/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file * */ #ifdef _WIN32 /* The following two defines must be located before the inclusion of any system header files. */ #define WINVER 0x0500 #define _WIN32_WINNT 0x0500 #include "global.h" // IWYU pragma: keep #include /* _O_BINARY */ #include /* _setmode() */ #endif #include #include #include #include #include #include // IWYU pragma: keep for CLOCKS_PER_SEC #include "checkpoint.h" #include "cli.h" #include "encoder.h" #include "kvazaar.h" #include "kvazaar_internal.h" #include "threads.h" #include "yuv_io.h" /** * \brief Open a file for reading. * * If the file is "-", stdin is used. * * \param filename name of the file to open or "-" * \return the opened file or NULL if opening fails */ static FILE* open_input_file(const char* filename) { if (!strcmp(filename, "-")) return stdin; return fopen(filename, "rb"); } /** * \brief Open a file for writing. * * If the file is "-", stdout is used. * * \param filename name of the file to open or "-" * \return the opened file or NULL if opening fails */ static FILE* open_output_file(const char* filename) { if (!strcmp(filename, "-")) return stdout; return fopen(filename, "wb"); } static unsigned get_padding(unsigned width_or_height){ if (width_or_height % CU_MIN_SIZE_PIXELS){ return CU_MIN_SIZE_PIXELS - (width_or_height % CU_MIN_SIZE_PIXELS); }else{ return 0; } } /** * \brief Value that is printed instead of PSNR when SSE is zero. */ static const double MAX_PSNR = 999.99; static const double MAX_SQUARED_ERROR = (double)PIXEL_MAX * (double)PIXEL_MAX; /** * \brief Calculates image PSNR value * * \param src source picture * \param rec reconstructed picture * \prama psnr returns the PSNR */ static void compute_psnr(const kvz_picture *const src, const kvz_picture *const rec, double psnr[3]) { assert(src->width == rec->width); assert(src->height == rec->height); int32_t pixels = src->width * src->height; int colors = rec->chroma_format == KVZ_CSP_400 ? 1 : 3; double sse[3] = { 0.0 }; for (int32_t c = 0; c < colors; ++c) { int32_t num_pixels = pixels; if (c != COLOR_Y) { num_pixels >>= 2; } for (int32_t i = 0; i < num_pixels; ++i) { const int32_t error = src->data[c][i] - rec->data[c][i]; sse[c] += error * error; } // Avoid division by zero if (sse[c] == 0.0) { psnr[c] = MAX_PSNR; } else { psnr[c] = 10.0 * log10(num_pixels * MAX_SQUARED_ERROR / sse[c]); } } } typedef struct { // Semaphores for synchronization. kvz_sem_t* available_input_slots; kvz_sem_t* filled_input_slots; // Parameters passed from main thread to input thread. FILE* input; const kvz_api *api; const cmdline_opts_t *opts; const encoder_control_t *encoder; const uint8_t padding_x; const uint8_t padding_y; // Picture and thread status passed from input thread to main thread. kvz_picture *img_in; int retval; } input_handler_args; #define RETVAL_RUNNING 0 #define RETVAL_FAILURE 1 #define RETVAL_EOF 2 /** * \brief Handles input reading in a thread * * \param in_args pointer to argument struct */ static void* input_read_thread(void* in_args) { // Reading a frame works as follows: // - read full frame // if progressive: set read frame as output // if interlaced: // - allocate two fields and fill them according to field order // - deallocate the initial full frame input_handler_args* args = (input_handler_args*)in_args; kvz_picture *frame_in = NULL; int retval = RETVAL_RUNNING; int frames_read = 0; for (;;) { // Each iteration of this loop puts either a single frame or a field into // args->img_in for main thread to process. bool input_empty = !(args->opts->frames == 0 // number of frames to read is unknown || frames_read < args->opts->frames); // not all frames have been read if (feof(args->input) || input_empty) { retval = RETVAL_EOF; goto done; } enum kvz_chroma_format csp = KVZ_FORMAT2CSP(args->opts->config->input_format); frame_in = args->api->picture_alloc_csp(csp, args->opts->config->width + args->padding_x, args->opts->config->height + args->padding_y); if (!frame_in) { fprintf(stderr, "Failed to allocate image.