/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "sao.h" #include #include "picture.h" void init_sao_info(sao_info *sao) { sao->type = SAO_TYPE_NONE; sao->merge_left_flag = 0; sao->merge_up_flag = 0; } // Mapping of edge_idx values to eo-classes. static const unsigned g_sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 }; // Mapping relationships between a, b and c to eo_idx. #define EO_IDX(a, b, c) (2 + SIGN3((c) - (a)) + SIGN3((c) - (b))) /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param dir_offsets * \param is_chroma 0 for luma, 1 for chroma. Indicates */ void calc_sao_edge_dir(const pixel *orig_data, const pixel *rec_data, int eo_class, int block_width, int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]) { int y, x; vector2d a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d b_ofs = g_sao_edge_offsets[eo_class][1]; // Arrays orig_data and rec_data are quarter size for chroma. // Don't sample the edge pixels because this function doesn't have access to // their neighbours. for (y = 1; y < block_width - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const pixel *c_data = &rec_data[y * block_width + x]; pixel a = c_data[a_ofs.y * block_width + a_ofs.x]; pixel c = c_data[0]; pixel b = c_data[b_ofs.y * block_width + b_ofs.x]; int eo_idx = EO_IDX(a, b, c); int eo_cat = g_sao_eo_idx_to_eo_category[eo_idx]; cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c; cat_sum_cnt[1][eo_cat] += 1; } } } void sao_reconstruct_color(const pixel *rec_data, pixel *new_rec_data, const sao_info *sao, int stride, int new_stride, int block_width, int block_height) { int y, x; vector2d a_ofs = g_sao_edge_offsets[sao->eo_class][0]; vector2d b_ofs = g_sao_edge_offsets[sao->eo_class][1]; // Arrays orig_data and rec_data are quarter size for chroma. // Don't sample the edge pixels because this function doesn't have access to // their neighbours. for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const pixel *c_data = &rec_data[y * stride + x]; pixel *new_data = &new_rec_data[y * new_stride + x]; pixel a = c_data[a_ofs.y * stride + a_ofs.x]; pixel c = c_data[0]; pixel b = c_data[b_ofs.y * stride + b_ofs.x]; int eo_idx = EO_IDX(a, b, c); int eo_cat = g_sao_eo_idx_to_eo_category[eo_idx]; new_data[0] = CLIP(0, (1 << BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat]); } } } /** * \brief Calculate dimensions of the buffer used by sao reconstruction. * * This function calculates 4 vectors that can be used to make the temporary * buffers required by sao_reconstruct_color. * * Vector block is the area affected by sao. Vectors tr and br are top-left * margin and bottom-right margin, which contain pixels that are not modified * by the reconstruction of this LCU but are needed by the reconstruction. * Vector rec is the coordinate of the area required by sao reconstruction. * * The margins are always either 0 or 1, depending on the direction of the * edge offset class. * * This also takes into account borders of the picture and non-LCU sized * CU's at the bottom and right of the picture. * * \ rec * +------+ * |\ tl | * | +--+ | * | |\ block * | | \| | * | +--+ | * | \ br * +------+ * * \param pic Picture. * \param sao Sao parameters. * \param rec Top-left corner of the LCU, modified to be top-left corner of */ void sao_calc_block_dims(const picture *pic, const sao_info *sao, vector2d *rec, vector2d *tl, vector2d *br, vector2d *block) { vector2d a_ofs = g_sao_edge_offsets[sao->eo_class][0]; vector2d b_ofs = g_sao_edge_offsets[sao->eo_class][1]; // Handle top and left. if (rec->y == 0) { tl->y = 0; if (a_ofs.y == -1 || b_ofs.y == -1) { block->y -= 1; tl->y += 1; } } if (rec->x == 0) { tl->x = 0; if (a_ofs.x == -1 || b_ofs.x == -1) { block->x -= 1; tl->x += 1; } } // Handle right and bottom, taking care of non-LCU sized CUs. if (rec->y + LCU_WIDTH >= pic->height) { br->y = 0; if (rec->y + LCU_WIDTH >= pic->height) { block->y = pic->height - rec->y; } if (a_ofs.y == 1 || b_ofs.y == 1) { block->y -= 1; br->y += 1; } } if (rec->x + LCU_WIDTH >= pic->width) { br->x = 0; if (rec->x + LCU_WIDTH > pic->width) { block->x = pic->width - rec->x; } if (a_ofs.x == 1 || b_ofs.y == 1) { block->x -= 1; br->x += 1; } } if (rec->y != 0) { rec->y -= 1; } if (rec->x != 0) { rec->x -= 1; } } void sao_reconstruct(picture *pic, pixel *new_y_data, unsigned x_ctb, unsigned y_ctb, const sao_info *sao_luma, const sao_info *sao_chroma) { pixel rec_y[(LCU_WIDTH + 2) * (LCU_WIDTH + 2)]; pixel new_rec_y[LCU_LUMA_SIZE]; pixel *y_recdata = &pic->y_recdata[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)]; pixel *new_y_recdata = &new_y_data[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)]; int x = x_ctb * LCU_WIDTH, y = y_ctb * LCU_WIDTH; vector2d rec; vector2d tl = { 1, 1 }; vector2d br = { 1, 1 }; vector2d block = { LCU_WIDTH, LCU_WIDTH }; rec.x = x_ctb * LCU_WIDTH; rec.y = y_ctb * LCU_WIDTH; sao_calc_block_dims(pic, sao_luma, &rec, &tl, &br, &block); // Data to tmp buffer. picture_blit_pixels(&pic->y_recdata[rec.y * pic->width + rec.x], rec_y, tl.x + block.x + br.x, tl.y + block.y + br.y, pic->width, LCU_WIDTH + 2); picture_blit_pixels(y_recdata, new_rec_y, LCU_WIDTH, LCU_WIDTH, pic->width, LCU_WIDTH); sao_reconstruct_color(&rec_y[tl.y * (LCU_WIDTH + 2) + tl.x], new_rec_y, sao_luma, LCU_WIDTH + 2, LCU_WIDTH, block.x, block.y); //sao_reconstruct_color(rec_u, sao_chroma, COLOR_U); //sao_reconstruct_color(rec_v, sao_chroma, COLOR_V); // Copy reconstructed block from tmp buffer to rec image. picture_blit_pixels(new_rec_y, new_y_recdata, LCU_WIDTH, LCU_WIDTH, LCU_WIDTH, pic->width); } void sao_search_best_mode(const pixel *data, const pixel *recdata, unsigned block_width, unsigned buf_size, unsigned buf_cnt, sao_info *sao_out) { sao_eo_class edge_class; // This array is used to calculate the mean offset used to minimize distortion. int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]; memset(cat_sum_cnt, 0, sizeof(int) * 2 * NUM_SAO_EDGE_CATEGORIES); sao_out->ddistortion = INT_MAX; for (edge_class = SAO_EO0; edge_class <= SAO_EO3; ++edge_class) { int edge_offset[NUM_SAO_EDGE_CATEGORIES]; int sum_ddistortion = 0; sao_eo_cat edge_cat; unsigned i = 0; // Call calc_sao_edge_dir once for luma and twice for chroma. for (i = 0; i < buf_cnt; ++i) { calc_sao_edge_dir(data + i * buf_size, recdata + i * buf_size, edge_class, block_width, cat_sum_cnt); } for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) { int cat_sum = cat_sum_cnt[0][edge_cat]; int cat_cnt = cat_sum_cnt[1][edge_cat]; // The optimum offset can be calculated by getting the minima of the // fast ddistortion estimation formula. The minima is the mean error // and we round that to the nearest integer. int offset = 0; if (cat_cnt != 0) { offset = (cat_sum + (cat_cnt >> 1)) / cat_cnt; offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset); } edge_offset[edge_cat] = offset; // The ddistortion is amount by which the SSE of data changes. It should // be negative for all categories, if offset was chosen correctly. // ddistortion = N * h^2 - 2 * h * E, where N is the number of samples // and E is the sum of errors. // It basically says that all pixels that are not improved by offset // increase increase SSE by h^2 and all pixels that are improved by // offset decrease SSE by h*E. sum_ddistortion += cat_cnt * offset * offset - 2 * offset * cat_sum; } // SAO is not applied for category 0. edge_offset[SAO_EO_CAT0] = 0; // Choose the offset class that offers the least error after offset. if (sum_ddistortion < sao_out->ddistortion) { sao_out->eo_class = edge_class; sao_out->ddistortion = sum_ddistortion; memcpy(sao_out->offsets, edge_offset, sizeof(int) * NUM_SAO_EDGE_CATEGORIES); } } } void sao_search_chroma(const picture *pic, unsigned x_ctb, unsigned y_ctb, sao_info *sao) { } void sao_search_luma(const picture *pic, unsigned x_ctb, unsigned y_ctb, sao_info *sao) { // These buffers are needed only until we switch to a LCU based data // structure for pixels. Then we can give pointers directly to that structure // without making copies. // It's 2-dimensional because sao_search_best_mode takes arguments as arrays. pixel orig_y[LCU_LUMA_SIZE]; pixel rec_y[LCU_LUMA_SIZE]; pixel *y_data = &pic->y_data[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)]; pixel *y_recdata = &pic->y_recdata[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)]; sao->offsets[SAO_EO_CAT0] = 0; sao->offsets[SAO_EO_CAT1] = 7; sao->offsets[SAO_EO_CAT2] = 7; sao->offsets[SAO_EO_CAT3] = -7; sao->offsets[SAO_EO_CAT4] = -7; sao->eo_class = SAO_EO0; sao->type = SAO_TYPE_EDGE; return; // Fill temporary buffers with picture data. picture_blit_pixels(y_data, orig_y, LCU_WIDTH, LCU_WIDTH, pic->width, LCU_WIDTH); picture_blit_pixels(y_recdata, rec_y, LCU_WIDTH, LCU_WIDTH, pic->width, LCU_WIDTH); sao_search_best_mode(orig_y, rec_y, LCU_WIDTH, LCU_LUMA_SIZE, 1, sao); }