/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "encoder.h" #include #include #include #include #include "tables.h" #include "config.h" #include "cabac.h" #include "image.h" #include "nal.h" #include "context.h" #include "transform.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" #include "sao.h" #include "rdo.h" int encoder_control_init(encoder_control_t * const encoder, const config_t * const cfg) { if (!cfg) { fprintf(stderr, "Config object must not be null!\n"); return 0; } encoder->threadqueue = MALLOC(threadqueue_queue, 1); encoder->owf = cfg->owf; //Init threadqueue if (!encoder->threadqueue || !threadqueue_init(encoder->threadqueue, cfg->threads, encoder->owf > 0)) { fprintf(stderr, "Could not initialize threadqueue"); return 0; } // Config pointer to config struct encoder->cfg = cfg; encoder->bitdepth = 8; // deblocking filter encoder->deblock_enable = 1; encoder->beta_offset_div2 = 0; encoder->tc_offset_div2 = 0; // SAO encoder->sao_enable = 1; // Rate-distortion optimization level encoder->rdo = 1; encoder->full_intra_search = 0; // Initialize the scaling list scalinglist_init(&encoder->scaling_list); // CQM { FILE* cqmfile; cqmfile = cfg->cqmfile ? fopen(cfg->cqmfile, "rb") : NULL; if (cqmfile) { scalinglist_parse(&encoder->scaling_list, cqmfile); fclose(cqmfile); } } scalinglist_process(&encoder->scaling_list, encoder->bitdepth); encoder_control_input_init(encoder, cfg->width, cfg->height); //Tiles encoder->tiles_enable = (encoder->cfg->tiles_width_count > 0 || encoder->cfg->tiles_height_count > 0); { int i, j; //iteration variables const int num_ctbs = encoder->in.width_in_lcu * encoder->in.height_in_lcu; int tileIdx, x, y; //iterations variable for 6-9 //Temporary pointers to allow encoder fields to be const int32_t *tiles_col_width, *tiles_row_height, *tiles_ctb_addr_rs_to_ts, *tiles_ctb_addr_ts_to_rs, *tiles_tile_id, *tiles_col_bd, *tiles_row_bd; if (encoder->cfg->tiles_width_count >= encoder->in.width_in_lcu) { fprintf(stderr, "Too many tiles (width)!\n"); return 0; } else if (encoder->cfg->tiles_height_count >= encoder->in.height_in_lcu) { fprintf(stderr, "Too many tiles (height)!\n"); return 0; } //Will be (perhaps) changed later encoder->tiles_uniform_spacing_flag = 1; //tilesn[x,y] contains the number of _separation_ between tiles, whereas the encoder needs the number of tiles. encoder->tiles_num_tile_columns = encoder->cfg->tiles_width_count + 1; encoder->tiles_num_tile_rows = encoder->cfg->tiles_height_count + 1; tiles_col_width = MALLOC(int32_t, encoder->tiles_num_tile_columns); tiles_row_height = MALLOC(int32_t, encoder->tiles_num_tile_rows); tiles_col_bd = MALLOC(int32_t, encoder->tiles_num_tile_columns + 1); tiles_row_bd = MALLOC(int32_t, encoder->tiles_num_tile_rows + 1); tiles_ctb_addr_rs_to_ts = MALLOC(int32_t, num_ctbs); tiles_ctb_addr_ts_to_rs = MALLOC(int32_t, num_ctbs); tiles_tile_id = MALLOC(int32_t, num_ctbs); //(6-3) and (6-4) in ITU-T Rec. H.265 (04/2013) if (!encoder->cfg->tiles_width_split) { for (i=0; i < encoder->tiles_num_tile_columns; ++i) { tiles_col_width[i] = ((i+1) * encoder->in.width_in_lcu) / encoder->tiles_num_tile_columns - i * encoder->in.width_in_lcu / encoder->tiles_num_tile_columns; } } else { int32_t last_pos_in_px = 0; tiles_col_width[encoder->tiles_num_tile_columns-1] = encoder->in.width_in_lcu; for (i=0; i < encoder->tiles_num_tile_columns - 1; ++i) { int32_t column_width_in_lcu = (cfg->tiles_width_split[i] - last_pos_in_px) / LCU_WIDTH; last_pos_in_px = cfg->tiles_width_split[i]; tiles_col_width[i] = column_width_in_lcu; tiles_col_width[encoder->tiles_num_tile_columns - 1] -= column_width_in_lcu; } encoder->tiles_uniform_spacing_flag = 0; } if (!encoder->cfg->tiles_height_split) { for (i=0; i < encoder->tiles_num_tile_rows; ++i) { tiles_row_height[i] = ((i+1) * encoder->in.height_in_lcu) / encoder->tiles_num_tile_rows - i * encoder->in.height_in_lcu / encoder->tiles_num_tile_rows; } } else { int32_t last_pos_in_px = 0; tiles_row_height[encoder->tiles_num_tile_rows-1] = encoder->in.height_in_lcu; for (i=0; i < encoder->tiles_num_tile_rows - 1; ++i) { int32_t row_height_in_lcu = (cfg->tiles_height_split[i] - last_pos_in_px) / LCU_WIDTH; last_pos_in_px = cfg->tiles_height_split[i]; tiles_row_height[i] = row_height_in_lcu; tiles_row_height[encoder->tiles_num_tile_rows - 1] -= row_height_in_lcu; } encoder->tiles_uniform_spacing_flag = 0; } //(6-5) in ITU-T Rec. H.265 (04/2013) tiles_col_bd[0] = 0; for (i = 0; i < encoder->tiles_num_tile_columns; ++i) { tiles_col_bd[i+1] = tiles_col_bd[i] + tiles_col_width[i]; } //(6-6) in ITU-T Rec. H.265 (04/2013) tiles_row_bd[0] = 0; for (i = 0; i < encoder->tiles_num_tile_rows; ++i) { tiles_row_bd[i+1] = tiles_row_bd[i] + tiles_row_height[i]; } //(6-7) in ITU-T Rec. H.265 (04/2013) //j == ctbAddrRs for (j = 0; j < num_ctbs; ++j) { int tileX = 0, tileY = 0; int tbX = j % encoder->in.width_in_lcu; int tbY = j / encoder->in.width_in_lcu; for (i = 0; i < encoder->tiles_num_tile_columns; ++i) { if (tbX >= tiles_col_bd[i]) tileX = i; } for (i = 0; i < encoder->tiles_num_tile_rows; ++i) { if (tbY >= tiles_row_bd[i]) tileY = i; } tiles_ctb_addr_rs_to_ts[j] = 0; for (i = 0; i < tileX; ++i) { tiles_ctb_addr_rs_to_ts[j] += tiles_row_height[tileY] * tiles_col_width[i]; } for (i = 0; i < tileY; ++i) { tiles_ctb_addr_rs_to_ts[j] += encoder->in.width_in_lcu * tiles_row_height[i]; } tiles_ctb_addr_rs_to_ts[j] += (tbY - tiles_row_bd[tileY]) * tiles_col_width[tileX] + tbX - tiles_col_bd[tileX]; } //(6-8) in ITU-T Rec. H.265 (04/2013) //Make reverse map from tile scan to raster scan for (j = 0; j < num_ctbs; ++j) { tiles_ctb_addr_ts_to_rs[tiles_ctb_addr_rs_to_ts[j]] = j; } //(6-9) in ITU-T Rec. H.265 (04/2013) tileIdx = 0; for (j=0; j < encoder->tiles_num_tile_rows; ++j) { for (i=0; i < encoder->tiles_num_tile_columns; ++i) { for (y = tiles_row_bd[j]; y < tiles_row_bd[j+1]; ++y) { for (x = tiles_col_bd[i]; x < tiles_col_bd[i+1]; ++x) { tiles_tile_id[tiles_ctb_addr_rs_to_ts[y * encoder->in.width_in_lcu + x]] = tileIdx; } } ++tileIdx; } } encoder->tiles_col_width = tiles_col_width; encoder->tiles_row_height = tiles_row_height; encoder->tiles_row_bd = tiles_row_bd; encoder->tiles_col_bd = tiles_col_bd; encoder->tiles_ctb_addr_rs_to_ts = tiles_ctb_addr_rs_to_ts; encoder->tiles_ctb_addr_ts_to_rs = tiles_ctb_addr_ts_to_rs; encoder->tiles_tile_id = tiles_tile_id; //Slices { int *slice_addresses_in_ts; encoder->slice_count = encoder->cfg->slice_count; if (encoder->slice_count == 0) { encoder->slice_count = 1; slice_addresses_in_ts = MALLOC(int, encoder->slice_count); slice_addresses_in_ts[0] = 0; } else { int i; slice_addresses_in_ts = MALLOC(int, encoder->slice_count); if (!encoder->cfg->slice_addresses_in_ts) { slice_addresses_in_ts[0] = 0; for (i=1; i < encoder->slice_count; ++i) { slice_addresses_in_ts[i] = encoder->in.width_in_lcu * encoder->in.height_in_lcu * i / encoder->slice_count; } } else { for (i=0; i < encoder->slice_count; ++i) { slice_addresses_in_ts[i] = encoder->cfg->slice_addresses_in_ts[i]; } } } encoder->slice_addresses_in_ts = slice_addresses_in_ts; } encoder->wpp = encoder->cfg->wpp; #ifdef _DEBUG printf("Tiles columns width:"); for (i=0; i < encoder->tiles_num_tile_columns; ++i) { printf(" %d", encoder->tiles_col_width[i]); } printf("\n"); printf("Tiles row height:"); for (i=0; i < encoder->tiles_num_tile_rows; ++i) { printf(" %d", encoder->tiles_row_height[i]); } printf("\n"); //Print tile index map for (y = 0; y < encoder->in.height_in_lcu; ++y) { for (x = 0; x < encoder->in.width_in_lcu; ++x) { const int lcu_id_rs = y * encoder->in.width_in_lcu + x; const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs]; const char slice_start = lcu_at_slice_start(encoder, lcu_id_ts) ? '|' : ' '; const char slice_end = lcu_at_slice_end(encoder, lcu_id_ts) ? '|' : ' '; printf("%c%03d%c", slice_start, encoder->tiles_tile_id[lcu_id_ts], slice_end); } printf("\n"); } printf("\n"); if (encoder->wpp) { printf("Wavefront Parallel Processing: enabled\n"); } else { printf("Wavefront Parallel Processing: disabled\n"); } printf("\n"); #endif //_DEBUG } assert(WITHIN(cfg->pu_depth_inter.min, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX)); assert(WITHIN(cfg->pu_depth_inter.max, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX)); assert(WITHIN(cfg->pu_depth_inter.min, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX)); assert(WITHIN(cfg->pu_depth_inter.max, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX)); encoder->pu_depth_inter.min = cfg->pu_depth_inter.min; encoder->pu_depth_inter.max = cfg->pu_depth_inter.max; encoder->pu_depth_intra.min = cfg->pu_depth_intra.min; encoder->pu_depth_intra.max = cfg->pu_depth_intra.max; return 1; } int encoder_control_finalize(encoder_control_t * const encoder) { //Slices FREE_POINTER(encoder->slice_addresses_in_ts); //Tiles FREE_POINTER(encoder->tiles_col_width); FREE_POINTER(encoder->tiles_row_height); FREE_POINTER(encoder->tiles_col_bd); FREE_POINTER(encoder->tiles_row_bd); FREE_POINTER(encoder->tiles_ctb_addr_rs_to_ts); FREE_POINTER(encoder->tiles_ctb_addr_ts_to_rs); FREE_POINTER(encoder->tiles_tile_id); scalinglist_destroy(&encoder->scaling_list); if (!threadqueue_finalize(encoder->threadqueue)) { fprintf(stderr, "Could not initialize threadqueue"); return 0; } FREE_POINTER(encoder->threadqueue); return 1; } void encoder_control_input_init(encoder_control_t * const encoder, const int32_t width, const int32_t height) { encoder->in.width = width; encoder->in.height = height; encoder->in.real_width = width; encoder->in.real_height = height; encoder->in.bitdepth = encoder->bitdepth; // If input dimensions are not divisible by the smallest block size, add // pixels to the dimensions, so that they are. These extra pixels will be // compressed along with the real ones but they will be cropped out before // rendering. if (encoder->in.width % CU_MIN_SIZE_PIXELS) { encoder->in.width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS); } if (encoder->in.height % CU_MIN_SIZE_PIXELS) { encoder->in.height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS); } encoder->in.height_in_lcu = encoder->in.height / LCU_WIDTH; encoder->in.width_in_lcu = encoder->in.width / LCU_WIDTH; // Add one extra LCU when image not divisible by LCU_WIDTH if (encoder->in.height_in_lcu * LCU_WIDTH < height) { encoder->in.height_in_lcu++; } if (encoder->in.width_in_lcu * LCU_WIDTH < width) { encoder->in.width_in_lcu++; } #ifdef _DEBUG if (width != encoder->in.width || height != encoder->in.height) { printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n"); printf(" Width = %d (%d), Height = %d (%d)\r\n", width, encoder->in.width, height, encoder->in.height); } #endif }