\n"); retval = RETVAL_FAILURE; goto done; } // Set PTS to make sure we pass it on correctly. frame_in->pts = frames_read; bool read_success = yuv_io_read(args->input, args->opts->config->width, args->opts->config->height, args->encoder->cfg.input_bitdepth, args->encoder->bitdepth, frame_in); if (!read_success) { // reading failed if (feof(args->input)) { // When looping input, re-open the file and re-read data. if (args->opts->loop_input && args->input != stdin) { fclose(args->input); args->input = fopen(args->opts->input, "rb"); if (args->input == NULL) { fprintf(stderr, "Could not re-open input file, shutting down!\n"); retval = RETVAL_FAILURE; goto done; } bool read_success = yuv_io_read(args->input, args->opts->config->width, args->opts->config->height, args->encoder->cfg.input_bitdepth, args->encoder->bitdepth, frame_in); if (!read_success) { fprintf(stderr, "Could not re-open input file, shutting down!\n"); retval = RETVAL_FAILURE; goto done; } } else { retval = RETVAL_EOF; goto done; } } else { fprintf(stderr, "Failed to read a frame %d\n", frames_read); retval = RETVAL_FAILURE; goto done; } } frames_read++; if (args->encoder->cfg.source_scan_type != 0) { // Set source scan type for frame, so that it will be turned into fields. frame_in->interlacing = args->encoder->cfg.source_scan_type; } // Wait until main thread is ready to receive the next frame. kvz_sem_wait(args->available_input_slots); args->img_in = frame_in; args->retval = retval; // Unlock main_thread_mutex to notify main thread that the new img_in // and retval have been placed to args. kvz_sem_post(args->filled_input_slots); frame_in = NULL; } done: // Wait until main thread is ready to receive the next frame. kvz_sem_wait(args->available_input_slots); args->img_in = NULL; args->retval = retval; // Unlock main_thread_mutex to notify main thread that the new img_in // and retval have been placed to args. kvz_sem_post(args->filled_input_slots); // Do some cleaning up. args->api->picture_free(frame_in); pthread_exit(NULL); return NULL; } void output_recon_pictures(const kvz_api *const api, FILE *recout, kvz_picture *buffer[KVZ_MAX_GOP_LENGTH], int *buffer_size, uint64_t *next_pts, unsigned width, unsigned height) { bool picture_written; do { picture_written = false; for (int i = 0; i < *buffer_size; i++) { kvz_picture *pic = buffer[i]; if (pic->pts == *next_pts) { // Output the picture and remove it. if (!yuv_io_write(recout, pic, width, height)) { fprintf(stderr, "Failed to write reconstructed picture!\n"); } api->picture_free(pic); picture_written = true; (*next_pts)++; // Move rest of the pictures one position backward. for (i++; i < *buffer_size; i++) { buffer[i - 1] = buffer[i]; buffer[i] = NULL; } (*buffer_size)--; } } } while (picture_written); } /** * \brief Program main function. * \param argc Argument count from commandline * \param argv Argument list * \return Program exit state */ int main(int argc, char *argv[]) { int retval = EXIT_SUCCESS; cmdline_opts_t *opts = NULL; //!< Command line options kvz_encoder* enc = NULL; FILE *input = NULL; //!< input file (YUV) FILE *output = NULL; //!< output file (HEVC NAL stream) FILE *recout = NULL; //!< reconstructed YUV output, --debug clock_t start_time = clock(); clock_t encoding_start_cpu_time; KVZ_CLOCK_T encoding_start_real_time; clock_t encoding_end_cpu_time; KVZ_CLOCK_T encoding_end_real_time; // PTS of the reconstructed picture that should be output next. // Only used with --debug. uint64_t next_recon_pts = 0; // Buffer for storing reconstructed pictures that are not to be output // yet (i.e. in wrong order because GOP is used). // Only used with --debug. kvz_picture *recon_buffer[KVZ_MAX_GOP_LENGTH] = { NULL }; int recon_buffer_size = 0; // Semaphores for synchronizing the input reader thread and the main // thread. // // available_input_slots tells whether the main thread is currently using // input_handler_args.img_in. (0 = in use, 1 = not in use) // // filled_input_slots tells whether there is a new input picture (or NULL // if the input has ended) in input_handler_args.img_in placed by the // input reader thread. (0 = no new image, 1 = one new image) // kvz_sem_t *available_input_slots = NULL; kvz_sem_t *filled_input_slots = NULL; #ifdef _WIN32 // Stderr needs to be text mode to convert \n to \r\n in Windows. setmode( _fileno( stderr ), _O_TEXT ); #endif CHECKPOINTS_INIT(); const kvz_api * const api = kvz_api_get(8); opts = cmdline_opts_parse(api, argc, argv); // If problem with command line options, print banner and shutdown. if (!opts) { print_usage(); goto exit_failure; } if (opts->version) { print_version(); goto done; } if (opts->help) { print_help(); goto done; } input = open_input_file(opts->input); if (input == NULL) { fprintf(stderr, "Could not open input file, shutting down!