/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "global.h" #if COMPILE_INTEL_AVX2 #include "kvazaar.h" #if KVZ_BIT_DEPTH == 8 #include "strategies/avx2/picture-avx2.h" #include "strategies/avx2/reg_sad_pow2_widths-avx2.h" #include #include #include #include #include #include "strategies/strategies-picture.h" #include "strategyselector.h" #include "strategies/generic/picture-generic.h" /** * \brief Calculate Sum of Absolute Differences (SAD) * * Calculate Sum of Absolute Differences (SAD) between two rectangular regions * located in arbitrary points in the picture. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param stride Width of the pixel array. * * \returns Sum of Absolute Differences */ uint32_t kvz_reg_sad_avx2(const uint8_t * const data1, const uint8_t * const data2, const int width, const int height, const unsigned stride1, const unsigned stride2) { if (width == 0) return 0; if (width == 4) return reg_sad_w4(data1, data2, height, stride1, stride2); if (width == 8) return reg_sad_w8(data1, data2, height, stride1, stride2); if (width == 12) return reg_sad_w12(data1, data2, height, stride1, stride2); if (width == 16) return reg_sad_w16(data1, data2, height, stride1, stride2); if (width == 24) return reg_sad_w24(data1, data2, height, stride1, stride2); if (width == 32) return reg_sad_w32(data1, data2, height, stride1, stride2); if (width == 64) return reg_sad_w64(data1, data2, height, stride1, stride2); else return reg_sad_arbitrary(data1, data2, width, height, stride1, stride2); } /** * \brief Calculate SAD for 8x8 bytes in continuous memory. */ static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b) { __m256i sum0, sum1; sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); return _mm256_add_epi32(sum0, sum1); } /** * \brief Calculate SAD for 16x16 bytes in continuous memory. */ static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b) { const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); // Calculate in 4 chunks of 16x4. __m256i sum0, sum1, sum2, sum3; sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8); sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8); sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8); sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8); sum0 = _mm256_add_epi32(sum0, sum1); sum2 = _mm256_add_epi32(sum2, sum3); return _mm256_add_epi32(sum0, sum2); } /** * \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t. */ static INLINE uint32_t m256i_horizontal_sum(const __m256i sum) { // Add the high 128 bits to low 128 bits. __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); // Add the high 64 bits to low 64 bits. uint32_t result[4]; _mm_storeu_si128((__m128i*)result, mm128_result); return result[0] + result[2]; } static unsigned sad_8bit_8x8_avx2(const uint8_t *buf1, const uint8_t *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; __m256i sum = inline_8bit_sad_8x8_avx2(a, b); return m256i_horizontal_sum(sum); } static unsigned sad_8bit_16x16_avx2(const uint8_t *buf1, const uint8_t *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; __m256i sum = inline_8bit_sad_16x16_avx2(a, b); return m256i_horizontal_sum(sum); } static unsigned sad_8bit_32x32_avx2(const uint8_t *buf1, const uint8_t *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); const unsigned size_of_32x32 = 32 * 32 / sizeof(__m256i); // Looping 512 bytes at a time seems faster than letting VC figure it out // through inlining, like inline_8bit_sad_16x16_avx2 does. __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b); for (unsigned i = size_of_8x8; i < size_of_32x32; i += size_of_8x8) { __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i); sum0 = _mm256_add_epi32(sum0, sum1); } return m256i_horizontal_sum(sum0); } static unsigned sad_8bit_64x64_avx2(const uint8_t * buf1, const uint8_t * buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); const unsigned size_of_64x64 = 64 * 64 / sizeof(__m256i); // Looping 512 bytes at a time seems faster than letting VC figure it out // through inlining, like inline_8bit_sad_16x16_avx2 does. __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b); for (unsigned i = size_of_8x8; i < size_of_64x64; i += size_of_8x8) { __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i); sum0 = _mm256_add_epi32(sum0, sum1); } return m256i_horizontal_sum(sum0); } static unsigned satd_4x4_8bit_avx2(const uint8_t *org, const uint8_t *cur) { __m128i original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)org)); __m128i current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)cur)); __m128i diff_lo = _mm_sub_epi16(current, original); original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(org + 8))); current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(cur + 8))); __m128i diff_hi = _mm_sub_epi16(current, original); //Hor __m128i row0 = _mm_hadd_epi16(diff_lo, diff_hi); __m128i row1 = _mm_hsub_epi16(diff_lo, diff_hi); __m128i row2 = _mm_hadd_epi16(row0, row1); __m128i row3 = _mm_hsub_epi16(row0, row1); //Ver row0 = _mm_hadd_epi16(row2, row3); row1 = _mm_hsub_epi16(row2, row3); row2 = _mm_hadd_epi16(row0, row1); row3 = _mm_hsub_epi16(row0, row1); //Abs and sum row2 = _mm_abs_epi16(row2); row3 = _mm_abs_epi16(row3); row3 = _mm_add_epi16(row2, row3); row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) )); row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) )); row3 = _mm_add_epi16(row3, _mm_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) )); unsigned sum = _mm_extract_epi16(row3, 0); unsigned satd = (sum + 1) >> 1; return satd; } static void satd_8bit_4x4_dual_avx2( const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out) { __m256i original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)orig))); __m256i pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[0])); pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[1])), 1); __m256i diff_lo = _mm256_sub_epi16(pred, original); original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(orig + 8)))); pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[0] + 8))); pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[1] + 8))), 1); __m256i diff_hi = _mm256_sub_epi16(pred, original); //Hor __m256i row0 = _mm256_hadd_epi16(diff_lo, diff_hi); __m256i row1 = _mm256_hsub_epi16(diff_lo, diff_hi); __m256i row2 = _mm256_hadd_epi16(row0, row1); __m256i row3 = _mm256_hsub_epi16(row0, row1); //Ver row0 = _mm256_hadd_epi16(row2, row3); row1 = _mm256_hsub_epi16(row2, row3); row2 = _mm256_hadd_epi16(row0, row1); row3 = _mm256_hsub_epi16(row0, row1); //Abs and sum row2 = _mm256_abs_epi16(row2); row3 = _mm256_abs_epi16(row3); row3 = _mm256_add_epi16(row2, row3); row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) )); row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) )); row3 = _mm256_add_epi16(row3, _mm256_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) )); unsigned sum1 = _mm_extract_epi16(_mm256_castsi256_si128(row3), 0); sum1 = (sum1 + 1) >> 1; unsigned sum2 = _mm_extract_epi16(_mm256_extracti128_si256(row3, 1), 0); sum2 = (sum2 + 1) >> 1; satds_out[0] = sum1; satds_out[1] = sum2; } static INLINE void hor_transform_row_avx2(__m128i* row){ __m128i mask_pos = _mm_set1_epi16(1); __m128i mask_neg = _mm_set1_epi16(-1); __m128i sign_mask = _mm_unpacklo_epi64(mask_pos, mask_neg); __m128i temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2)); *row = _mm_sign_epi16(*row, sign_mask); *row = _mm_add_epi16(*row, temp); sign_mask = _mm_unpacklo_epi32(mask_pos, mask_neg); temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1)); *row = _mm_sign_epi16(*row, sign_mask); *row = _mm_add_epi16(*row, temp); sign_mask = _mm_unpacklo_epi16(mask_pos, mask_neg); temp = _mm_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1)); temp = _mm_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1)); *row = _mm_sign_epi16(*row, sign_mask); *row = _mm_add_epi16(*row, temp); } static INLINE void hor_transform_row_dual_avx2(__m256i* row){ __m256i mask_pos = _mm256_set1_epi16(1); __m256i mask_neg = _mm256_set1_epi16(-1); __m256i sign_mask = _mm256_unpacklo_epi64(mask_pos, mask_neg); __m256i temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2)); *row = _mm256_sign_epi16(*row, sign_mask); *row = _mm256_add_epi16(*row, temp); sign_mask = _mm256_unpacklo_epi32(mask_pos, mask_neg); temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1)); *row = _mm256_sign_epi16(*row, sign_mask); *row = _mm256_add_epi16(*row, temp); sign_mask = _mm256_unpacklo_epi16(mask_pos, mask_neg); temp = _mm256_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1)); temp = _mm256_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1)); *row = _mm256_sign_epi16(*row, sign_mask); *row = _mm256_add_epi16(*row, temp); } static INLINE void add_sub_avx2(__m128i *out, __m128i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1) { out[out_idx0] = _mm_add_epi16(in[in_idx0], in[in_idx1]); out[out_idx1] = _mm_sub_epi16(in[in_idx0], in[in_idx1]); } static INLINE void ver_transform_block_avx2(__m128i (*rows)[8]){ __m128i temp0[8]; add_sub_avx2(temp0, (*rows), 0, 1, 0, 1); add_sub_avx2(temp0, (*rows), 2, 3, 2, 3); add_sub_avx2(temp0, (*rows), 4, 5, 4, 5); add_sub_avx2(temp0, (*rows), 6, 7, 6, 7); __m128i temp1[8]; add_sub_avx2(temp1, temp0, 0, 1, 0, 2); add_sub_avx2(temp1, temp0, 2, 3, 1, 3); add_sub_avx2(temp1, temp0, 4, 5, 4, 6); add_sub_avx2(temp1, temp0, 6, 7, 5, 7); add_sub_avx2((*rows), temp1, 0, 1, 0, 4); add_sub_avx2((*rows), temp1, 2, 3, 1, 5); add_sub_avx2((*rows), temp1, 4, 5, 2, 6); add_sub_avx2((*rows), temp1, 6, 7, 3, 7); } static INLINE void add_sub_dual_avx2(__m256i *out, __m256i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1) { out[out_idx0] = _mm256_add_epi16(in[in_idx0], in[in_idx1]); out[out_idx1] = _mm256_sub_epi16(in[in_idx0], in[in_idx1]); } static INLINE void ver_transform_block_dual_avx2(__m256i (*rows)[8]){ __m256i temp0[8]; add_sub_dual_avx2(temp0, (*rows), 0, 1, 0, 1); add_sub_dual_avx2(temp0, (*rows), 2, 3, 2, 3); add_sub_dual_avx2(temp0, (*rows), 4, 5, 4, 5); add_sub_dual_avx2(temp0, (*rows), 6, 7, 6, 7); __m256i temp1[8]; add_sub_dual_avx2(temp1, temp0, 0, 1, 0, 2); add_sub_dual_avx2(temp1, temp0, 2, 3, 1, 3); add_sub_dual_avx2(temp1, temp0, 4, 5, 4, 6); add_sub_dual_avx2(temp1, temp0, 6, 7, 5, 7); add_sub_dual_avx2((*rows), temp1, 0, 1, 0, 4); add_sub_dual_avx2((*rows), temp1, 2, 3, 1, 5); add_sub_dual_avx2((*rows), temp1, 4, 5, 2, 6); add_sub_dual_avx2((*rows), temp1, 6, 7, 3, 7); } INLINE static void haddwd_accumulate_avx2(__m128i *accumulate, __m128i *ver_row) { __m128i abs_value = _mm_abs_epi16(*ver_row); *accumulate = _mm_add_epi32(*accumulate, _mm_madd_epi16(abs_value, _mm_set1_epi16(1))); } INLINE static void haddwd_accumulate_dual_avx2(__m256i *accumulate, __m256i *ver_row) { __m256i abs_value = _mm256_abs_epi16(*ver_row); *accumulate = _mm256_add_epi32(*accumulate, _mm256_madd_epi16(abs_value, _mm256_set1_epi16(1))); } INLINE static unsigned sum_block_avx2(__m128i *ver_row) { __m128i sad = _mm_setzero_si128(); haddwd_accumulate_avx2(&sad, ver_row + 0); haddwd_accumulate_avx2(&sad, ver_row + 1); haddwd_accumulate_avx2(&sad, ver_row + 2); haddwd_accumulate_avx2(&sad, ver_row + 3); haddwd_accumulate_avx2(&sad, ver_row + 4); haddwd_accumulate_avx2(&sad, ver_row + 5); haddwd_accumulate_avx2(&sad, ver_row + 6); haddwd_accumulate_avx2(&sad, ver_row + 7); sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2))); sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1))); return _mm_cvtsi128_si32(sad); } INLINE static void sum_block_dual_avx2(__m256i *ver_row, unsigned *sum0, unsigned *sum1) { __m256i sad = _mm256_setzero_si256(); haddwd_accumulate_dual_avx2(&sad, ver_row + 0); haddwd_accumulate_dual_avx2(&sad, ver_row + 1); haddwd_accumulate_dual_avx2(&sad, ver_row + 2); haddwd_accumulate_dual_avx2(&sad, ver_row + 3); haddwd_accumulate_dual_avx2(&sad, ver_row + 4); haddwd_accumulate_dual_avx2(&sad, ver_row + 5); haddwd_accumulate_dual_avx2(&sad, ver_row + 6); haddwd_accumulate_dual_avx2(&sad, ver_row + 7); sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2))); sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1))); *sum0 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 0)); *sum1 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 1)); } INLINE static __m128i diff_row_avx2(const uint8_t *buf1, const uint8_t *buf2) { __m128i buf1_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf1)); __m128i buf2_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf2)); return _mm_sub_epi16(buf1_row, buf2_row); } INLINE static __m256i diff_row_dual_avx2(const uint8_t *buf1, const uint8_t *buf2, const uint8_t *orig) { __m128i temp1 = _mm_loadl_epi64((__m128i*)buf1); __m128i temp2 = _mm_loadl_epi64((__m128i*)buf2); __m128i temp3 = _mm_loadl_epi64((__m128i*)orig); __m256i buf1_row = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(temp1, temp2)); __m256i buf2_row = _mm256_cvtepu8_epi16(_mm_broadcastq_epi64(temp3)); return _mm256_sub_epi16(buf1_row, buf2_row); } INLINE static void diff_blocks_avx2(__m128i (*row_diff)[8], const uint8_t * buf1, unsigned stride1, const uint8_t * orig, unsigned stride_orig) { (*row_diff)[0] = diff_row_avx2(buf1 + 0 * stride1, orig + 0 * stride_orig); (*row_diff)[1] = diff_row_avx2(buf1 + 1 * stride1, orig + 1 * stride_orig); (*row_diff)[2] = diff_row_avx2(buf1 + 2 * stride1, orig + 2 * stride_orig); (*row_diff)[3] = diff_row_avx2(buf1 + 3 * stride1, orig + 3 * stride_orig); (*row_diff)[4] = diff_row_avx2(buf1 + 4 * stride1, orig + 4 * stride_orig); (*row_diff)[5] = diff_row_avx2(buf1 + 5 * stride1, orig + 5 * stride_orig); (*row_diff)[6] = diff_row_avx2(buf1 + 6 * stride1, orig + 6 * stride_orig); (*row_diff)[7] = diff_row_avx2(buf1 + 7 * stride1, orig + 7 * stride_orig); } INLINE static void diff_blocks_dual_avx2(__m256i (*row_diff)[8], const uint8_t * buf1, unsigned stride1, const uint8_t * buf2, unsigned stride2, const uint8_t * orig, unsigned stride_orig) { (*row_diff)[0] = diff_row_dual_avx2(buf1 + 0 * stride1, buf2 + 0 * stride2, orig + 0 * stride_orig); (*row_diff)[1] = diff_row_dual_avx2(buf1 + 1 * stride1, buf2 + 1 * stride2, orig + 1 * stride_orig); (*row_diff)[2] = diff_row_dual_avx2(buf1 + 2 * stride1, buf2 + 2 * stride2, orig + 2 * stride_orig); (*row_diff)[3] = diff_row_dual_avx2(buf1 + 3 * stride1, buf2 + 3 * stride2, orig + 3 * stride_orig); (*row_diff)[4] = diff_row_dual_avx2(buf1 + 4 * stride1, buf2 + 4 * stride2, orig + 4 * stride_orig); (*row_diff)[5] = diff_row_dual_avx2(buf1 + 5 * stride1, buf2 + 5 * stride2, orig + 5 * stride_orig); (*row_diff)[6] = diff_row_dual_avx2(buf1 + 6 * stride1, buf2 + 6 * stride2, orig + 6 * stride_orig); (*row_diff)[7] = diff_row_dual_avx2(buf1 + 7 * stride1, buf2 + 7 * stride2, orig + 7 * stride_orig); } INLINE static void hor_transform_block_avx2(__m128i (*row_diff)[8]) { hor_transform_row_avx2((*row_diff) + 0); hor_transform_row_avx2((*row_diff) + 1); hor_transform_row_avx2((*row_diff) + 2); hor_transform_row_avx2((*row_diff) + 3); hor_transform_row_avx2((*row_diff) + 4); hor_transform_row_avx2((*row_diff) + 5); hor_transform_row_avx2((*row_diff) + 6); hor_transform_row_avx2((*row_diff) + 7); } INLINE static void hor_transform_block_dual_avx2(__m256i (*row_diff)[8]) { hor_transform_row_dual_avx2((*row_diff) + 0); hor_transform_row_dual_avx2((*row_diff) + 1); hor_transform_row_dual_avx2((*row_diff) + 2); hor_transform_row_dual_avx2((*row_diff) + 3); hor_transform_row_dual_avx2((*row_diff) + 4); hor_transform_row_dual_avx2((*row_diff) + 5); hor_transform_row_dual_avx2((*row_diff) + 6); hor_transform_row_dual_avx2((*row_diff) + 7); } static void kvz_satd_8bit_8x8_general_dual_avx2(const uint8_t * buf1, unsigned stride1, const uint8_t * buf2, unsigned stride2, const uint8_t * orig, unsigned stride_orig, unsigned *sum0, unsigned *sum1) { __m256i temp[8]; diff_blocks_dual_avx2(&temp, buf1, stride1, buf2, stride2, orig, stride_orig); hor_transform_block_dual_avx2(&temp); ver_transform_block_dual_avx2(&temp); sum_block_dual_avx2(temp, sum0, sum1); *sum0 = (*sum0 + 2) >> 2; *sum1 = (*sum1 + 2) >> 2; } /** * \brief Calculate SATD between two 4x4 blocks inside bigger arrays. */ static unsigned kvz_satd_4x4_subblock_8bit_avx2(const uint8_t * buf1, const int32_t stride1, const uint8_t * buf2, const int32_t stride2) { // TODO: AVX2 implementation return kvz_satd_4x4_subblock_generic(buf1, stride1, buf2, stride2); } static void kvz_satd_4x4_subblock_quad_avx2(const uint8_t *preds[4], const int stride, const uint8_t *orig, const int orig_stride, unsigned costs[4]) { // TODO: AVX2 implementation kvz_satd_4x4_subblock_quad_generic(preds, stride, orig, orig_stride, costs); } static unsigned satd_8x8_subblock_8bit_avx2(const uint8_t * buf1, unsigned stride1, const uint8_t * buf2, unsigned stride2) { __m128i temp[8]; diff_blocks_avx2(&temp, buf1, stride1, buf2, stride2); hor_transform_block_avx2(&temp); ver_transform_block_avx2(&temp); unsigned sad = sum_block_avx2(temp); unsigned result = (sad + 2) >> 2; return result; } static void satd_8x8_subblock_quad_avx2(const uint8_t **preds, const int stride, const uint8_t *orig, const int orig_stride, unsigned *costs) { kvz_satd_8bit_8x8_general_dual_avx2(preds[0], stride, preds[1], stride, orig, orig_stride, &costs[0], &costs[1]); kvz_satd_8bit_8x8_general_dual_avx2(preds[2], stride, preds[3], stride, orig, orig_stride, &costs[2], &costs[3]); } SATD_NxN(8bit_avx2, 8) SATD_NxN(8bit_avx2, 16) SATD_NxN(8bit_avx2, 32) SATD_NxN(8bit_avx2, 64) SATD_ANY_SIZE(8bit_avx2) // Function macro for defining hadamard calculating functions // for fixed size blocks. They calculate hadamard for integer // multiples of 8x8 with the 8x8 hadamard function. #define SATD_NXN_DUAL_AVX2(n) \ static void satd_8bit_ ## n ## x ## n ## _dual_avx2( \ const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out) \ { \ unsigned x, y; \ satds_out[0] = 0; \ satds_out[1] = 0; \ unsigned sum1 = 0; \ unsigned sum2 = 0; \ for (y = 0; y < (n); y += 8) { \ unsigned row = y * (n); \ for (x = 0; x < (n); x += 8) { \ kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (n), &preds[1][row + x], (n), &orig[row + x], (n), &sum1, &sum2); \ satds_out[0] += sum1; \ satds_out[1] += sum2; \ } \ } \ satds_out[0] >>= (KVZ_BIT_DEPTH-8); \ satds_out[1] >>= (KVZ_BIT_DEPTH-8); \ } static void satd_8bit_8x8_dual_avx2( const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out) { unsigned x, y; satds_out[0] = 0; satds_out[1] = 0; unsigned sum1 = 0; unsigned sum2 = 0; for (y = 0; y < (8); y += 8) { unsigned row = y * (8); for (x = 0; x < (8); x += 8) { kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (8), &preds[1][row + x], (8), &orig[row + x], (8), &sum1, &sum2); satds_out[0] += sum1; satds_out[1] += sum2; } } satds_out[0] >>= (KVZ_BIT_DEPTH-8); satds_out[1] >>= (KVZ_BIT_DEPTH-8); } //SATD_NXN_DUAL_AVX2(8) //Use the non-macro version SATD_NXN_DUAL_AVX2(16) SATD_NXN_DUAL_AVX2(32) SATD_NXN_DUAL_AVX2(64) #define SATD_ANY_SIZE_MULTI_AVX2(suffix, num_parallel_blocks) \ static cost_pixel_any_size_multi_func satd_any_size_## suffix; \ static void satd_any_size_ ## suffix ( \ int width, int height, \ const uint8_t **preds, \ const int stride, \ const uint8_t *orig, \ const int orig_stride, \ unsigned num_modes, \ unsigned *costs_out, \ int8_t *valid) \ { \ unsigned sums[num_parallel_blocks] = { 0 }; \ const uint8_t *pred_ptrs[4] = { preds[0], preds[1], preds[2], preds[3] };\ const uint8_t *orig_ptr = orig; \ costs_out[0] = 0; costs_out[1] = 0; costs_out[2] = 0; costs_out[3] = 0; \ if (width % 8 != 0) { \ /* Process the first column using 4x4 blocks. */ \ for (int y = 0; y < height; y += 4) { \ kvz_satd_4x4_subblock_ ## suffix(preds, stride, orig, orig_stride, sums); \ } \ orig_ptr += 4; \ for(int blk = 0; blk < num_parallel_blocks; ++blk){\ pred_ptrs[blk] += 4; \ }\ width -= 4; \ } \ if (height % 8 != 0) { \ /* Process the first row using 4x4 blocks. */ \ for (int x = 0; x < width; x += 4 ) { \ kvz_satd_4x4_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \ } \ orig_ptr += 4 * orig_stride; \ for(int blk = 0; blk < num_parallel_blocks; ++blk){\ pred_ptrs[blk] += 4 * stride; \ }\ height -= 4; \ } \ /* The rest can now be processed with 8x8 blocks. */ \ for (int y = 0; y < height; y += 8) { \ orig_ptr = &orig[y * orig_stride]; \ pred_ptrs[0] = &preds[0][y * stride]; \ pred_ptrs[1] = &preds[1][y * stride]; \ pred_ptrs[2] = &preds[2][y * stride]; \ pred_ptrs[3] = &preds[3][y * stride]; \ for (int x = 0; x < width; x += 8) { \ satd_8x8_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \ orig_ptr += 8; \ pred_ptrs[0] += 8; \ pred_ptrs[1] += 8; \ pred_ptrs[2] += 8; \ pred_ptrs[3] += 8; \ costs_out[0] += sums[0]; \ costs_out[1] += sums[1]; \ costs_out[2] += sums[2]; \ costs_out[3] += sums[3]; \ } \ } \ for(int i = 0; i < num_parallel_blocks; ++i){\ costs_out[i] = costs_out[i] >> (KVZ_BIT_DEPTH - 8);\ } \ return; \ } SATD_ANY_SIZE_MULTI_AVX2(quad_avx2, 4) static unsigned pixels_calc_ssd_avx2(const uint8_t *const ref, const uint8_t *const rec, const int ref_stride, const int rec_stride, const int width) { __m256i ssd_part; __m256i diff = _mm256_setzero_si256(); __m128i sum; __m256i ref_epi16; __m256i rec_epi16; __m128i ref_row0, ref_row1, ref_row2, ref_row3; __m128i rec_row0, rec_row1, rec_row2, rec_row3; int ssd; switch (width) { case 4: ref_row0 = _mm_cvtsi32_si128(*(int32_t*)&(ref[0 * ref_stride])); ref_row1 = _mm_cvtsi32_si128(*(int32_t*)&(ref[1 * ref_stride])); ref_row2 = _mm_cvtsi32_si128(*(int32_t*)&(ref[2 * ref_stride])); ref_row3 = _mm_cvtsi32_si128(*(int32_t*)&(ref[3 * ref_stride])); ref_row0 = _mm_unpacklo_epi32(ref_row0, ref_row1); ref_row1 = _mm_unpacklo_epi32(ref_row2, ref_row3); ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(ref_row0, ref_row1) ); rec_row0 = _mm_cvtsi32_si128(*(int32_t*)&(rec[0 * rec_stride])); rec_row1 = _mm_cvtsi32_si128(*(int32_t*)&(rec[1 * rec_stride])); rec_row2 = _mm_cvtsi32_si128(*(int32_t*)&(rec[2 * rec_stride])); rec_row3 = _mm_cvtsi32_si128(*(int32_t*)&(rec[3 * rec_stride])); rec_row0 = _mm_unpacklo_epi32(rec_row0, rec_row1); rec_row1 = _mm_unpacklo_epi32(rec_row2, rec_row3); rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(rec_row0, rec_row1) ); diff = _mm256_sub_epi16(ref_epi16, rec_epi16); ssd_part = _mm256_madd_epi16(diff, diff); sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1)); sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2))); sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1))); ssd = _mm_cvtsi128_si32(sum); return ssd >> (2*(KVZ_BIT_DEPTH-8)); break; default: ssd_part = _mm256_setzero_si256(); for (int y = 0; y < width; y += 8) { for (int x = 0; x < width; x += 8) { for (int i = 0; i < 8; i += 2) { ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(ref[x + (y + i) * ref_stride])), _mm_loadl_epi64((__m128i*)&(ref[x + (y + i + 1) * ref_stride])))); rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(rec[x + (y + i) * rec_stride])), _mm_loadl_epi64((__m128i*)&(rec[x + (y + i + 1) * rec_stride])))); diff = _mm256_sub_epi16(ref_epi16, rec_epi16); ssd_part = _mm256_add_epi32(ssd_part, _mm256_madd_epi16(diff, diff)); } } } sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1)); sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2))); sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1))); ssd = _mm_cvtsi128_si32(sum); return ssd >> (2*(KVZ_BIT_DEPTH-8)); break; } } static void inter_recon_bipred_avx2(const int hi_prec_luma_rec0, const int hi_prec_luma_rec1, const int hi_prec_chroma_rec0, const int hi_prec_chroma_rec1, const int height, const int width, const int ypos, const int xpos, const hi_prec_buf_t*high_precision_rec0, const hi_prec_buf_t*high_precision_rec1, lcu_t* lcu, uint8_t* temp_lcu_y, uint8_t* temp_lcu_u, uint8_t* temp_lcu_v, bool predict_luma, bool predict_chroma) { int y_in_lcu, x_in_lcu; int shift = 15 - KVZ_BIT_DEPTH; int offset = 1 << (shift - 1); __m256i temp_epi8, temp_y_epi32, sample0_epi32, sample1_epi32, temp_epi16; int32_t * pointer = 0; __m256i offset_epi32 = _mm256_set1_epi32(offset); for (int temp_y = 0; temp_y < height; ++temp_y) { y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1)); for (int temp_x = 0; temp_x < width; temp_x += 8) { x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1)); if (predict_luma) { bool use_8_elements = ((temp_x + 8) <= width); if (!use_8_elements) { if (width < 4) { // If width is smaller than 4 there's no need to use SIMD for (int temp_i = 0; temp_i < width; ++temp_i) { x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1)); int sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift); } } else { // Load total of 4 elements from memory to vector sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*)&(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32); temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift); // Pack the bits from 32-bit to 8-bit temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); pointer = (int32_t*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]); *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8)); for (int temp_i = temp_x + 4; temp_i < width; ++temp_i) { x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1)); int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift); } } } else { // Load total of 8 elements from memory to vector sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32); temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift); // Pack the bits from 32-bit to 8-bit temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); // Store 64-bits from vector to memory _mm_storel_epi64((__m128i*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]), _mm256_castsi256_si128(temp_epi8)); } } } } for (int temp_y = 0; temp_y < height >> 1; ++temp_y) { int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1)); for (int temp_x = 0; temp_x < width >> 1; temp_x += 8) { int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1)); if (predict_chroma) { if ((width >> 1) < 4) { // If width>>1 is smaller than 4 there's no need to use SIMD for (int temp_i = 0; temp_i < width >> 1; ++temp_i) { int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1)); int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift); int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift); } } else { bool use_8_elements = ((temp_x + 8) <= (width >> 1)); __m256i temp_u_epi32, temp_v_epi32; if (!use_8_elements) { // Load 4 pixels to vector sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32); temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift); sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32); temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift); temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); pointer = (int32_t*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]); *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8)); temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); pointer = (int32_t*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]); *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8)); for (int temp_i = 4; temp_i < width >> 1; ++temp_i) { // Use only if width>>1 is not divideble by 4 int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1)); int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift); int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift); } } else { // Load 8 pixels to vector sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32); temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift); sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) : _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH); // (sample1 + sample2 + offset)>>shift temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32); temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32); temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift); temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); // Store 64-bit integer into memory _mm_storel_epi64((__m128i*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8)); temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32); temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0)); temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16); // Store 64-bit integer into memory _mm_storel_epi64((__m128i*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8)); } } } } } } static optimized_sad_func_ptr_t get_optimized_sad_avx2(int32_t width) { if (width == 0) return reg_sad_w0; if (width == 4) return reg_sad_w4; if (width == 8) return reg_sad_w8; if (width == 12) return reg_sad_w12; if (width == 16) return reg_sad_w16; if (width == 24) return reg_sad_w24; if (width == 32) return reg_sad_w32; if (width == 64) return reg_sad_w64; else return NULL; } static uint32_t ver_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data, int32_t width, int32_t height, uint32_t stride) { if (width == 0) return 0; if (width == 