* significant_coeff_flag */ for(i = iLastScanSet; i >= 0; i-- ) { int32_t iSubPos = i << 4 /*LOG2_SCAN_SET_SIZE*/; int32_t abs_coeff[16]; int32_t iCGBlkPos = scanCG[ i ]; int32_t iCGPosY = iCGBlkPos / uiNumBlkSide; int32_t iCGPosX = iCGBlkPos - (iCGPosY * uiNumBlkSide); uint32_t coeffSigns = 0; int32_t lastNZPosInCG = -1, firstNZPosInCG = 16; int32_t numNonZero = 0; uiGoRiceParam = 0; if( iScanPosSig == scanPosLast ) { abs_coeff[ 0 ] = abs( coeff[ posLast ] ); coeffSigns = ( coeff[ posLast ] < 0 ); numNonZero = 1; lastNZPosInCG = iScanPosSig; firstNZPosInCG = iScanPosSig; iScanPosSig--; } if( i == iLastScanSet || i == 0) { sig_coeffgroup_flag[ iCGBlkPos ] = 1; } else { uint32_t uiSigCoeffGroup = (sig_coeffgroup_flag[ iCGBlkPos ] != 0); uint32_t uiCtxSig = context_get_sig_coeff_group(sig_coeffgroup_flag, iCGPosX, iCGPosY,width); cabac.ctx = &baseCoeffGroupCtx[ uiCtxSig ]; CABAC_BIN(&cabac,uiSigCoeffGroup,"significant_coeff_group"); } if( sig_coeffgroup_flag[ iCGBlkPos ] ) { int32_t patternSigCtx = context_calc_pattern_sig_ctx( sig_coeffgroup_flag, iCGPosX, iCGPosY, width); for( ; iScanPosSig >= iSubPos; iScanPosSig-- ) { uiBlkPos = scan[ iScanPosSig ]; uiPosY = uiBlkPos >> uiLog2BlockSize; uiPosX = uiBlkPos - ( uiPosY << uiLog2BlockSize ); uiSig = (coeff[ uiBlkPos ] != 0)?1:0; if( iScanPosSig > iSubPos || i == 0 || numNonZero ) { uiCtxSig = context_get_sig_ctx_inc( patternSigCtx, scanMode, uiPosX, uiPosY, uiLog2BlockSize, width, type ); cabac.ctx = &baseCtx[ uiCtxSig ]; CABAC_BIN(&cabac,uiSig,"significant_coeff_flag"); } if( uiSig ) { abs_coeff[ numNonZero ] = abs( coeff[ uiBlkPos ] ); coeffSigns = 2 * coeffSigns + ( coeff[ uiBlkPos ] < 0 ); numNonZero++; if( lastNZPosInCG == -1 ) { lastNZPosInCG = iScanPosSig; } firstNZPosInCG = iScanPosSig; } } } else { iScanPosSig = iSubPos - 1; } if( numNonZero > 0 ) { int8_t signHidden = ( lastNZPosInCG - firstNZPosInCG >= 4 /*SBH_THRESHOLD*/ )?1:0; uint32_t uiCtxSet = (i > 0 && type==0) ? 2 : 0; cabac_ctx* baseCtxMod; int32_t numC1Flag,firstC2FlagIdx,idx,iFirstCoeff2; if( c1 == 0 ) { uiCtxSet++; } c1 = 1; baseCtxMod = ( type==0 ) ? &g_cu_one_model_luma[4 * uiCtxSet] : &g_cu_one_model_chroma[4 * uiCtxSet]; numC1Flag = MIN(numNonZero, C1FLAG_NUMBER); firstC2FlagIdx = -1; for(idx = 0; idx < numC1Flag; idx++ ) { uint32_t uiSymbol = (abs_coeff[ idx ] > 1)?1:0; cabac.ctx = &baseCtxMod[c1]; CABAC_BIN(&cabac,uiSymbol,"significant_coeff2_flag"); if( uiSymbol ) { c1 = 0; if (firstC2FlagIdx == -1) { firstC2FlagIdx = idx; } } else if( (c1 < 3) && (c1 > 0) ) { c1++; } } if (c1 == 0) { baseCtxMod = ( type==0 ) ? &g_cu_abs_model_luma[uiCtxSet] : &g_cu_abs_model_chroma[uiCtxSet]; if (firstC2FlagIdx != -1) { uint8_t symbol = (abs_coeff[ firstC2FlagIdx ] > 2)?1:0; cabac.ctx = &baseCtxMod[0]; CABAC_BIN(&cabac,symbol,"first_c2_flag"); } } if(beValid && signHidden) { CABAC_BINS_EP(&cabac,(coeffSigns >> 1),(numNonZero-1),""); } else { CABAC_BINS_EP(&cabac,coeffSigns,numNonZero,""); } if (c1 == 0 || numNonZero > C1FLAG_NUMBER) { iFirstCoeff2 = 1; for (idx = 0; idx < numNonZero; idx++ ) { int32_t baseLevel = (idx < C1FLAG_NUMBER)? (2 + iFirstCoeff2 ) : 1; if( abs_coeff[ idx ] >= baseLevel) { cabac_write_coeff_remain(&cabac, abs_coeff[ idx ] - baseLevel, uiGoRiceParam ); if(abs_coeff[idx] > 3*(1<= 2) { iFirstCoeff2 = 0; } } } } } } /*! \brief Encode (X,Y) position of the last significant coefficient \param lastpos_x X component of last coefficient \param lastpos_y Y component of last coefficient \param width Block width \param height Block height \param type plane type / luminance or chrominance \param scan scan type (diag, hor, ver) This method encodes the X and Y component within a block of the last significant coefficient. */ void encode_lastSignificantXY(encoder_control* encoder,uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x; uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x; int uiGroupIdxX; int uiGroupIdxY; int last_x,last_y,i; cabac_ctx* basectxX = (type?g_cu_ctx_last_x_chroma:g_cu_ctx_last_x_luma); cabac_ctx* basectxY = (type?g_cu_ctx_last_y_chroma:g_cu_ctx_last_y_luma); if( scan == SCAN_VER ) { SWAP( lastpos_x, lastpos_y,uint8_t ); } uiGroupIdxX = g_group_idx[lastpos_x]; uiGroupIdxY = g_group_idx[lastpos_y]; /* Last X binarization */ for(last_x = 0; last_x < uiGroupIdxX ; last_x++) { cabac.ctx = &basectxX[offset_x+(last_x>>shift_x)]; CABAC_BIN(&cabac,1,"LastSignificantX"); } if(uiGroupIdxX < g_group_idx[width-1]) { cabac.ctx = &basectxX[offset_x+(last_x>>shift_x)]; CABAC_BIN(&cabac,0,"LastSignificantX"); } /* Last Y binarization */ for(last_y = 0; last_y < uiGroupIdxY ; last_y++) { cabac.ctx = &basectxY[offset_y+(last_y>>shift_y)]; CABAC_BIN(&cabac,1,"LastSignificantY"); } if(uiGroupIdxY < g_group_idx[height-1]) { cabac.ctx = &basectxY[offset_y+(last_y>>shift_y)]; CABAC_BIN(&cabac,0,"LastSignificantY"); } /* Last X */ if(uiGroupIdxX > 3) { lastpos_x -= g_min_in_group[uiGroupIdxX]; for(i = ((uiGroupIdxX-2)>>1)-1; i>=0; i--) { CABAC_BIN_EP(&cabac,(lastpos_x>>i) & 1,"LastSignificantX"); } } /* Last Y */ if(uiGroupIdxY > 3) { lastpos_y -= g_min_in_group[uiGroupIdxY]; for(i = ((uiGroupIdxY-2)>>1)-1; i>=0; i--) { CABAC_BIN_EP(&cabac,(lastpos_y>>i) & 1,"LastSignificantY"); } } /* end LastSignificantXY */ }