\n"); goto exit_failure; } output = open_output_file(opts->output); if (output == NULL) { fprintf(stderr, "Could not open output file, shutting down!\n"); goto exit_failure; } #ifdef _WIN32 // Set stdin and stdout to binary for pipes. if (input == stdin) { _setmode(_fileno(stdin), _O_BINARY); } if (output == stdout) { _setmode(_fileno(stdout), _O_BINARY); } #endif if (opts->debug != NULL) { recout = open_output_file(opts->debug); if (recout == NULL) { fprintf(stderr, "Could not open reconstruction file (%s), shutting down!\n", opts->debug); goto exit_failure; } } enc = api->encoder_open(opts->config); if (!enc) { fprintf(stderr, "Failed to open encoder.\n"); goto exit_failure; } const encoder_control_t *encoder = enc->control; fprintf(stderr, "Input: %s, output: %s\n", opts->input, opts->output); fprintf(stderr, " Video size: %dx%d (input=%dx%d)\n", encoder->in.width, encoder->in.height, encoder->in.real_width, encoder->in.real_height); if (opts->seek > 0 && !yuv_io_seek(input, opts->seek, opts->config->width, opts->config->height)) { fprintf(stderr, "Failed to seek %d frames.\n", opts->seek); goto exit_failure; } //Now, do the real stuff { KVZ_GET_TIME(&encoding_start_real_time); encoding_start_cpu_time = clock(); uint64_t bitstream_length = 0; uint32_t frames_done = 0; double psnr_sum[3] = { 0.0, 0.0, 0.0 }; // how many bits have been written this second? used for checking if framerate exceeds level's limits uint64_t bits_this_second = 0; // the amount of frames have been encoded in this second of video. can be non-integer value if framerate is non-integer value unsigned frames_this_second = 0; const float framerate = ((float)encoder->cfg.framerate_num) / ((float)encoder->cfg.framerate_denom); uint8_t padding_x = get_padding(opts->config->width); uint8_t padding_y = get_padding(opts->config->height); pthread_t input_thread; available_input_slots = calloc(1, sizeof(kvz_sem_t)); filled_input_slots = calloc(1, sizeof(kvz_sem_t)); kvz_sem_init(available_input_slots, 0); kvz_sem_init(filled_input_slots, 0); // Give arguments via struct to the input thread input_handler_args in_args = { .available_input_slots = available_input_slots, .filled_input_slots = filled_input_slots, .input = input, .api = api, .opts = opts, .encoder = encoder, .padding_x = padding_x, .padding_y = padding_y, .img_in = NULL, .retval = RETVAL_RUNNING, }; in_args.available_input_slots = available_input_slots; in_args.filled_input_slots = filled_input_slots; if (pthread_create(&input_thread, NULL, input_read_thread, (void*)&in_args) != 0) { fprintf(stderr, "pthread_create failed!\n"); assert(0); return 0; } kvz_picture *cur_in_img; for (;;) { // Skip mutex locking if the input thread does not exist. if (in_args.retval == RETVAL_RUNNING) { // Increase available_input_slots so that the input thread can // write the new img_in and retval to in_args. kvz_sem_post(available_input_slots); // Wait until the input thread has updated in_args and then // decrease filled_input_slots. kvz_sem_wait(filled_input_slots); cur_in_img = in_args.img_in; in_args.img_in = NULL; } else { cur_in_img = NULL; } if (in_args.retval == EXIT_FAILURE) { goto exit_failure; } kvz_data_chunk* chunks_out = NULL; kvz_picture *img_rec = NULL; kvz_picture *img_src = NULL; uint32_t len_out = 0; kvz_frame_info info_out; if (!api->encoder_encode(enc, cur_in_img, &chunks_out, &len_out, &img_rec, &img_src, &info_out)) { fprintf(stderr, "Failed to encode image.\n"); api->picture_free(cur_in_img); goto exit_failure; } if (chunks_out == NULL && cur_in_img == NULL) { // We are done since there is no more input and output left. break; } if (chunks_out != NULL) { uint64_t written = 0; // Write data into the output file. for (kvz_data_chunk *chunk = chunks_out; chunk != NULL; chunk = chunk->next) { assert(written + chunk->len <= len_out); if (fwrite(chunk->data, sizeof(uint8_t), chunk->len, output) != chunk->len) { fprintf(stderr, "Failed to write data to file.