4) return ver_sad_w4(pic_data, ref_data, height, stride); if (width == 8) return ver_sad_w8(pic_data, ref_data, height, stride); if (width == 12) return ver_sad_w12(pic_data, ref_data, height, stride); if (width == 16) return ver_sad_w16(pic_data, ref_data, height, stride); else return ver_sad_arbitrary(pic_data, ref_data, width, height, stride); } static uint32_t hor_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data, int32_t width, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { if (width == 4) return hor_sad_sse41_w4(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 8) return hor_sad_sse41_w8(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 16) return hor_sad_sse41_w16(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 32) return hor_sad_avx2_w32 (pic_data, ref_data, height, pic_stride, ref_stride, left, right); else return hor_sad_sse41_arbitrary(pic_data, ref_data, width, height, pic_stride, ref_stride, left, right); } static double pixel_var_avx2_largebuf(const uint8_t *buf, const uint32_t len) { const float len_f = (float)len; const __m256i zero = _mm256_setzero_si256(); int64_t sum; size_t i; __m256i sums = zero; for (i = 0; i + 31 < len; i += 32) { __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i)); __m256i curr_sum = _mm256_sad_epu8(curr, zero); sums = _mm256_add_epi64(sums, curr_sum); } __m128i sum_lo = _mm256_castsi256_si128 (sums); __m128i sum_hi = _mm256_extracti128_si256(sums, 1); __m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi); __m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sum_5 = _mm_add_epi64 (sum_3, sum_4); _mm_storel_epi64((__m128i *)&sum, sum_5); // Remaining len mod 32 pixels for (; i < len; ++i) { sum += buf[i]; } float mean_f = (float)sum / len_f; __m256 mean = _mm256_set1_ps(mean_f); __m256 accum = _mm256_setzero_ps(); for (i = 0; i + 31 < len; i += 32) { __m128i curr0 = _mm_loadl_epi64((const __m128i *)(buf + i + 0)); __m128i curr1 = _mm_loadl_epi64((const __m128i *)(buf + i + 8)); __m128i curr2 = _mm_loadl_epi64((const __m128i *)(buf + i + 16)); __m128i curr3 = _mm_loadl_epi64((const __m128i *)(buf + i + 24)); __m256i curr0_32 = _mm256_cvtepu8_epi32(curr0); __m256i curr1_32 = _mm256_cvtepu8_epi32(curr1); __m256i curr2_32 = _mm256_cvtepu8_epi32(curr2); __m256i curr3_32 = _mm256_cvtepu8_epi32(curr3); __m256 curr0_f = _mm256_cvtepi32_ps (curr0_32); __m256 curr1_f = _mm256_cvtepi32_ps (curr1_32); __m256 curr2_f = _mm256_cvtepi32_ps (curr2_32); __m256 curr3_f = _mm256_cvtepi32_ps (curr3_32); __m256 curr0_sd = _mm256_sub_ps (curr0_f, mean); __m256 curr1_sd = _mm256_sub_ps (curr1_f, mean); __m256 curr2_sd = _mm256_sub_ps (curr2_f, mean); __m256 curr3_sd = _mm256_sub_ps (curr3_f, mean); __m256 curr0_v = _mm256_mul_ps (curr0_sd, curr0_sd); __m256 curr1_v = _mm256_mul_ps (curr1_sd, curr1_sd); __m256 curr2_v = _mm256_mul_ps (curr2_sd, curr2_sd); __m256 curr3_v = _mm256_mul_ps (curr3_sd, curr3_sd); __m256 curr01 = _mm256_add_ps (curr0_v, curr1_v); __m256 curr23 = _mm256_add_ps (curr2_v, curr3_v); __m256 curr = _mm256_add_ps (curr01, curr23); accum = _mm256_add_ps (accum, curr); } __m256d accum_d = _mm256_castps_pd (accum); __m256d accum2_d = _mm256_permute4x64_pd(accum_d, _MM_SHUFFLE(1, 0, 3, 2)); __m256 accum2 = _mm256_castpd_ps (accum2_d); __m256 accum3 = _mm256_add_ps (accum, accum2); __m256 accum4 = _mm256_permute_ps (accum3, _MM_SHUFFLE(1, 0, 3, 2)); __m256 accum5 = _mm256_add_ps (accum3, accum4); __m256 accum6 = _mm256_permute_ps (accum5, _MM_SHUFFLE(2, 3, 0, 1)); __m256 accum7 = _mm256_add_ps (accum5, accum6); __m128 accum8 = _mm256_castps256_ps128(accum7); float var_sum = _mm_cvtss_f32 (accum8); // Remaining len mod 32 pixels for (; i < len; ++i) { float diff = buf[i] - mean_f; var_sum += diff * diff; } return var_sum / len_f; } #ifdef INACCURATE_VARIANCE_CALCULATION // Assumes that u is a power of two static INLINE uint32_t ilog2(uint32_t u) { return _tzcnt_u32(u); } // A B C D | E F G H (8x32b) // ==> // A+B C+D | E+F G+H (4x64b) static __m256i hsum_epi32_to_epi64(const __m256i v) { const __m256i zero = _mm256_setzero_si256(); __m256i v_shufd = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m256i sums_32 = _mm256_add_epi32 (v, v_shufd); __m256i sums_64 = _mm256_blend_epi32 (sums_32, zero, 0xaa); return sums_64; } static double pixel_var_avx2(const uint8_t *buf, const uint32_t len) { assert(sizeof(*buf) == 1); assert((len & 31) == 0); // Uses Q8.7 numbers to measure mean and deviation, so variances are Q16.14 const uint64_t sum_maxwid = ilog2(len) + (8 * sizeof(*buf)); const __m128i normalize_sum = _mm_cvtsi32_si128(sum_maxwid - 15); // Normalize mean to [0, 32767], so signed 16-bit subtraction never overflows const __m128i debias_sum = _mm_cvtsi32_si128(1 << (sum_maxwid - 16)); const float varsum_to_f = 1.0f / (float)(1 << (14 + ilog2(len))); const bool power_of_two = (len & (len - 1)) == 0; if (sum_maxwid > 32 || sum_maxwid < 15 || !power_of_two) { return pixel_var_avx2_largebuf(buf, len); } const __m256i zero = _mm256_setzero_si256(); const __m256i himask_15 = _mm256_set1_epi16(0x7f00); uint64_t vars; size_t i; __m256i sums = zero; for (i = 0; i < len; i += 32) { __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i)); __m256i curr_sum = _mm256_sad_epu8(curr, zero); sums = _mm256_add_epi64(sums, curr_sum); } __m128i sum_lo = _mm256_castsi256_si128 (sums); __m128i sum_hi = _mm256_extracti128_si256(sums, 1); __m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi); __m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sum_5 = _mm_add_epi64 (sum_3, sum_4); __m128i sum_5n = _mm_srl_epi32 (sum_5, normalize_sum); sum_5n = _mm_add_epi32 (sum_5n, debias_sum); __m256i sum_n = _mm256_broadcastw_epi16 (sum_5n); __m256i accum = zero; for (i = 0; i < len; i += 32) { __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i)); __m256i curr0 = _mm256_slli_epi16 (curr, 7); __m256i curr1 = _mm256_srli_epi16 (curr, 1); curr0 = _mm256_and_si256 (curr0, himask_15); curr1 = _mm256_and_si256 (curr1, himask_15); __m256i dev0 = _mm256_sub_epi16 (curr0, sum_n); __m256i dev1 = _mm256_sub_epi16 (curr1, sum_n); __m256i vars0 = _mm256_madd_epi16 (dev0, dev0); __m256i vars1 = _mm256_madd_epi16 (dev1, dev1); __m256i varsum = _mm256_add_epi32 (vars0, vars1); varsum = hsum_epi32_to_epi64(varsum); accum = _mm256_add_epi64 (accum, varsum); } __m256i accum2 = _mm256_permute4x64_epi64(accum, _MM_SHUFFLE(1, 0, 3, 2)); __m256i accum3 = _mm256_add_epi64 (accum, accum2); __m256i accum4 = _mm256_permute4x64_epi64(accum3, _MM_SHUFFLE(2, 3, 1, 0)); __m256i v_tot = _mm256_add_epi64 (accum3, accum4); __m128i vt128 = _mm256_castsi256_si128 (v_tot); _mm_storel_epi64((__m128i *)&vars, vt128); return (float)vars * varsum_to_f; } #else // INACCURATE_VARIANCE_CALCULATION static double pixel_var_avx2(const uint8_t *buf, const uint32_t len) { return pixel_var_avx2_largebuf(buf, len); } #endif // !INACCURATE_VARIANCE_CALCULATION #endif // KVZ_BIT_DEPTH == 8 #endif //COMPILE_INTEL_AVX2 int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_AVX2 #if KVZ_BIT_DEPTH == 8 // We don't actually use SAD for intra right now, other than 4x4 for // transform skip, but we might again one day and this is some of the // simplest code to look at for anyone interested in doing more // optimizations, so it's worth it to keep this maintained. if (bitdepth == 8){ success &= kvz_strategyselector_register(opaque, "reg_sad", "avx2", 40, &kvz_reg_sad_avx2); success &= kvz_strategyselector_register(opaque, "sad_8x8", "avx2", 40, &sad_8bit_8x8_avx2); success &= kvz_strategyselector_register(opaque, "sad_16x16", "avx2", 40, &sad_8bit_16x16_avx2); success &= kvz_strategyselector_register(opaque, "sad_32x32", "avx2", 40, &sad_8bit_32x32_avx2); success &= kvz_strategyselector_register(opaque, "sad_64x64", "avx2", 40, &sad_8bit_64x64_avx2); success &= kvz_strategyselector_register(opaque, "satd_4x4", "avx2", 40, &satd_4x4_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_8x8", "avx2", 40, &satd_8x8_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_16x16", "avx2", 40, &satd_16x16_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_32x32", "avx2", 40, &satd_32x32_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_64x64", "avx2", 40, &satd_64x64_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_4x4_dual", "avx2", 40, &satd_8bit_4x4_dual_avx2); success &= kvz_strategyselector_register(opaque, "satd_8x8_dual", "avx2", 40, &satd_8bit_8x8_dual_avx2); success &= kvz_strategyselector_register(opaque, "satd_16x16_dual", "avx2", 40, &satd_8bit_16x16_dual_avx2); success &= kvz_strategyselector_register(opaque, "satd_32x32_dual", "avx2", 40, &satd_8bit_32x32_dual_avx2); success &= kvz_strategyselector_register(opaque, "satd_64x64_dual", "avx2", 40, &satd_8bit_64x64_dual_avx2); success &= kvz_strategyselector_register(opaque, "satd_any_size", "avx2", 40, &satd_any_size_8bit_avx2); success &= kvz_strategyselector_register(opaque, "satd_any_size_quad", "avx2", 40, &satd_any_size_quad_avx2); success &= kvz_strategyselector_register(opaque, "pixels_calc_ssd", "avx2", 40, &pixels_calc_ssd_avx2); success &= kvz_strategyselector_register(opaque, "inter_recon_bipred", "avx2", 40, &inter_recon_bipred_avx2); success &= kvz_strategyselector_register(opaque, "get_optimized_sad", "avx2", 40, &get_optimized_sad_avx2); success &= kvz_strategyselector_register(opaque, "ver_sad", "avx2", 40, &ver_sad_avx2); success &= kvz_strategyselector_register(opaque, "hor_sad", "avx2", 40, &hor_sad_avx2); success &= kvz_strategyselector_register(opaque, "pixel_var", "avx2", 40, &pixel_var_avx2); } #endif // KVZ_BIT_DEPTH == 8 #endif return success; }