\n"); api->picture_free(cur_in_img); api->chunk_free(chunks_out); goto exit_failure; } written += chunk->len; } fflush(output); bitstream_length += len_out; // the level's bitrate check frames_this_second += 1; if ((float)frames_this_second >= framerate) { // if framerate <= 1 then we go here always // how much of the bits of the last frame belonged to the next second uint64_t leftover_bits = (uint64_t)((double)len_out * ((double)frames_this_second - framerate)); // the latest frame is counted for the amount that it contributed to this current second bits_this_second += len_out - leftover_bits; if (bits_this_second > encoder->cfg.max_bitrate) { fprintf(stderr, "Level warning: This %s's bitrate (%llu bits/s) reached the maximum bitrate (%u bits/s) of %s tier level %g.", framerate >= 1.0f ? "second" : "frame", (unsigned long long) bits_this_second, encoder->cfg.max_bitrate, encoder->cfg.high_tier ? "high" : "main", (float)encoder->cfg.level / 10.0f ); } if (framerate > 1.0f) { // leftovers for the next second bits_this_second = leftover_bits; } else { // one or more next seconds are from this frame and their bitrate is the same or less as this frame's bits_this_second = 0; } frames_this_second = 0; } else { bits_this_second += len_out; } // Compute and print stats. double frame_psnr[3] = { 0.0, 0.0, 0.0 }; if (encoder->cfg.calc_psnr && encoder->cfg.source_scan_type == KVZ_INTERLACING_NONE) { // Do not compute PSNR for interlaced frames, because img_rec does not contain // the deinterlaced frame yet. compute_psnr(img_src, img_rec, frame_psnr); } if (recout) { // Since chunks_out was not NULL, img_rec should have been set. assert(img_rec); // Move img_rec to the recon buffer. assert(recon_buffer_size < KVZ_MAX_GOP_LENGTH); recon_buffer[recon_buffer_size++] = img_rec; img_rec = NULL; // Try to output some reconstructed pictures. output_recon_pictures(api, recout, recon_buffer, &recon_buffer_size, &next_recon_pts, opts->config->width, opts->config->height); } frames_done += 1; psnr_sum[0] += frame_psnr[0]; psnr_sum[1] += frame_psnr[1]; psnr_sum[2] += frame_psnr[2]; print_frame_info(&info_out, frame_psnr, len_out, encoder->cfg.calc_psnr); } api->picture_free(cur_in_img); api->chunk_free(chunks_out); api->picture_free(img_rec); api->picture_free(img_src); } KVZ_GET_TIME(&encoding_end_real_time); encoding_end_cpu_time = clock(); // Coding finished // All reconstructed pictures should have been output. assert(recon_buffer_size == 0); // Print statistics of the coding fprintf(stderr, " Processed %d frames, %10llu bits", frames_done, (long long unsigned int)bitstream_length * 8); if (encoder->cfg.calc_psnr && frames_done > 0) { fprintf(stderr, " AVG PSNR Y %2.4f U %2.4f V %2.4f", psnr_sum[0] / frames_done, psnr_sum[1] / frames_done, psnr_sum[2] / frames_done); } fprintf(stderr, "\n"); fprintf(stderr, " Total CPU time: %.3f s.\n", ((float)(clock() - start_time)) / CLOCKS_PER_SEC); { double encoding_time = ( (double)(encoding_end_cpu_time - encoding_start_cpu_time) ) / (double) CLOCKS_PER_SEC; double wall_time = KVZ_CLOCK_T_AS_DOUBLE(encoding_end_real_time) - KVZ_CLOCK_T_AS_DOUBLE(encoding_start_real_time); fprintf(stderr, " Encoding time: %.3f s.\n", encoding_time); fprintf(stderr, " Encoding wall time: %.3f s.\n", wall_time); fprintf(stderr, " Encoding CPU usage: %.2f%%\n", encoding_time/wall_time*100.f); fprintf(stderr, " FPS: %.2f\n", ((double)frames_done)/wall_time); } pthread_join(input_thread, NULL); } goto done; exit_failure: retval = EXIT_FAILURE; done: // destroy semaphores if (available_input_slots) kvz_sem_destroy(available_input_slots); if (filled_input_slots) kvz_sem_destroy(filled_input_slots); FREE_POINTER(available_input_slots); FREE_POINTER(filled_input_slots); // deallocate structures if (enc) api->encoder_close(enc); if (opts) cmdline_opts_free(api, opts); // close files if (input) fclose(input); if (output) fclose(output); if (recout) fclose(recout); CHECKPOINTS_FINALIZE(); return retval; }